Beamforming framework for SPM12

* Aims

Make the existing code accessible to all users.
Remove unnecessary wrappers and duplications.
Ease maintenance and further development.
Provide common APl and GUI.

Enable combining different sub-methods in the same pipeline and easy replacement of
pipeline segments.

Make the key code segments easily identifiable.
Enable easy pipeline saving and sharing.

* (Constraints

Add new functionality with minimal changes to existing code
No need for immediate major code rewrites.

Everyone keeps their own familiar coding style for the critical code segments and has full
control of their plugins. Modifying the skeleton requires some coordination.

Different intermediate computation results are easy to keep track of.



e Solution
— SPM batch with automatically detectable plugins.
— Common stable code parts are in the ‘skeleton’.

— Plugins implement different possible operation at
each of the stages of the pipeline.

— Each plugin contains its own GUI definition for
matlabbatch. These can easily be created by
copying and modifying existing examples.

— The setting are harvested by matlabbatch and
passed to the plugin as input.

— additional dependencies can be kept in /private.



 Data management (suggestion)

— Each analysis is run in a separate directory which will
contain a file BF.mat and possibly other files.

— BF.mat contains a set of structs that are converted
into fields of BF struct when loaded with bf load. That
makes it possible to only load the necessary fields.

— If it turns out that BF.mat gets too big perhaps it
should keep links to some of the stuff but the links
should be relative and within the directory to enable

copying.
— Each pipeline stage has an associated BF field where

its data are kept. Each stage can use the fields created
by the previous stages.

— Where possible data structs are similar to FT.

— It is possible (but highly discouraged) for particular
pipelines to have their own fields for all stages. In
principle the fields should be common wherever
possible.



Presently implemented stages

data — takes D with head model and prepares everything
necessary for subsequent stages.

sources - define the source space (grid/mesh/set of sources
etc.). Compute leadfields

features — prepare the input for filter computation (e.g
covariance matrix)

inverse — compute inverse projectors (combined)

output — use the filters to compute something useful (e.g.
power on a grid). The data segments are defined anew for
more flexibility.

write — generate output (e.g. nifti images or D with source
time courses).



To do

Review and modify the skeleton structure

Port the existing functionality to the
framework.

Validate against the old implementation

The toolbox can be put on GoogleCode to
enable easy access for everyone and
separated from standard SPM releases.



