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Chapter Five

An Empirical Bayesian
Approach

In this chapter the problem of testing statistic images is reformulated as an image
segmentation problem, to which techniques from image processing are applied. In
particular, a Markov Random Field is used to convey prior belief regarding the
contiguous nature of activated voxels.

The work described in this chapter was presented orally at Brain PET’93, the first
International Symposium on Quantification of Brain Function, held in Akita, Japan. An
abstract appears in the Annals of Nuclear Medicine (Holmes & Ford, 1993a), and a full
paper in the conference proceedings, Quantification of Brain Function: Tracer Kinetics
and Image Analysis in PET (Holmes & Ford, 1993b).
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5.1. Introduction and Motivation

In a functional mapping experiment, we may have substantial prior belief or
information regarding the shape and loci of the activated area. The simplest prior belief is
that activated voxels will form contiguous regions. Single threshold approaches to
testing statistic images from functional mapping experiments voxel-by-voxel do not make
use of this prior belief. Rather, they rely on the smoothness of the statistic image to
ensure that the set of voxels declared as “activated” form a few regions of contiguous
voxels. As we have seen, statistic images frequently exhibit a high degree of noise,
especially for statistics formed with variance estimates of few degrees of freedom. This
can lead to isolated voxels being declared as “activated”, contrary to our prior beliefs.

To counter this, it is common to smooth statistic images, so called secondary
smoothing. As discussed in §3.3.6.6., this increases the signal to noise ratio for signals
greater in extent than the filter kernel, at the expense of resolution, and is not always
desirable. If prior belief about the contiguous nature of activated regions can be built into
a test, then such secondary smoothing may not be necessary. In effect, the prior would
act as an “intelligent” smoothing.

Markov random fields
In the image processing literature, Markov Random Fields (MRFs) have been used

successfully to express prior beliefs about the spatial coherence of images in problems of
reconstruction, restoration, and segmentation, the latter being the problem of labelling
pixels with one of a finite set of labels. Green (1990) successfully utilises a MRF to
express such prior belief when reconstructing Single Photon Emission Computed
Tomography images. Geman and Geman (1984) consider the task of restoring a discrete
grey level image corrupted by the addition of Gaussian white noise, as a segmentation
problem, using a discrete MRF to model prior belief about the local structure of the
labelling of pixels by their true grey level.

We shall consider the testing scenario as a segmentation problem, where each
voxel is to be labelled as “activated” or not, according to the evidence against the null
hypothesis.
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5.2. MRFs and Gibbs Distributions

We begin by briefly reviewing the necessary theory of Markov random fields. For
further details, see one of the many papers reviewing random field models for image
analysis. A general summary, richly decorated with examples and algorithms, and with
extensive references, is that recently published by Dubes & Jain (1989). This also appears
in Advances in Applied Statistics, a supplement to the Journal of Applied Statistics,
which is devoted to statistics and images (Dubes & Jain, 1993).

5.2.1. Markov Random Fields
Consider a partition of a two-dimensional image space, Ξ⊂ℜ2, into K square pixels

{V k}
K
k=1. To avoid the complication of edges, we shall take the image space Ξ to be the

surface of a torus, as was considered for the Two-Stage simulation study described
in §4.2.1. Let W={k} K

k=1 be a set of indices for the pixels. As usual, a pixel will be

referred to by its index.

Neighbours
The first order neighbours of a pixel are those pixels it shares a side with, whose

centres are at most 1 pixel unit away (Euclidean distance). The second order neighbours
of a pixel are those that touch it, either at a side or just a corner. The second order
neighbours have centres at most √2 pixel  units away (fig.70).

First order neighbours

Second order neighbours

Figure 70
First and second order neighbours in a two-dimensional image space,

partitioned into square pixels.

For each pixel k ∈ W, define the neighbourhood ηk, to be the neighbouring pixels. The
set ηW = {ηk : k ∈ W} is then the neighbourhood system.

Definition
Consider a random field defined on the lattice of pixel centres, with value at pixel k

denoted by Xk. Let X be the vector of pixel values, X = (X1,…,XK). The random field X
is a Markov Random Field with respect to a neighbourhood system ηW, if and only if;

a) Pr(Xk = xk | Xi = xi, i ∈ W\{k}) = Pr(Xk = xk | Xi = xi, i ∈ ηk)
b) Pr(X = x) > 0 for all possible configurations x = (x1,…,xK)

Here \ denotes set exclusion, so A\B is the set of elements in A but not B.
Condition (a) is known as the Markov property. This states that the probability of

X having a certain value at a particular pixel, given the values of X elsewhere, is
dependent only on the values of X in the neighbourhood of that pixel. The positivity
condition (b), states that all combinations of pixel values are possible. If in addition, the
probability of the field taking any value at a pixel, given the values at the neighbouring
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pixels, is independent of the particular pixel under consideration (condition (c)), then the
MRF is homogeneous.

c) Pr(Xk = xk | Xi = xi, i ∈ ηk) = Pr(Xk +j = xk | Xi +j = xi, i ∈ ηk)
∀ k ∈W & k + i ∈W & ∀ xk

Early work with MRFs was hampered because it was not known how to evaluate
the joint probability distribution Pr(X = x), or even how to define the local conditional
probabilities such that the joint probability distribution was valid. These problems were
solved by the Hammersley-Clifford theorem, which identified MRFs with Gibbs random
fields.

5.2.2. Gibbs Random Fields
Gibbs Random Fields (GRFs) originated in statistical physics, where it was desired

to deduce the large scale properties of a lattice system from local models. Ising (1952)
pioneered the approach for modelling the behaviour of ferromagnetic material by
considering only the interaction of the “spins” of neighbouring atoms. Two neighbouring
atoms of opposite spin were considered to have a positive potential. The state of the
lattice was characterised by its energy, computed as the sum of the potentials.
Configurations of low energy are therefore more stable than those of high energy.

The terminology of statistical physics is widely used in this branch of statistical
image analysis, and the concepts are somewhat easier to understand if the application to
ferromagnetic materials is kept in mind.

Cliques
A clique under a neighbourhood system is any set of pixels, all possible pairs of

which are neighbours. For the second order neighbourhood system the cliques are all
groupings of pixels with shapes as given in fig.71. For a first order neighbourhood
system, only shapes 1,2 & 3 apply. Let C(ηW) be set of the cliques of W under
neighbourhood system ηW.

1

2 3

4 5 6 7 8 9 10

Singleton clique

Pair cliques

First order neighbourhood system clique types

Second order neighbouthood system clique types

Figure 71
Clique types for first and second order neighbourhood systems of
two-dimensional fields. Types 1–3 constitute the clique types for a first order
neighbourhood system, types 1–10 the types for a second order system. Type
1 cliques are known as singleton cliques, types 2–5 as pair cliques.
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Gibbs Random Fields
A random field X is a Gibbs random field if and only if the probability (density)

function has the following form:

Pr(X = x) = 
e -U(x)

Z

Here, U(x) is called the energy function. The higher the energy of the configuration, the
lower the probability. The denominator, Z, is the partition function, a normalising
constant obtained by summing the numerator over all possible configurations x. The
partition function is usually not computable. For example, a small field of K = 64×64
pixels, each of which can take only two values, has 24096 possible configurations!

We can specify the energy function in terms of potentials for the individual cliques
of a neighbourhood system. For clique c ∈ C(ηL) let Vc(x) be its potential, a function of
the values of the pixels in the clique. Then, define the energy function as follows:

U(x) = ∑
c ∈C(ηW)

 Vc(x)

The Hammersley-Clifford theorem states that a random field X is a MRF with
respect to the neighbourhood system ηW, if and only if X is a Gibbs distribution, with
potentials defined on the cliques of that neighbourhood system. (See Besag (1974) for a
proof.) Thus, it is usual to define a MRF through its representation as a GRF, by specifying
clique potentials.

Discrete M colour GRF

Consider henceforth the discrete random field X, where each pixel can take values
in {0,1,…, M-1}, corresponding to M “colours”.

A simple scheme for constructing a GRF is described by Derin and Elliott (1987).
They assign a potential Vc(x) = -ζt to cliques of type t when all the pixels in the clique
have the same value, and +ζt if any of the pixels are different (ζt ≥ 0). Configurations
containing cliques of clique type t with differing pixel values have higher energy and
hence lower probability.

For the second order neighbourhood clique types (fig.71), X is defined as a GRF by
taking the clique potential functions ζt, as zero for the singleton cliques (ζ0 = 0), β for
the pair cliques where a side is shared (ζt = β for t = 2,3), β/√2 for the pair cliques where
only a corner is shared (ζt = β/√2 for t = 4,5), and zero for the other cliques. The single
parameter β specifies the dependency between a pixel and its neighbours, and
characterises the strength of the field.
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For the discrete M colour GRF, we can deduce the local conditional probability
structure in the usual way:

Pr(Xk = xk | Xi = xi, i ∈ W\{k}) = 
Pr(X = x)

Pr(Xi = xi, i∈W\{ k})
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The denominator in each of the above expressions is the sum of the numerator for
all possible labellings of xk as one of {0,1,…, M-1}, and as such is simply a normalising
constant. The set {x' : x'i = xi , i ∈W\{ k}} is simply the set of M configurations that are
the same as x, save at pixel k, which takes all possible values 0,1,…, M-1. Note that the
sums of clique potentials in eqn.66 are only for those cliques containing pixel k. Thus, the
conditional probability for the value at voxel k, given the values elsewhere, depends only
on the values of the field at the neighbours of pixel k, the Markov property. The partition
function does not appear, so computation is straightforward.



Image Segmentation 169

5.3. Image Segmentation

To illustrate the techniques which we shall use in our Bayesian test for a statistic
image from PET, consider the following simple image segmentation problem.

5.3.1. Segmentation
Consider a true image R consisting of only M known grey levels. Label the grey

levels with unique colour labels from the set {0,1,…, M-1}, such that label x corresponds
to a pixel grey value of g(x). Call the labelling X. Suppose that we observe R with added
Gaussian white noise of variance σ2, and that from this noisy version, Y, we wish to
estimate the original colour labelling X. The likelihood Pr(Y = y | X = x) of any particular
labelling given the data is simply the product, over all pixels, of the univariate normal
pixel likelihoods Pr(Yk = yk | Xk = xk):

Pr(Yk = yk | Xk = xk) = 

exp




– 

(yk - g(xk))
2

2σ2

2πσ2
(67)

MRF Prior & posterior
The maximum likelihood estimate x̂, simply labels each pixel with the label of the

grey level nearest to the observed value. Expressing prior beliefs Pr(X = x) about the
expected contiguous nature of the colour labelling via a discrete MRF with parameter β,
as defined above, we obtain the posterior distribution for the labelling X, given the data
Y, by Bayes theorem as:

Pr(X = x | Y = y) ∝ Pr( Y = y | X = x ) × Pr( X = x )

∝ ( ) ( )( ) ( )exp ln
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Assuming σ is known, the posterior (eqn.68) is also a GRF (and hence a MRF),
since the contribution of the likelihood is an extra term in the energy function
corresponding to potentials for the singleton cliques. The constant of proportionality is
thus the posterior partition function.

MPM estimate

A suitable estimate x~ of the colour labelling x is then the Maximum Posterior
Marginal (MPM) estimate, which maximises the marginal posterior probabilities
Pr(Xk = xk | Y = y ). This therefore minimises the expected number of misclassified pixels
under the posterior. A vague prior, with β=0, expresses no prior belief, and the MPM

labelling is identical to the maximum likelihood estimate.
Unfortunately the marginal probabilities cannot be evaluated directly, because of

the uncomputable posterior partition function. However realisations of GRFs can be
generated using the Gibbs sampler, and from these realisations estimates of the marginal
posterior probabilities obtained.
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5.3.2. The Gibbs sampler
The Gibbs sampler has radically changed the face of Bayesian inference over the

past few years, enabling complex posterior distributions to be dealt with easily. In the
current context, a sequence of random fields {X0, X1,…, Xq,…, XQ} is generated from
an arbitrary initial colour labelling X0. Here, take the initial colour labelling as the

Maximum Likelihood estimate, X0 = x̂. Each field in the sequence is generated from the
previous one by visiting each pixel in turn, computing the local conditional posterior
probabilities for each of the M colour labels (given the current labels of the neighbouring
pixels and the data), and then choosing a new colour label for pixel k according to these
probabilities. The sequence {X0, X1,…} can be proved to be a Markov Chain, with
equilibrium distribution Pr(X = x | Y = y), the posterior distribution. Hence,

Pr(Xq = x) →q∞  Pr(X = x | Y = y). So, for large qB, Xq may be regarded as a realisation of

the posterior distribution for any q ≥ qB. Frequently qB is called the “burn in” period. See
Smith & Roberts (1993) and Besag & Green (1993) for a rigorous discussion of the
method.

The set S = {XqB, XqB+t, XqB+2t,…, XqB+nt} can be regarded as an independent
random sample of size n from the posterior distribution, provided the spacing t is chosen
to overcome the serial correlation between successive labellings. The natural estimates of
the marginal posterior probabilities of each colour label at pixel k, Pr(Xk = xk | Y = y ),
are the proportions of labellings in S with pixel k labelled that colour. Dependence
between the elements of S does not bias these estimates, so t may be taken as 1.

5.3.3. Example
Figure 72a depicts a grey scale scene, r, defined on a 64×64 pixellation of the

surface of a torus, with 3 grey levels {-2,0,+2}. This scene is a realisation of a GRF X,
with clique potentials characterised by β=0.4 in the scheme described above. (The colour
labels are {2,0,1} respectively: g(0) = 0; g(1) = +2; g(2) = -2.) The realisation was
generated by running 50 full sweeps of the Gibbs Sampler from an initial random colour
labelling.



Image Segmentation 171

Note that although the image is mainly coherent, isolated pixels are present.
Regarding this image as our unobservable image r, we add standard Gaussian white noise
to it to generate our observed image y, depicted in Figure 72b. From y, an estimate of x,
and hence of r is required.
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Figure 72
(a) Example grey level scene, r, a realisation of a three colour GRF with
clique potential functions parameterised by β = 0.4. (b) The grey scale scene
corrupted by the addition of Gaussian white noise of unit variance, to give
an example observable image y.

The maximum likelihood labelling is depicted in fig.73, with the appropriate grey
levels. This segmentation is rather noisy, and misclassifies 891 of the pixels (≈22%).

Figure 73
Maximum likelihood estimate of the true scene r, obtained from the
corrupted scene y, given the grey levels corresponding to the three colour
labels, and the variance of the Gaussian white noise process.

Including prior belief gives a vast improvement. Figure 74 depicts estimates of the

MPM estimates x~, for priors with strengths parameterised by β=0, β=0.2, β=0.4 & β=0.6.
The marginal posterior probabilities in each case were estimated using the Gibbs sampler
as described above, with 20 iterations burn in and the 2000 subsequent iterations as
sample. The case β=0 gives a vague prior, where the posterior is proportional to the

likelihood. The MPM estimate x~ in this case is therefore equivalent to the maximum
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likelihood estimate x̂. The estimated MPM estimate for this vague prior (fig.74a) differs
from the true ML at only 28 pixels (≈0.7%). This demonstrates the validity of the
computer programs used. However, in this case of vague prior, successive realisations
from the Gibbs sampler are independent realisations of the posterior, which is not the

case for non-vague priors. Thus, the number of errors in estimation of x̂ is not indicative
of the number of errors in estimating the MPM estimates for non-vague priors.

As can be seen, the incorporation of prior knowledge about the spatial coherence
of the image affords considerable improvement over the maximum likelihood
segmentation, although too strong a prior makes the segmentation “too smooth”. The
numbers of misclassified pixels are 235 (5.7%), 124 (3.0%) & 142 (3.5%).

a b

c d

Figure 74
Estimates of the Maximum Posterior Marginal estimates of the true scene r,

for prior strengths of (a) β=0; (b) β=0.2; (c) β=0.4; & (d) β=0.6.

The prior effectively acts as an intelligent filter of the colour labelling. Indeed, this
Bayesian approach can be viewed in classical terms as a penalised likelihood method, the
MRF providing a functional form of the “penalty” of labelling a pixel differently to its
neighbours. It is this property that motivates the use of a MRF as a prior for testing
statistic images.
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5.4. A Bayesian Segmentation Test

Consider a Gaussian statistic image Y, Yk ~ N(µk,1). The omnibus null hypothesis
HW, is the intersection of the pixel hypotheses Hk:µk = 0, k∈W. The Bonferroni method
for testing a Gaussian statistic image Y, tests each pixel individually, correcting for the
number of comparisons using the Bonferroni inequality. For a two-sided test at level α
this results in a procedure where the statistic image is thresholded above at
Φ-1(1-α/(2K)) and below at Φ-1(α/(2K)) (§3.2.1.). High pixels give significant evidence
of an increase in the test statistic, indicating positive activation, and low pixels a
significant decrease, indicating negative activation.

Segmentation formulation of Bonferroni test
We can view the test as an image segmentation problem with three labels:

“no activation”, “positive activation” and “negative activation”. The “no activation” label
corresponds to a true statistic or “grey level” of zero, and we observe this with an added
Gaussian error. The two alternative labellings do not correspond to any particular true
statistic value, but if we assign artificial alternative true values 2Φ-1(α/(2N)) and
2Φ-1(1-α/(2N)) to “negative activation” and “positive activation” respectively, then a
maximum likelihood segmentation of the statistic image will give the same labelling of
the pixels as would the Bonferroni test.

Formulated as a segmentation problem thus, prior belief can be included. This leads
to a Bayesian segmentation “test”, as a segmentation of the statistic image with the
(artificial) grey levels for the labellings as given above. To evaluate this idea a simulation
study was carried out.
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5.5. Simulation Study

5.5.1.Simulation methods

Null statistic images
Null statistic images were generated in exactly the same manner as the subject

difference images of the Two-Stage simulation, described in §4.2.2. Briefly, Gaussian
white noise fields were generated on a 64×64 pixellation of the surface of a torus. These
were smoothed with an isotropic Gaussian filter kernel of standard deviation 5/√(8ln(2)),
corresponding to a FWHM of 5 pixels (10mm for 2mm square pixels). The filter kernel
was implemented as a moving average filter, with weights computed by evaluating the
kernel on a regular 17×17 array of points 1 unit (pixel) apart. The variance of the initial
white noise process was chosen so that the null statistic image had pixel values with unit
variance.

Signal
Departures from the null hypothesis were simulated by adding a signal image to the

simulated null statistic images. Two signal images were considered. The first was a zero
image, used to examine the true level of the test. The second was the focal signal used in
the Two-Stage simulation (§4.2.2.). This is a centrally located isotropic Gaussian kernel
of standard deviation 5/√(2ln(2)), corresponding to a centrally located Gaussian point
response function with FWHM of 5 pixels, convolved with itself. The signal was scaled to
have maximum height, or amplitude, of 4.5.

Tests
The artificial segmentation formulation of the Bonferroni test using estimated

posterior probabilities for prior strengths of β = 0, 1, 2, 3, was compared with the results
of the actual Bonferroni test. For each combination of signal and prior strength the two
tests were compared on separate sets of simulated statistic images. With vague prior the
significance labelling from the two tests should be the same, however there will be
sampling error due the estimation of the marginal posterior probabilities. A burn in
period of 10 iterations of the Gibbs sampler was adopted, and the subsequent 1000
realisations used to estimate the marginal posterior probabilities. Clearly it is desirable to
estimate these probabilities fairly accurately, especially those near 0.5 where the marginal
posterior probabilities for two labellings are close. However, it is the properties of the
resultant test that are of interest, rather than the niceties of Markov Chain Monte-Carlo,
and small symmetrical errors shouldn’t impair the qualities of the test.
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5.5.2. Results

Zero signal
The results of the simulation study for the pure noise test images are given

below (table 75). The p-values given are for the null hypothesis that both tests have the
same size, against a two sided alternative, computed using McNemars test. Both tests are
ultra-conservative, the test images being very smooth. Although there is little evidence, it
appears that, as the prior strength is increased, the Bayesian segmentation test becomes
progressively more conservative than the Bonferroni test. A 95% confidence interval for
the true size of the level α = 0.05 Bonferroni test is (0.0092, 0.0148), computed to 4dp
using the normal approximation to the Binomial.

1 = “reject” HW Bonferroni
Zero signal 0 1

MPM β=0.0 0 984 0 984
p=1 1 1 15 16

MPM β=0.1 0 986 3 989
p=0.25 1 0 11 11

MPM β=0.2 0 988 9 997

p≈0.0039 1 0 3 3

MPM β=0.3 0 993 6 999

p≈0.0312 1 0 1 1

Bonferroni 3952 48

Table 75
Summary of simulation results for zero signal

Focal signal
The results of the simulation for the centrally located focal signal, scaled to have a

maxima of 4.5, are given in table 76. Increasing the strength of the prior makes the
Bayesian MPM test less powerful than the Bonferroni method.

1 = “reject” HW Bonferroni
Focal signal 0 1

MPM β=0.0 0 172 2 174
p=1 1 1 325 326

MPM β=0.1 0 173 31 204

p≈ 9×10-10 1 0 296 296

MPM β=0.2 0 190 57 247

p≈1×10-17 1 0 253 253

MPM β=0.3 0 182 81 263

p≈ 8×10-25 1 0 237 237

Bonferroni 718 1282

Table 76
Summary of simulation results for focal signal.

All rejections of the omnibus hypothesis HW are considered.
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5.6. PET Example

Figure 77 shows the AC-PC plane of the t-statistic image for the “V5” study subject
difference images, after transformation to have a standard Gaussian distribution under
the null hypotheses. The paired t-statistic was constructed as described in §2.3.1., and
was depicted previously in §2.6.1. This t-statistic image was Gaussianised by replacing
each pixel t value with the standard Normal ordinate with the same extremum
probability. (Recall the discussion of “transform functions” of §3.3.3., and see
appendix E for computational details.)

Let this two dimensional image be y. The AC-PC plane is discretised into K = 65×87
square pixels of side 2mm. For consistency with the previous experiments in this chapter,
periodic boundary conditions were assumed: The rectangular image space was
considered as the unfolded surface of a torus. The top and bottom, and left and right of
the image space are taken to abut, respectively. The set W was taken to be the set of
(indices of) all K voxels, rather than the subset corresponding to the intracerebral area as
in other chapters. The voxel hypotheses Hk:µk= 0, were tested against two-sided
alternatives, where the pixel values yk are assumed to be drawn from a Gaussian
distribution with mean µk and unit variance.
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Figure 77
Mesh plot of “Gaussianised” t-statistic for the “V5” study, computed using
the proportional scaling approach and paired t-statistic, described in §2.3.1.
The X and Y axes are graduated in millimetres, according to the Talairach
system. The AC-PC plane is shown.

Bonferroni assessment
A two-sided Bonferroni assessment of the AC-PC plane of the Gaussianised

t-statistic image, correcting for the number of pixels in the plane, leads to the rejection of
Hk at 140 pixels (≈2.5%), shown in figure 78. The small regions of negative activation
were considered to be artefacts. More primary (or secondary) smoothing would have
removed these artefacts, but would also have smoothed out the signal.
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Figure 78
(a) Image of AC-PC plane of Gaussianised t-statistic for the “V5” study,
shown as a mesh plot in fig.77. (b) Results of Bonferroni assessment of this
plane, correcting for the number of pixels in the plane. Pixels with values in
the upper tail of the null distribution are shown painted grey, those in the
lower tail black. The outline of the intracerebral area is shown for
orientation.

Bayesian MPM segmentation “test”
The Gaussianised t-statistic, y, was assessed using the Bayesian MPM segmentation

test, with prior strengths parameterised by β = 0.1, 0.2, & 0.3. The artificial alternative
grey values for the “positive activation” and “negative activation” labels were set at
±2Φ-1(1-α/2K), for level α = 0.05. Once again, the posterior probabilities were
estimated from 1000 successive realisations from the Gibbs sampler, after a burn in of 10
iterations. The results are shown in figure 79. As can be seen, the smaller regions are
successively eliminated as the prior strength is increased, and the shape of the large
activated area is rounded off.

a b c d

Figure 79
Results of Bayesian MPM segmentation assessments of the AC-PC plane of the
Gaussianised “V5” study t-statistic. The priors used are parameterised by
(a) β=0.0 (vague prior), (b) β=0.1, (c) β=0.2, & (d) β=0.4. Pixels labelled
“positively activated” are shown grey, those labelled “negatively activated”
as black. The outline of the intracerebral area is shown for orientation. The
large region of positive activation corresponds to the primary visual cortex.
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5.7. Conclusions

In this chapter an attempt has been made to include prior belief regarding the
contiguous nature of activated pixels, into the testing procedure. This prior belief was
expressed through a discrete MRF, motivated by the usefulness of this model in digital
image processing.

Summary of the approach
The exact method proposed is based on the simple segmentation problem, where a

grey scale scene is sought from an observation corrupted by added Gaussian white noise.
This Bayesian segmentation requires knowledge of the true grey levels, and the variance
of the white noise process.

For a standard Gaussian statistic image, we wish to label each pixel (voxel) as “not
activated”, “negatively activated” or “positively activated”. Simple threshold tests, the
simplest of which is the Bonferroni, achieve this by thresholding the statistic image above
and below, and labelling suprathreshold pixels (voxels) accordingly. Assigning “artificial”
grey levels to the activated labels that are twice the appropriate threshold, so that the
likelihoods of the labellings cross at the thresholds, results in a ML segmentation that
duplicates the results of the test. The Bayesian MPM segmentation test proposed here
simply seeks to include a prior into this segmentation.

Although specific statistic values are specified for pixels labelled as “positively
activated” and “negatively activated”, the alternative hypothesis is still composite, since
very extreme values will still be nearest to the grey level for the appropriate labelling.

Extensions
As presented here, the thresholds for a two-sided Bonferroni test have been used

to set the thresholds. Clearly thresholds from any valid test could be used. Extension of
the approach to three dimensions is trivial, as is modification for a one sided test.

Conservativeness
The Bonferroni method is conservative for testing multiple hypotheses that are

dependent. The addition of prior beliefs to the Bonferroni method via the Bayesian MPM

segmentation test formulated above, results in a less powerful test. As mentioned above,
a Bayesian MPM segmentation test could be constructed using thresholds for any valid
voxel-by-voxel test employing a fixed threshold. However, as demonstrated for the
Bonferroni approach, the Bayesian MPM segmentation test is less powerful than the
thresholding test on which it is based.

The inclusion of prior belief via a MRF biases the labelling of each pixel towards
that of the majority of its neighbours. Regions of activation are convex, so pixels on the
boundary of this region will have less activated neighbouring pixels than activated ones.
Thus, the inclusion of prior belief will weaken their significance, reducing the size of the
activated region. However, the resulting labellings are more contiguous, as illustrated in
the PET example.

Tuning
To overcome this conservativeness, the Bayesian MPM segmentation test could be

“tuned”, by setting the artificial statistic levels for the “activated” labellings closer to zero
so that a test with size approximately equal to the desired level was obtained.

For instance, a Bayesian MPM test based on a simple pixel threshold of Φ-1(1-α'/2),
with α'=0.0001, gives 31 rejections of the omnibus null hypothesis over 500 zero signal
simulations at prior strength β=0.2. An approximate 95% CI for the size of the test is
therefore (0.0409,0.0831), which includes 0.05.
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Such tuning requires large numbers of null statistic images, which can only be
obtained by simulation. The robustness of tests based on simulated null statistic images is
still in doubt, as was discussed with regard to suprathreshold cluster size tests in §3.5.1.,
and we shall not pursue this line of investigation.

Contiguous labellings
For (expected) diffuse activations it is best to smooth and use a test method taking

into account the spatial redundancy due to smoothness. For extremely focal activations,
or statistic images with a degree of high frequency noise, the Bayesian approach
incorporates our prior belief well, and works as an intelligent smoothing of the pixel
labelling. Although the Bayesian test formulated here is conservative, it illustrates the
usefulness of MRFs for conveying prior belief.

With hindsight, the simulation experiment appears inadequate for assessing the
promise of the Bayesian approach, since the simulated statistic images were very smooth.

Bayesian rigour
The use of Bayesian tools in this context is merely a means to an end, that end

being a contiguous pixel labelling. This is not a rigorous empirical Bayesian approach.
The model used is clearly an oversimplification. A statistic image from PET clearly does
not consist of three levels for “negative activation”, “no activation” and “positive
activation” to which white Gaussian noise is added.

The noise process is smooth. Considering the segmentation of a discrete grey level
scene to which smooth noise has been added, the posterior is not a MRF as specified in
eqn.68, since the likelihood Pr(Y = y | X = x) is not the product of the univariate
likelihoods of eqn.67. If the noise process can be modelled as a (continuous) MRF, say a
Gaussian Markov random field, then the posterior can be computed, and is a MRF on the
neighbourhood system that is the union of those for the prior and the noise.

This modification for smooth noise is still inappropriate for statistic images, since
the “true” statistic image is not discrete. In short, the segmentation model is too
simplistic for a rigorous empirical Bayesian approach to segmenting statistic images
from PET.

Summary
A simple attempt to embody prior belief regarding the contiguous nature of

activated pixels into a significance test for statistic images has been presented. A MRF

prior has been applied to a simple threshold method, viewed as a segmentation problem.
The resulting Bayesian MPM segmentation “test” is less powerful than the thresholding
test upon which it is based, but the identified activated regions are more contiguous.
Given the operational complexities of the method, and the difficulty of “tuning”, the
proposed method is perhaps consigned to the large pile of ideas that “didn’t quite make
it”.
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