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A: Co-ordinate Systems

A:1 Referring to voxels by position

Real co-ordinates, x∈∈ΞΞ
Ξ is the subset of ℜ3 which is imaged. Ξ is partitioned into K voxels, ς = {Vk} K

1 Vk

⊂ Ξ,  k = 1,…,K;  Vk ∩ Vk' = φ for k≠k';  and U
k=1

K
Vk = Ξ.

Sometimes it is convenient to refer to a voxel in an image using Cartesian co-
ordinates. For an image Y = (Y1,…,YK), abusing the notation somewhat, let Y(x) be the
value of the voxel containing point x:

Y(x) = 



 ∑

k=1

K

 Yk {x∈Vk} for x∈Ξ

0 for x∈ Ξ

where Ξ  = ℜ3 \ Ξ the compliment of Ξ in ℜ3, and a logical expression in brackets “{•}”

takes the value one if the argument is true and zero otherwise, as advocated
by Knuth (1992).

Voxel Co-ordinates
If the voxels are identical in shape and size, and are regularly arranged, then the

D-dimensional image is conveniently stored in a D-dimensional array. In this case, voxels
are most conveniently referred to by their array indices. Usually the image is stored in an
array such that increases in the row, column, and plane indices correspond to increases in
the X, Y, and Z directions respectively.

This co-ordinate system is referred to as voxel co-ordinates, since the position of
each voxel is specified by the displacement in each axial dimension measured in whole
numbers of voxels from a given origin. For the standard orientation of the co-ordinate
axes in PET, the most left-posterior-lower voxel in the image space is (1,1,1) (fig.92).
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Figure 92
Voxel co-ordinates of voxels (pixels) at the left-lower of a two dimensional image.
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Suppose that Ξ is cuboid, oriented parallel to the axes, and partitioned into
K = Xdim×Ydim×Zdim cuboid voxels. Here Xdim is the width (X-dimension) of Ξ,
measured in voxels. If the centre of the left-posterior-lower voxel of Ξ is at (xo,yo,zo),
and voxels are of uniform dimensions hx×hy×hz then the voxel co-ordinates
xv = (xv,yv,zv) are related to the real co-ordinates x by:

x = (x,y,z) = (xvhx+xo, y
vhy+yo, z

vhz+zo)
for xv∈[-0.5, Xdim+0.5]×[-0.5, Ydim+0.5]×[-0.5, Zdim+0.5]

xv = ( (x-xo)/hX, (y-yo)/hY, (z-zo)/hZ )
for x∈Ξ

Denote voxel co-ordinates using brackets thus: Y[xv] = Y(x), where x and xv are related
as above.

A:2 Tri-linear interpolation

Recall that the reconstructed images λλ̂ are estimates of λλ, itself a step function

approximating the continuous function λ(x). Thus, an image Y derived from λλ̂ can be
regarded as a step function approximating an underlying continuous function Y(x). In
many cases it is necessary to obtain estimates of Y(x) for arbitrary locations, for example
when re-sampling an image after a change of co-ordinate axes. In these situations some
form of interpolation of the image vector Y is desirable.

If we view the image Y as approximating Y(x) at the centres of the voxels, then for

locations x other than the voxel centres, an estimate Y
~
(x) of Y(x) can be obtained by

interpolating between the values at neighbouring voxel locations. Tri-linear interpolation
is usually employed in PET image analysis. This is the simplest form of interpolation for
three-dimensional data. The interpolated value at a given point is a linear combination of
the values of the eight neighbouring voxels whose centres define the cuboid containing
the point.

Let xv = (xv, yv, zv) be x in voxel co-ordinates, and let t = (tX, tY, tZ) =
xv- (xv, yv, zv) for • the floor function, rounding the argument towards minus
infinity. Then, for • the ceil function, rounding towards plus infinity:

Y
~
(x) =

(1-tX)(1-tY)(1-tZ) Y[(xv ,yv ,zv)] + (1-tX)(1-tY)(tZ) Y[(xv ,yv ,zv)]
+ (1-tX)(tY)(1-tZ) Y[(xv ,yv ,zv)] + (1-tX)(tY)(tZ) Y[(xv ,yv ,zv)]
+ (tX)(1-tY)(1-tZ) Y[(xv ,yv ,zv)] + (tX)(1-tY)(tZ) Y[(xv ,yv ,zv)]
+ (tX)(tY)(1-tZ) Y[(xv ,yv ,zv)] + (tX)(tY)(tZ) Y[(xv ,yv ,zv)]

Clearly interpolation of Y introduces some smoothing.
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B: Smoothing Convolution

B:1 Smoothing convolution
For a continuous function Y(x), x∈ℜD, smoothing is achieved by convolving the

function with a filter kernel f(x), to obtain a new function Y⊗f(x):

X⊗f(x) = ⌡⌠f(r) Y(x+r)dr (76)

Here integration is over the whole range of x. The filter kernel, f(x), satisfies:

⌡⌠f(x)dx = 1

The kernel is a continuous function, usually with a single local maximum at the origin,
and with value decreasing as x becomes distant from 0.

B:2 Moving average filter
The discrete analogue of convolution is that of a moving average filter. Although

technically incorrect, smoothing of images is frequently described as “convolution with a
kernel”. Suppose our discretisation of the image space Ξ⊂ ℜD is of K voxels
ς={V k: k = 1,…,K}, and let xk be the centre of voxel k. Then for an image of voxel
values, Y = {Y1,…,YK}, the smoothed version of this is Ys = {YS

1,…,YS
K}, given by:

YS
k = ∑k' =1

K f(xk' -xk) Yk' (77)

For a particular voxel, the smoothed image is obtained by positioning the filter kernel on
the centre of the voxel, evaluating it on the lattice of points corresponding to the centres
of the voxels to obtain the weightings for the voxels, and then summing the weighted
voxel values.

Regular discretisation, constant weights, moving average
If the voxels are identical in size and shape, and are regularly arranged, then the set

of weights (f(xk' -xk)) for any voxel k will be identical (ignoring boundary effects). In this
case the weights can be computed in advance, giving an image of the filter kernel. The
weights can then be explicitly normalised to sum to unity, and the smoothing is a simple
moving average.

B:3 Edge effects & boundary truncation smoothing
For voxels k close to the edge of the image space, the filter kernel when located at

these voxels will have positive values outside the image space. I.e. f(x-xk) is non negative

for some x∈ Ξ  = ℜD \ Ξ. For such a voxel k, the sum of the weights f(xk' -xk) over all

voxels k' is less than one. The remaining “weight” of the smoothing kernel corresponds
to locations outside the image space for which there are no voxels. The values for edge
voxels in the smoothed image are generally reduced towards zero, an edge effect. The
effect is as if a boundary of voxels with zero value were placed round the edge of the
image. This scenario is zero-boundary smoothing.
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Truncated smoothing
If the image space adequately contains the volume of interest, in our case the

voxels corresponding to the brain, then the zero-boundary edge effect is not of any
consequence. As can be seen from the raw images (ch.1) the brain fits just inside the
image space in the X and Y directions, but is truncated in the Z direction due to the
limited axial length of the tomograph.

The effect can be avoided by using boundary-truncation smoothing (eqn.78). Here
the weights of the filter kernel are normalised at each voxel. The effect is as if the filter
kernel is truncated when it reaches the edge of the image.

YS
k = 

1

∑k'=1
K f(xk-xk')

 ∑k'=1
K f(xk-xk') Yk' (78)

B:4 Gaussian kernels
The filter kernel used is almost universally Gaussian, by which we mean that it is

the probability density function (PDF) of a D-variate normal distribution with zero mean
and variance-covariance matrix ΣΣ (eqn.79).

( )
( ) ( )f expx x x= − −1

2 2
1
2

1

π D ΣΣ
ΣΣ T (79)

The filters usually used are orthogonal, with variance-covariance matrices with
zero off-diagonal elements. The filter is then completely specified by the D-tuple
containing the variances, and is ellipsoidal in shape, with axes parallel to the image axes.
The convolution integral factorises into D one dimensional component integrals, which
simplifies and speeds up computation.

Relationship of FWHM to variance-covariance matrix
As with image resolution, the shape of the kernel is expressed in FWHM.56 This is

related to the variance for a Gaussian PDF as follows: A univariate Gaussian PDF with

variance σ2 has maxima 1/(σ 2π) at x = 0. The FWHM l is then the width of the PDF at

half this height, f(l/2) = 1/(2σ 2π), so l = σ 8ln(2). This is extended to D-dimensional
orthogonal kernels in the obvious way. If a spherical orthogonal kernel with ΣΣ = σ2 ID is

used then it is common to just quote σ 8ln(2) as the FWHM. Some authors prefer to
specify FWHM in terms of voxels.

Some common filters
Commonly used  three-dimensional filters are 10mm×10mm×12mm, and

20mm×20mm×24mm, with variance-covariance matrices of

ΣΣ = 






102 0 0
0 102 0
0 0 122

 
1

8ln(2) and ΣΣ = 






202 0 0
0 202 0
0 0 242

 
1

8ln(2) respectively.

                                               
56Recall that the Full Width at Half Maximum (FWHM) is the width of the (point spread) function at half
its maximum.
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C: Some Results For Smoothing Convolution

The following results for smoothing convolution of random fields are useful.

C:1 Smoothing convolution: commutative for even kernels
Let f1(x) and f2(x) be any two even functions of x∈ℜD. Then f1⊗f2 = f2⊗f1, that

is, smoothing convolution is commutative for even functions.

Proof:

f1⊗f2(u) = ⌡⌠

ℜD

 f2(v) f1(u+v)dv

= ⌡⌠

ℜD

 f2(w-u) f1(w)dw under change of variables w = u+v (†)

= ⌡⌠

ℜD

 f2(u-w) f1(w)dw by even property of f2

= ⌡⌠

ℜD

 f2(u+v) f1(-v)dv by change of variables v = -w (†)

= ⌡⌠

ℜD

 f2(u+v) f1(v)dv by even property of f1

= f2⊗f1(u)

So f1⊗f2 = f2⊗f1, since convolution is commutative for even kernels. The
Jacobeans for the changes of variables (†), are det(-ID), the determinant of the negative
of the D×D identity matrix, which has absolute value 1.

C:2 Double smoothing convolution: Associative for even
kernels

Let X(x) be any function, x∈ℜD, and let f1(x) and f2(x) be two even filter kernels.
Then (X⊗f1)⊗f2 = X⊗(f1⊗f2), that is, smoothing convolution is associative.

Proof:

(X⊗f1)⊗f2 = ⌡⌠

ℜD

 f2(v) X⊗f1(x+v)dv = ⌡⌠

ℜD

 f2(v) ⌡⌠

ℜD

 f1(u) X(x+u+v)dudv

= ⌡⌠

ℜD

 f2(v) ⌡⌠

ℜD

 f1(w-v) X(x+w)dwdv on change of variables w = u+v

= ⌡⌠

ℜD

  ⌡⌠

ℜD

 f2(v) f1(w-v) dv X(x+w)dw

= ⌡⌠

ℜD

  ⌡⌠

ℜD

 f2(-u) f1(w+u) du X(x+w)dw on change of variables u = -v
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= ⌡⌠

ℜD

  ⌡⌠

ℜD

 f2(u) f1(w+u) du X(x+w)dw by even property of f2

= ⌡⌠

ℜD

 f1⊗f2(w) X(x+w)dw = X⊗(f1⊗f2)

C:3 Double smoothing convolution: Order unimportant
Let X(x) be any function, x∈ℜD, and let f1(x) and f2(x) be two filter kernels. Then

(X⊗f1)⊗f2 = (X⊗f2)⊗f1, that is the order of smoothing is unimportant.

Proof:
For even filter kernels f1 and f2 this result follows as a corollary of the previous

two results. However, it holds for general f1 & f2:

(X⊗f1)⊗f2 = ⌡⌠

ℜD

 f2(v) X⊗f1(x+v)dv = ⌡⌠

ℜD

 f2(v) ⌡⌠

ℜD

 f1(u) X(x+u+v)dudv

= ⌡⌠

ℜD

 f1(u) ⌡⌠

ℜD

 f2(v) X(x+u+v)dvdu = ⌡⌠

ℜD

 f1(u) X⊗f2(x+u)du = (X⊗f2)⊗f1

C:4 Combining Gaussian kernels: Double smoothing
Let X(x) be any function, x∈ℜD, and let f1(x) and f2(x) be two Gaussian filter

kernels with variance-covariance matrices ΣΣ1 and ΣΣ2 respectively. Then (X⊗f1)⊗f2
 = (X⊗f2)⊗f1 = X⊗(f1⊗f2) = X⊗(f2⊗f1) = X⊗f where f(x) is a Gaussian filter kernel with
variance-covariance matrix ΣΣ=ΣΣ1+ΣΣ2.

Proof:
Since the kernels are even functions of x∈ℜD, the associativity and commutativity

properties give (X⊗f1)⊗f2 = (X⊗f2)⊗f1 = X⊗(f1⊗f2) = X⊗(f2⊗f1). It remains to prove
that f1⊗f2 has the required form. This can be done using Fourier transforms, or directly
as follows:

f1⊗f2(u) = 
( )

( ) ( )[ ]( )1

2 1 2

1
2 2 1

1 1

π D
d

DΣΣ ΣΣ
ΣΣ ΣΣexp − + + +− −

ℜ
∫ v v u v u v vT T

=
( ) ( )[ ]1

2
2

1 2

1
2 1 2 1 1

1 1 1 1

π D
d

DΣΣ ΣΣ
ΣΣ ΣΣ ΣΣ ΣΣexp − + + +





− − − −

ℜ
∫ v v u u v u vT T T

using ( )u v u v v uT T T TΣΣ ΣΣ ΣΣ1 1 1
1 1 1− − −= =  (since ΣΣ-1

1 is symmetric)
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=
( )

1

2 1 2π D ΣΣ ΣΣ
×

( ) ( ) ( )
( )

exp −
+ +



 + + +





− + +





































− − − − − − − − − −

− − − − − −ℜ
∫ 1

2

1 2 1 1 2 1 2 1

1 1 2 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

v u v u

u u u u

v
ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ

ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ

T

T T

d
D

=
( )

1

2 1 2π D ΣΣ ΣΣ
×

( ) ( )( ) ( )exp − + +



 + + +



























− − − − − − − − − −

ℜ
∫ 1

2 1 2 1 2 2 1 1 1 2 1
1 1 1 1 1 1 1 1 1 1v u v u vΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ

T

d
D

× ( ) ( ) ( )exp − + + − +











− − − − − − − − − − −1
2 1 1 2 1 2 1 1 2 1

1 1 1 1 1 1 1 1 1 1 1u u u uT TΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ ΣΣ

=
( )

1

2 1 2π D ΣΣ ΣΣ
×( ) ( )( )2 2

2 2 1 1
1 1 1

π
D

ΣΣ ΣΣ ΣΣ ΣΣ− − −
+

× ( )exp − +











− − − − −1
2 1 1 2 2

1 1 1 1 1u uT ΣΣ ΣΣ ΣΣ ΣΣ

=
( )

1

2 2
1 2π

D
ΣΣ ΣΣ

× ( )ΣΣ ΣΣ ΣΣ ΣΣ1 2 1 2
1+ − × ( )( )exp − +











− − −

1
2 2 1 2 1

1 1
1

u uT ΣΣ ΣΣ ΣΣ ΣΣ

=
( )

1

2 2
1 2π

D
ΣΣ ΣΣ

× ( )ΣΣ ΣΣ ΣΣ ΣΣ2 1 1 2
1+ − × ( )[ ]exp − +





−1
2 2 1

1u uT ΣΣ ΣΣ

=
( )

1

2 2
1 2π

D
ΣΣ ΣΣ+

( )[ ]exp − +





−1
2 1 2

1u uT ΣΣ ΣΣ
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C:5 Covariance function of smoothed white noise processes
Let Z(x), x∈ℜD, be the field formed by convolving a weakly stationary continuous

white noise random field57 X(x) of variance σ2 (Var[X(x)] = σ2 ∀x) with a kernel f(x),
Z(x) = X⊗f(x). Clearly Z(x) is a strictly stationary continuous random field. Moreover,
the covariance function is C(h) = σ2 f⊗f(h)

Proof:
This result is easily proved directly from the convolution integral (eqn.76):

C(h) = Cov[Z(x),Z(x + h)]

= ( ) ( ) ( ) ( )[ ]Cov f , f′ + ′ ′ + +
ℜ ℜ∫ ∫r x r r r x h r rX d X dD D

= ( ) ( ) ( ) ( )[ ]f Cov f ,r r x r r x h r r′ + ′ ′ + +
ℜℜ ∫∫ X d X dDD

= ( ) ( ) ( ) ( )[ ]f f Cov ,r r x r x h r r r′ + ′ + + ′
ℜℜ ∫∫ DD X X d d

= ( ) ( )f fr r h r+
ℜ∫ σ2dD

(since Cov[X(x+r'),X(x+h+r)]=σ2 if r' =h+r and is zero otherwise)
= σ2 f⊗f(h)

Corollary:
The field Z(x) formed by convolving a white noise field of variance σ2 with a

Gaussian kernel f(x) with variance-covariance matrix ΣΣ,

f(x) = exp(-xTΣΣ-1x/2) / (2π)D |ΣΣ|, is a strictly stationary continuous field with
covariance function:

C(h) = σ2 f⊗f(h)

= σ2 exp(-hT(2ΣΣ)-1h/2) / (2π)D |2ΣΣ|
(a Gaussian kernel with variance-covariance 2ΣΣ, by result 4)

= 
σ2

2DπD/2 |ΣΣ|
 exp(-hT(ΣΣ)-1h/4)

So, for h = 0, Var[Z(x)] = 
σ2

2DπD/2 |ΣΣ|

Corollary:
A strictly stationary continuous random field with zero mean, variance σ2, and

auto-correlation function  R(h) = exp(-hT(ΣΣ)-1h/4), can be obtained by convolving a

white noise random field of variance σ22DπD/2 |ΣΣ| with a Gaussian kernel of variance-

covariance matrix ΣΣ, f(x) = exp(-xTΣΣ-1x/2) / (2π)D |ΣΣ|.

                                               
57A random process X(t) is white noise if E[X(t)] = 0, and if X(t1) and X(t2) are independent, for all
points t,t1 & t2 in the parameter space.
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C:6 Smoothness of smoothed Gaussian white noise fields
The field obtained by convolving a continuous white noise Gaussian random field

(defined on ℜD) with a kernel f(x), is itself a strictly stationary continuous Gaussian
random field with zero mean. If the variance of the white noise process is chosen such
that the resulting field has unit variance, then Adler (1981) shows that the variance-
covariance matrix of partial derivatives is:

ΛΛ = 

( ) ( )

( )

∂
∂

∂
∂

f f

f

x
x

x
x

x

x x

T d

d

D

D

ℜ

ℜ

∫

∫ 2

C:7 Smoothness of (Gaussian) smoothed Gaussian white noise
The strictly stationary continuous standard Gaussian (zero mean, unit variance)

random field formed by convolving a white noise Gaussian random field with a Gaussian

kernel, f(x) = exp(-xTΣΣ-1x/2) / (2π)D |ΣΣ|, has variance-covariance matrix of partial
derivatives ΛΛ = ΣΣ-1/2 = (2ΣΣ)-1. By result 5, the variance of the white noise field must be

2DπD/2 |ΣΣ| for the smoothed field to have unit variance.

Proof:
This follows from the previous result by direct integration.

Corollary:
A strictly stationary continuous Gaussian random field with zero mean, unit

variance, variance-covariance matrix of partial derivatives ΛΛ, and Gaussian
auto-correlation function can be obtained by convolving a white noise Gaussian random

field of variance ( )2π D/2 / |ΛΛ| with a Gaussian kernel with variance-covariance matrix

ΣΣ = (2ΛΛ)-1. This observation provides the framework for simulating Gaussian random
fields.

C:8 Secondary smoothing
Consider a strictly stationary continuous standard Gaussian (zero mean, unit

variance) random field Y(x), x∈ℜD, with Gaussian auto-correlation function and
variance-covariance matrix of partial derivatives ΛΛY. Let f(x) be a Gaussian kernel with
variance-covariance matrix ΣΣ. Let Z = c-1/2 × Y⊗f, where the constant c is chosen such
that Var[Z(x)] = 1 ∀x. Then Z is also a strictly stationary standard Gaussian random
field, with variance-covariance matrix of partial derivatives ΛΛZ = (2ΣΣ + ΛΛY

-1)-1.

Furthermore, c = 1/ 2ΛΛYΣΣ + ID .

If ΣΣY = (2ΛΛY)-1, then ΛΛZ = (2ΣΣ + 2ΣΣY)-1, c = 
ΣΣY

ΣΣ + ΣΣY

, and ΣΣZ = (2ΛΛZ)-1

= ΣΣ + ΣΣY
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Proof:
Since Y(x) can be generated by convolving a white noise Gaussian random

field X(x), of variance ( )2π D/2 / |ΛΛY|, with Gaussian kernel fY(x) with variance-

covariance matrix ΣΣY = (2ΛΛY)-1 (corollary to result 7). Result 4 then gives that
√c×Z(x) = Y⊗f is equivalent to a field obtained by convolving a white noise random field,

of variance ( )2π D/2 / |ΛΛY|, with a Gaussian kernel fZ = fY⊗f, with variance-covariance

matrix ΣΣ + ΣΣY. Then, by result 7, Z(x) has variance-covariance matrix of partial
derivatives ΛΛZ = (2ΣΣ + 2ΣΣY)-1 = (2ΣΣ + ΛΛY

-1)-1. It remains to identify the constant c.
Since Z(x) is of unit variance, √c×Z(x) has variance c, but, regarding √c×Z(x) as X⊗(fY⊗
f), result 5 gives its variance as:

c = 
ΣY

Σ + ΣY

 = 
( )2ΛY

-1

Σ + ( )2ΛY
-1

 = 
1

2ΛY Σ + ( )2ΛY
-1

 = 
1

2ΛYΣ + ID

C:9 Effect of scaling on smoothness
Let Z(x), x∈ℜD, be a strictly stationary continuous random field with variance-

covariance matrix of partial derivatives ΛΛZ. Then the field Y(x) = c×Y(x), for constant c,
has variance-covariance matrix of partial derivatives ΛΛY = c2 ΛΛZ.

Proof:
Trivial. Using the definition of ΛΛZ, and the chain rule for differentiation…

ΛΛ =

[ ] [ ]
[ ] [ ]
var cov ,

cov , var

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

Y
x

Y
x

Y
x

Y
x

Y
x

Y
x

1 1 2

1 2 2

L

L

M M O

















Where x = (x1, x2,…).

= 

[ ] [ ]
[ ] [ ]

var cov ,

cov , var

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂
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X

X
x

Y
X

X
x

Y
X

X
x

Y
X

X
x

Y
X

X
x

Y
X

X
x

1 1 2

1 2 2

L

L

M M O

















…

= ( )
[ ] [ ]

[ ] [ ]∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

Y
X

X
x

Y
x

X
x

X
x

X
x

X
x

2
1 1 2

1 2 2

var cov ,

cov , var

L

L

M M O

















 = c2 ΛΛ
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D: Expected Euler Characteristics

D:1 The χχ2-field
The expected Euler characteristic χ(Au(U,Ψ)) of the excursion set Au(U,Ψ) of a

homogeneous (strictly stationary) Chi-squared random field U(x) with n degrees of
freedom, defined on x∈Ψ, a compact, convex subset of ℜD (with boundary of zero
Lebesgue measure), for a threshold u is, for D ≥ 2 and under mild conditions on the
component fields:

E[χ(Au(U,Ψ))] = 
( ) ( )

( ) ( )
( )

λ

π

Ψ Λ

Γ

1
2 2

2
1

2

2

22 2

u
u

n D

D n

u

n
D n

−

−

−exp
P ,
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Terms with factorials of negatives in the denominator are taken as zero.
(Worsley, 1994, Theorem 3.5)

D:2 The F-field
For F(x) an F-field with n,m degrees of freedom, the expected Euler characteristic

of the excursion set (over Ψ, a compact, convex subset of ℜD, with boundary of zero
Lebesgue measure) above a threshold u is, for m + n > D ≥ 2:
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where KD,m,n(u) is a polynomial of degree D -1 in nu/m with integer coefficients:
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(Worsley, 1994, Theorem 4.6)
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D:3 The t-field
For T(x) a t-field with n degrees of freedom, the expected Euler characteristic of

the excursion set (over Ψ, a compact, convex subset of ℜD, with boundary of zero
Lebesgue measure) above a threshold u is, for n ≥ D ≥ 2:

E[χ(Au(T,Ψ))] = 
( )
( )

( )λ
π

Ψ ΛΛ 1 2 2
1

2

2
11

2

/

,D

u

n
Q u

n

D n+ +








− −

where QD,n(u) is a polynomial of degree D -1 in u:
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(Worsley, 1994, Theorem 5.3)
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E: “Transform” Functions

Suppose t is drawn from a distribution with Cumulative Distribution Function F(x),
then an equivalent standard Gaussian variate z is one with equal extremum probability:

Φ(z) = F(t)    ⇔    z = Φ-1(F(t))

(The distribution function method for functions of random variables.) Since the normal
distribution is continuous, Φ(z) is strictly monotonic increasing. Thus Φ-1 exists and a
unique z is specified. Φ-1(F(•)) is thus a function “transforming” a random variable from
one distribution to a standard Gaussian distribution, and has become known (in PET) as a
transform function.

Transform function for Students’ t-distribution
The computing environments used by most PET centres to analyse images do not

have built in statistical distribution functions (PDFs, CDFs, inverse CDFs), so they must be
explicitly coded. Since the evaluation of these functions is becoming a lost art in these
days of comprehensive tables and sophisticated statistics packages, we review the
computations for Students t-distribution.

For the t-distribution with df degrees of freedom, the Cumulative Distribution
Function FT(•) can be expressed in terms of the incomplete Beta function, Ix(a,b), as
follows:

FT(t) = ( )
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Here β(a,b) is Beta function:

β(a,b) = 
Γ(a) Γ(b)
Γ(a + b)

 = ⌡⌠
0

1
 ua-1 (1-u)b-1 du a,b > 0

and the incomplete Beta function is:

Ix(a,b) = 
βx(a,b)
β(a,b)

 = 
1

β(a,b)
 ⌡⌠

0

x
 ua-1 (1-u)b-1 du a,b > 0

As is well known, the CDF of the normal distribution is related to the error function:

Φ(x) = 
1
2 + 

1
2 erf 



x

2
     erf(x) = 

2

π
 ⌡⌠

0

x
 e -u2 du

⇔     Φ-1(p) = 2  erf -1(2p -1) 0 ≤ p ≤ 1

The incomplete Beta function and the inverse of the error function are supplied in
many engineering and imaging packages. Alternatively, various published solutions for
their approximation exist. Thus the “transform” function for Students t-distribution can
be painlessly coded. See “Numerical Recipes” (Press et. al.) for algorithms and
relationships for other distributions.
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F: Ordering Theorem

Theorem

Consider two sets of real numbers: X={xi}
n
i=1, Y={yj}

n
j=1, such that xi ≤ yi ∀

i =1,…,n. Order X and Y from largest to smallest, with ties broken arbitrarily, giving

ordered sets X={x(i)}
n
i=1, Y={y(i)}

n
i=1, where x(i) ≥ x(j) & y(i) ≥ y(j) ∀ 1 ≤ i ≤ j ≤ n.

Then, x(i) ≤ y(i) ∀ i =1,…,n.

Proof:

Suppose x(k) = xik
, y(k) = yjk

and SX,k = { il : l = 1,…,k}, the k largest xi, and
SY,k = { jl : l = 1,…,k}, the k largest yj.

k = 1

y(1) = yj1
≥ yi1

by definition of maximum
≥ xi1

by hypothesis
= x(1) by definition of xi1

k > 1

If ik ∉ SY,k-1 then y(k) ≥ yjk
(ik ∉ SY,k-1 ⇒ yjk

 not in k-1 largest y)
≥ xik

by hypothesis
= x(k) by definition of xik

otherwise, ik ∈ SY,k-1, and ∃ i' such that i' ∈ SX,k-1 but i' ∉ SY,k-1 †

then y(k) ≥ yj' because i' ∉ SY,k-1
≥ xi' by hypothesis
≥ x(k) because i' ∈ SX,k-1

† SX,k-1 has k-1 members, but ik is not one of them, by definition. However,
SY,k-1 has k-1 members, one of which is ik. Therefore SX,k-1 must contain an
element not contained in SY,k-1.
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G: Smoothness of t-Fields

Let X1(x),…,Xn(x) x∈Ψ⊂ℜD be independent, identically distributed, strictly
stationary Gaussian random fields with zero mean and variance σ2. Suppose that the
variance-covariance matrix of partial derivatives of the field is ΛΛ.

Consider the t-field T(x) with n-1 degrees of freedom formed as the one-sample
t-statistic of {X1(x),…,Xn(x)} at each point x∈Ψ:

T(x) = 
M(x)

S(x)/√n

where M(x) = 
1
n ∑

i = 1

n
 Xi(x)

and S(x)2 = 
1

n-1 ∑
i = 1

n

 (Xi (x) - M(x))2

Let ΛΛT be the variance-covariance matrix of partial derivatives of the t-field. This
can be related to ΛΛ using a simplification of the argument used in the appendix of
Worsley et al. (1992). (With thanks to Dr. Worsley for pointing this out.) The argument
is as follows:

Since X1(x),…,Xn(x) and their partial derivatives are all independent Gaussian
random variables with zero expectations (Adler, 1981, p.31), conditioning on
X1(x),…,Xn(x), we have

ΛΛT = Var
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From the definition of T(x) we have

∂T
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  =  
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M
S / n1/2  =  

1
n1/2 S – 

n1/2 M(Xi -M)

(n -1) S 3
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∑
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n
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nM 2

(n -1) S 4
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Hence

ΛΛT = E






1

S 2 + 
nM 2

(n -1) S 4  ΛΛσ2

= λn ΛΛ   say.

This can be further simplified using the fact that U = [nM2 + (n -1)S2]/σ2 has a χ2

distribution with n degrees of freedom, independent of T, and that E[1/U2] = 1/(n-2),
giving

λn = E



(T 2 + n - 1)2

(n - 1) (n - 2)

Integrating over the density of T gives:

λn = ⌡
⌠

–∞

+∞
(t2 + n – 1)2

(n - 1) (n - 2) fT(t) dt  =  2 ⌡
⌠

0

+∞
(t2 + n – 1)2

(n - 1) (n - 2) fT(t) dt

where fT(•) is the PDF of a Student’s t-distribution with n-1 degrees of freedom. The
integral is finite only for n≥4 (df ≥3).

Values of λn for n = 4,…,199 are given to 4dp in the following table, computed
using an adaptive recursive Newton-Cotes eight panel rule. Note that λn tends to 1 from
above as n tends to infinity.

λn +0 +1 +2 +3 +4 +5 +6 +7 +8 +9
0 – ∞ ∞  ∞ 20.9819 4.3698 2.66382.0859 1.8015 1.6342
10 1.5243 1.4467 1.3891 1.3446 1.3092 1.2804 1.25651.2363 1.2191 1.2042
20 1.1912 1.1798 1.1696 1.1605 1.1524 1.1450 1.13831.1323 1.1267 1.1215
30 1.1168 1.1124 1.1083 1.1045 1.1010 1.0977 1.09461.0918 1.0890 1.0865
40 1.0840 1.0818 1.0796 1.0775 1.0756 1.0737 1.07201.0703 1.0687 1.0671
50 1.0657 1.0643 1.0629 1.0616 1.0604 1.0592 1.05801.0569 1.0559 1.0549
60 1.0539 1.0529 1.0520 1.0511 1.0503 1.0494 1.04861.0479 1.0471 1.0464
70 1.0457 1.0450 1.0443 1.0437 1.0431 1.0424 1.04191.0413 1.0407 1.0402
80 1.0396 1.0391 1.0386 1.0381 1.0376 1.0372 1.03671.0363 1.0358 1.0354
90 1.0350 1.0346 1.0342 1.0338 1.0335 1.0331 1.03271.0324 1.0320 1.0317
100 1.0314 1.0310 1.0307 1.0304 1.0301 1.0298 1.02951.0292 1.0289 1.0287
110 1.0284 1.0281 1.0279 1.0276 1.0274 1.0271 1.02691.0266 1.0264 1.0262
120 1.0259 1.0257 1.0255 1.0253 1.0251 1.0249 1.02471.0245 1.0243 1.0241
130 1.0239 1.0237 1.0235 1.0233 1.0231 1.0230 1.02281.0226 1.0224 1.0223
140 1.0221 1.0219 1.0218 1.0216 1.0215 1.0213 1.02121.0210 1.0209 1.0207
150 1.0206 1.0205 1.0203 1.0202 1.0200 1.0199 1.01981.0196 1.0195 1.0194
160 1.0193 1.0191 1.0190 1.0189 1.0188 1.0187 1.01861.0184 1.0183 1.0182
170 1.0181 1.0180 1.0179 1.0178 1.0177 1.0176 1.01751.0174 1.0173 1.0172
180 1.0171 1.0170 1.0169 1.0168 1.0167 1.0166 1.01651.0164 1.0163 1.0162
190 1.0162 1.0161 1.0160 1.0159 1.0158 1.0157 1.01571.0156 1.0155 1.0154
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H: Poline’s Bivariate Approach

Poline & Mazoyer (1994a) address the problem of intense focal activations being
missed by suprathreshold cluster size tests with low thresholds, by including the mean
voxel value of the suprathreshold cluster into the testing procedure.

Methodology
The bivariate parameter space P = Z+×ℜ+ = {{0,1,…} ×[0,∞)} for the size (in

voxels) and magnitude of a suprathreshold cluster is partitioned into rejection and
acceptance regions by an “iso-cumulative” curve. Let C(s,m) be the number of clusters
with size > s and mean voxel value > m in an single statistic image, with expected value
E[C(s,m)]. Let Pinf(s,m) = {(s',m')∈P: E[C(s',m')] ≤ E[C(s,m)]} ⊆ P for (s,m)∈P. The
boundary of this region {(s',m')∈P: E[C(s',m')] = E[C(s,m)} is an iso-cumulative curve,
so called since for each point (s',m') on the curve, the expected number of clusters with
size > s' and mean voxel value > m' is constant. Let I(s,m) be the number of
suprathreshold clusters in an image with attributes (s',m')∈Pinf(s,m). The rejection region
for a level α test is then Pinf(sα, mα), where (sα, mα) are chosen such that

Pr( I(sα,mα) ≥ 1) = α under HW. The rejection region is unique, although (sα, mα) are

not.
Considering the testing of a suprathreshold cluster with attributes (s,m), if

Pr(I(s,m)≥1) ≤ α then Pinf(s,m)⊆Pinf(sα, mα), since the iso-cumulative curves do not

cross. Since (s,m)∈Pinf(s,m), (s,m) is in the rejection region and the omnibus null
hypothesis for the suprathreshold cluster of voxels is rejected.

Since direct estimation of the rejection region from simulated statistic images is
difficult, Poline & Mazoyer (1994) assumed a Poisson distribution for I(s,m), suggested
by the law of rare events. Then, Pr(I(s,m)≥1) = 1-e-E[I(s,m)], and only E[I(s,m)] needs to
be estimated to apply the test.

It remains to estimate E[I(s,m)]. For a given image, an empirical iso-cumulative

curve can be computed as the boundary of P^
inf(s,m) = {(s',m')∈P: C(s',m') ≤ C(s,m)}, a

step function, passing through (s,m). This gives an estimate, I^(s,m), of I(s,m) as the

number of objects in image with attributes (s',m')∈P̂inf(s,m). Computing the mean of

Î (s,m) over many simulated images gives an estimate of E[I(s,m)].

Comments
The description given above differs slightly to that of Poline & Mazoyer (1994a),

which was not as rigorous in its definition of the iso-cumulative curves. A summary of
the approach appears in Poline & Mazoyer (1994b).

A simpler approach would be to approximate the iso-cumulative curves with some
function f, as f(s,m) = c. The function f then constitutes a statistic describing a
suprathreshold portion of the statistic image. The null distribution of fmax, the largest
f-value for clusters in a single image is then easily simulated, and the appropriate quantile
for a level α test based on the f-values of clusters estimated. This avoids the necessity of

the Poisson assumption and the lengthy computation of I^(s,m) for each object from the
simulated data.
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Hierarchical decomposition
In addition to the bivariate approach for suprathreshold clusters, Poline & Mazoyer

(1994a) propose a hierarchical decomposition of the image into objects whose size and
mean amplitude are analysed, thus avoiding having to choose a threshold for cluster
identification. Essentially the local maxima are iteratively “cut off” to form the objects.
Fig.93 illustrates the objects after hierarchical decomposition of a simple 1D image. (For
rigorous definitions and further explanation the reader is referred to Poline & Mazoyer
(1994a) and the references there.) This represents an interesting direction. However, the
hierarchical nature of the decomposition leads to objects whose attributes are not
independent. The effect of this is probably negligible.

A B

C
D

EF

sC sD

mC

mD

Figure 93
Hierarchical decomposition of a continuous one-dimensional “image”.

The means and sizes for “objects” C & D are shown.
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