
Beamforming framework for SPM12

• Aims
– Make the existing code accessible to all users.

– Remove unnecessary wrappers and duplications.

– Ease maintenance and further development.

– Provide common API and GUI.

– Enable combining different sub-methods in the same pipeline and easy replacement of
pipeline segments.

– Make the key code segments easily identifiable.

– Enable easy pipeline saving and sharing.

• Constraints
– Add new functionality with minimal changes to existing code

– No need for immediate major code rewrites.

– Everyone keeps their own familiar coding style for the critical code segments and has full
control of their plugins. Modifying the skeleton requires some coordination.

– Different intermediate computation results are easy to keep track of.

• Solution

– SPM batch with automatically detectable plugins.

– Common stable code parts are in the ‘skeleton’.

– Plugins implement different possible operation at
each of the stages of the pipeline.

– Each plugin contains its own GUI definition for
matlabbatch. These can easily be created by
copying and modifying existing examples.

– The setting are harvested by matlabbatch and
passed to the plugin as input.

– additional dependencies can be kept in /private.

• Data management (suggestion)
– Each analysis is run in a separate directory which will

contain a file BF.mat and possibly other files.
– BF.mat contains a set of structs that are converted

into fields of BF struct when loaded with bf_load. That
makes it possible to only load the necessary fields.

– If it turns out that BF.mat gets too big perhaps it
should keep links to some of the stuff but the links
should be relative and within the directory to enable
copying.

– Each pipeline stage has an associated BF field where
its data are kept. Each stage can use the fields created
by the previous stages.

– Where possible data structs are similar to FT.
– It is possible (but highly discouraged) for particular

pipelines to have their own fields for all stages. In
principle the fields should be common wherever
possible.

Presently implemented stages

• data – takes D with head model and prepares everything
necessary for subsequent stages.

• sources - define the source space (grid/mesh/set of sources
etc.). Compute leadfields

• features – prepare the input for filter computation (e.g
covariance matrix)

• inverse – compute inverse projectors (combined)

• output – use the filters to compute something useful (e.g.
power on a grid). The data segments are defined anew for
more flexibility.

• write – generate output (e.g. nifti images or D with source
time courses).

To do

• Review and modify the skeleton structure

• Port the existing functionality to the
framework.

• Validate against the old implementation

• The toolbox can be put on GoogleCode to
enable easy access for everyone and
separated from standard SPM releases.

