Chapter 3

Solving the BEM equation
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3.1 Approximation of the BEM equation

3.1.1 Original formulation

The previous chapter demonstrated how to express, equation 2.20, the forward problem
as an integral form of Maxwell’s equations :
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where V(3) is the potentlal due to 77 in a conductor of infinite extent and homogeneous
conductivity (o + o7)/2:
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and

e the sum ZZN 5 runs over all the surfaces separating volumes of homogeneous isotropic
conductivity.

e 0, and al+ are the conductivity inside and outside' the surface ;.
e 3 and 3’ are points on the surfaces Sy and S; respectively.

e 7i(8") is a unit vector normal to the surface S; at the point 8/ and oriented from the
inside towards the outside of 5.

Solving equation 3.1 for V would provide us with a way to estimate the potential at
any location on any surface given any source j; in the brain volume.

3.1.2 General approach

The main task of solving the forward problem is to evaluate accurately the integrals on the
right hand side of equation 3.1. The volume integral over the continuous sources distri-
bution 77 can be easily calculated by approximating 7; as a superposition of independent
point sources of known location and orientation. This reduces the volume integral into a
sum of independent contributions for each location and orientation of the sources.

On the other hand the surface integrals are more difficult to calculate: they run on
different and irregular surfaces and, moreover, they involve the potential V(§) that is
sought after. Therefore it will be necessary to express the surface integrals in terms of the
value of the unknown function V' at some discrete set of points on the surfaces, and to
tessellate the surfaces into sets of regular patches.

The most obvious approximation for the surfaces is to model each of them by a set of
plane triangles. With this surface tessellation, the surface integrals of 3.1 can be expressed
as a sum of integrals over triangles:
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where the surface S; has been modelled by a set of Nt(,f) triangles AD.

The function V is rendered discrete by choosing on which nodal points V' is evaluated
and how the function V behaves on each individual plane triangle. This would allow an
explicit calculation of the integrals over the triangles and equation 3.3 could eventually be
simplified into a sum of known or, at least, easily evaluated analytical functions.

'the notion of “inside” and “outside” depends on the orientation of the normal 7(5’) to the surface
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Three different approximations of V' over a triangle are usually considered. First, one
could choose to evaluate V' at the centre of gravity of each triangle and consider this value
constant over the triangle, one value is thus obtained for each triangle. This approximation
shall be referred as the “Centre of Gravity” (or “CoG”) method (Haméaliinen & Sarvas,
1989; Meijs et al., 1989). The function V could also be evaluated on the vertices of the
triangles, this is generally called a “vertex” approximation (one value per vertex). If the
potential over the triangle is supposed to be constant and equal to the mean of the potential
at its vertices, this approximation will be called the “Constant Potential at Vertices” (or
“CPV”) method. On the other hand, if the potential is considered to be varying linearly
over the triangle, this approximation will be named the “Linear Potential at Vertices” (or
“LPV”) method (Schlitt et al., 1995).

The CoG and vertices (CPV and LPV) methods differ mainly on the choice of the nodal
points where the unknown potential function V is calculated. It is important to note that
for a closed tessellated surface there are about twice as many triangles as vertices. The
number and arrangement of the triangles determine how well the true surface is spatially
approximated. The choice of the potential approximation method determines the number
of equations to be solved (one per triangle or vertex) and how well the true potential is
modelled over each triangle (constant or linear approximation).

3.1.3 Current source model

In equation 3.2, the source function (') is a continuous function throughout the volume.
To be able to solve numerically the BEM equation 3.1, a discrete approximation of the
source function has to be adopted. The source function 7¢(*) can be approximated by a
distribution of N; independent dipole sources of known location 77 :

N
1) = 3| [ 36 o] 66— (3.42)
i=1
N;
= 75 () 6(F — %) (3.4b)
i=1
where 7¢(7;) = [ 77(7') dv; is the summed activity in the volume v; around the location
7; and §(7) is the discrete Dirac delta function?.
Now with relation 3.4, equation 3.2 becomes :
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Figure 3.1: The Centre of Gravity (CoG) potential approximation: the potential V' over
the triangle is assumed to be constant and equal to the potential at the centre of gravity
Scog Of the triangle, V' = V(54).

and eventually we obtain:

1 N;
Vo(5) =
o(5) 27T(JI;+J,;");|

3.1.4 Potential function model
The “Centre of Gravity” approximation

With this approximation, the unknown function V is calculated on nodal points located
at the centre of gravity of each triangle. The potential over the triangle is supposed to
be constant and equal to the potential at the centre of gravity V' = V(5;o4), as shown in
figure 3.1.

With this approximation of the potential, the integral over each triangle in 3.3 can be
simplified :

I 1 s . . 1 L
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where Q(™)(5) is the solid angle at § subtended by the triangle AY .
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Figure 3.2: The Constant Potential at Vertices (CPV) potential approximation: The
potential V over the triangle is assumed to be constant and equal to the mean of the
potential at each vertex 51, s2 and §3 of the triangle, V = (V(51) + V(52) + V (53)) /3.

This last integral depends only on the three vector differences between 3 (the “point
of view”) and the three vertices 81, §% and 8% (the “points of support”) determining the
triangle AY. There exists an explicit analytic formula to calculate Q™) (3), it will be
presented in section 3.2.1.

The BEM equation 3.3 eventually becomes a “simple sum of known analytical func-
tions” :

O]
+ N,

1 %S: o, —0 &
V(gcog,p) = Voo(gcog,p) + 5= —— T
27 =1 % T 0% m=1

V (3eog.m) QY™ (800 ) (3.9)

where 5ogm (resp. Scogp) is the “centre of gravity” of the m™ (resp. p™) triangle As,ll)

(resp. A]S,k)) of the I** (resp. k™) surface S; (resp. Six). The BEM problem has now the
form of a set of linear equations. Its solution is presented in section 3.3.

The “Constant Potential at Vertices” approximation

Here the potential is evaluated on the vertices of the triangles and the potential over each
triangle is assumed to be constant and equal to the mean of the potential at its vertices
V =(V(51) + V(52) + V(53)) /3, as shown in figure 3.2.

With this approximation of the potential, the integral over each triangle in 3.3 can be
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simplified like this:
L/ 1
V(g')v’(ﬁ) A dS'
V(ED) + V() + V(3! L1
_ VE) + V(S + (33)/(0 v’( )ﬁ(s*’) ds'  (3.10a)
A
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where Q™) (5) is the solid angle at 3 subtended by the triangle A%), expressed like in
equation 3.8. An analytical formula to calculate it is provided in section 3.2.1.

The BEM equation 3.3 also becomes a “simple sum of known analytical functions” :

Ng + NP 2! 2! 2!
1 V(S l,m) + V(S 2,m) + V(S 3,m)

Sy 2y, L N~9L 9 m) (=
V(56) = Voo(54) + o - l; e mXZ:I 3 Qb (z,) (3.11)

where §, is one of the three vertices of a triangle of the k™ surface Sy and ;' is the
i** vertex of the m' triangle AY of the I* surface S;. The BEM problem is now also

expressed as a set of linear equations, its solution is presented in section 3.3.

The “Linear Potential at Vertices” approximation

Here the potential is also evaluated on the vertices of the triangles but a better approxi-
mation of the potential over the triangles is used: The potential is assumed to be varying
linearly over each triangle, as shown in figure 3.3.

As only three values are needed to specify a linear function on a plane surface, the
value of the potential V at the three vertices of the triangle can be used. Moreover this
ensures that the potential varies continuously from one triangle to the next which was not
the case with the two previous approximations.

As for the CPV approximation, the integral over each triangle in equation 3.3 can be
simplified into a weighted sum of the potential at the vertices:

/ V(g')ﬁ'( b )ﬁ(g') ds’
A% |5 =57
= = (vE) ol™E) + V(sh) 0™ () + V(53) 9f ™)) (3.12)

The three Q™ (8) are also purely geometric quantities depending on the vector dif-

ferences between the “point of view” s and the vertices 37 of the triangle. An explicit

analytical formula to calculate the o™ (8) from § and 87, is presented in section 3.2.2.

With this approximation the BEM equation 3.3 also becomes a “simple sum of known
analytical functions” :

V(8e) = Voo (8e)+ (3.13)

1 o; — 0O . m), . m) o . m) -
oY LS (V(E ) 2™ (E) + V(E) ™ E) + V(5h) 9™ (5))
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S1

Figure 3.3: The Linear Potential at Vertices (LPV) potential approximation: The poten-
tial V' over the triangle is assumed to be varying linearly between the potential calculated
at each vertex 31, $o and 83 of the triangle, V = f(V(51), V(52), V(33)).

where 3, is one of the three vertices of a triangle of the k™" surface Sy, and §j,,' is the ¢*
vertex of the m'® triangle As,ll) of the I** surface S;. The BEM problem is also reduced to

a set of linear equations, and its solution is presented in section 3.3.

3.2 Solid angle calculation

3.2.1 Constant potential approximation

For both CoG and CPV approximations presented in section 3.1.4, the solid angle Q™) (3)
subtended by a plane triangle Aﬁ,’) at some point 3 has to be calculated.

Without loss of generality, the observation point § can be placed at the origin o*.
The three vertices 37, so and &3 of the plane triangle are then specified by the vectors
U] = 81 — 0%, U = 8§ — 0" and U3 = 83 — 0™ relative to this origin ¢*, as shown in
figure 3.4. The solid angle 2 can be analytically expressed with ¢7, 5 and ¥5 by the
formula taken from van Oosterom & Strackee (1983):

1 U1 (U2 X U3)
2 V1] |V2] |U3] + (T102)|V3| + (T193)|va| + (V203) ||

(3.14)
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Figure 3.4: Solid angle supported by a plane triangle: The solid angle 2 supported at the
point 0™ by the plane triangle (grey shade) depends only on the three vectors ¢, ¥2 and
v3 and can be easily calculated by equation 3.14.

For the case where the point of view & is located on the same plane as the triangle
A%), e.g. when 3 is at the centre of gravity of the triangle in the CoG approximation or
when § is at a vertex of the triangle in the CPV approximation, the solid angle Q(l””)(,s? )

is zero. The consequences of this feature are presented in section 3.2.3.

3.2.2 Linear potential approximation

For the LPV approximation presented in section 3.1.4, three geometric quantities ; (i =
1,2, 3) have to be calculated for each triangle, under the assumption that the potential
V' varies linearly over this triangle. As for the previous section, the observation point 3§
can again be placed at the origin o™ without loss of generality. The three vertices 57, o
and S5 of the plane triangle are then specified by the vectors v} = & — 0%, Vo = 59 — 0
and ¥3 = §5 — 0™ relative to this origin 0*, as shown in figure 3.4. There also exists an
analytical formula for the ©; (de Munck, 1992; Schlitt et al., 1995) :

Q.

]_ NN N N —
=5y (27 0 + B(@; — 5)) (3.15)

where
e A is the surface of the plane triangle,

e 7, = U; x Uy with (¢, 4, k) a cyclic permutation of (1,2,3),

e 71 is a unit vector normal to the triangle,
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e () is the solid angle subtended by the plane triangle at the origin as expressed in
formula 3.14,
e 3 = nv; is equal to the perpendicular distance from the origin to the triangle,

3
e (is a vector defined by = Z(fyj — ;) with
i=1

= b ([ Gl (5 = )t (3.16)
75 — vl \ | — Uil |Ui] + (¥ — ¥3)7;
The ; also satisfy the equality: € + Qo+ Q5 = 2. When the triangle Agl) and the point

of view § are coplanar, for example when § is at one of the vertices of the triangle, {2 and
B are equal to zero, so 21 = (29 = Q23 = 0. This problem is tackled in section 3.2.3.

3.2.3 The auto-solid angle problem

An important property of solid angle concerns its integral over a single closed surface. We
know from equation 3.8 that the infinitesimal solid angle d)' subtended by the infinitesimal
surface dS’ around the point 3’ at the point of view s is expressed by :

§ -3
R

then the integral of d¥ (8, 3’} over a smooth closed surface is equal to:

dY'(3,8") = i(3") ds’ (3.17)

0 outside
Qs(3) = / dV(838)y=1| 2r | ,for & on the surface. (3.18)
s 4 inside

The BEM equation 3.1 contains an integral of the form:
/ 43,5V (3") (3.19)
S

then this integral is converted into a discrete sum, by equation 3.9, 3.11 or 3.14, of the
form:

M
> Qum Vi (3.20)
m=1

where :

e m and n are indices of nodal points (possibly on different surfaces) where the po-
tential V is calculated.

e V,, is the potential at the point m.
e Q. is the solid angle associated with the point m for the point of view n.

e M is the number of nodal points on the surface, i.e. the number of triangles for the
CoG approximation or the number of vertices for the CPV and LPV approximations.
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Figure 3.5: The auto-solid angle problem for the CoG approximation: The solid angle
subtended by the grey triangle from its centre of gravity (the black dot) is zero but the
total solid angle subtended by the rest of the surface (white triangles) is equal to 2.

It is therefore important that the Q,,, satisfy the relation 3.18:

M 0 outside
Qp,s = Z Qym=1| 2 | ,for s on the surface. (3.21)
m=1 A7 inside

In the case of § being outside or inside the surface, there is no problem to satisfy these
equalities: All the €2,,, can be unambiguously calculated with equation 3.14 or 3.15. But
when § is on the surface itself then we meet the “auto-solid angle problem” : the solid
angle subtended by a triangle which contains the point of view is zero and the second
equality of relation 3.21 may not be satisfied automatically.

The auto-solid angle problem for the CoG approximation

In the CoG approximation, as the potential is evaluated on the “centre of gravity” of each
triangle, there will be only one null solid angle: €,,,, = 0, as can be seen in figure 3.5.
Since the rest of the solid angle subtended by the closed surface is already 27, there is no
missing angle and the second equality of the relations 3.21 is satisfied.

Nevertheless, in reality the surface modelled by the triangle is not plane, and it should
thus support some non-zero solid angle. There is no way to improve the solution, but to
use a finer meshing of the surface.
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Figure 3.6: The auto-solid angle problem for the CPV and LPV approximations: The solid
angle supported by the “central” point and the adjacent grey triangles is zero, therefore
the total solid angle supported by the remaining white triangles is less than 2.

The auto-solid angle problem for the CPV approximation

In the “vertices” approximations (CPV and LPV), all the adjacent triangles (grey triangles
in figure 3.6) containing the “point of view” are supporting a null solid angle. The solid
angle €2, subtended by the rest of the surface will not be equal to 27 because the adjacent
triangles do not represent a flat surface.

M
Qiss =27 — Dy =2 — > Qg (3.22)

m=1

It is necessary to distribute this “missing solid angle” {2,,;ss over the triangles adjacent
to the “point of view”.

In the case of the CPV approximation, the easiest way to proceed is to share uniformly
this “missing solid angle” between the adjacent triangles and their vertices. The central
“point of view” should be attributed one third of the missing solid angle Q,;ss/3, and
the other vertices should receive 2(,iss/(3Nyq;), Where N4 is the number of triangles
adjacent to the central “point of view”.

There exists a more elaborate way to split the missing solid angle between the adja-
cent triangles. The approach is based on a local spherical approximation of the surface
surrounding the central vertex and is presented in the next section, in relation with the
LPV approximation.
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Figure 3.7: Adjacent triangles supporting a non-zero solid angle: The surface defined by
81, 83, ...,85 around 8y support a non-zero solid angle. Each triangle, defined by a triplet
of vertices ([5)5152], [S05253], - - -, [508551]), supports a part of the missing solid angle which
in turn must be shared between its vertices. Each triangle can be locally approximated
by a portion of sphere.

The auto-solid angle problem for the LPV approximation

The case of the LPV approximation is more complicated because the potential V is varying
linearly over each triangle. There are two main problems: how to divide up the missing
the solid angle ;5 between the adjacent triangles and, within each of them, how to share
its part between its vertices. This is illustrated in figure 3.7. There exists an analytical
formula to solve these problems (Heller, 1990) but it requires that each triangle around
the point of view 3y be approximated by a portion of sphere of centre 7. and radius R. If
the surface is regular and smooth compared to the density of the mesh, this local spherical
approximation will hold as R will be much larger than the length of the edges of the
triangles.

Since three points do not determine a sphere, a fourth point must be chosen. A suitable
point would be the next adjacent vertex, e.g. the sphere that passes through the triplet
[505152] could be required to pass through 33 as well. A better and more anatomically
correct approximation can be obtained, if, at the tessellation stage, the centre of gravity
5c0g Of each triangle is projected perpendicular to the triangular plane onto the actual
surface of the volume 5’;!]. Then a sphere can easily be fitted through these four points:
the three vertices defining the triangle and its projected centre of gravity, as shown in
figure 3.8. This approach was used in the implementation of the BEM solution.

Once the spheres have been fitted for 5) and its adjacent vertices 51, 82, ..., SN,
an approximate value for the solid angle subtended by each triplet [$45152], [S05253], - - -,
[808N,,;51] at 5 can be calculated. Using spherical coordinates for the vertices, as shown
in figure 3.9, the solid angle $(5,5 5, subtended at sy by the spherical region bounded by
39, 81 and 35, is approximated by :

YL+
9[5051 §2] — - 4 2 ¢12 (323)
where ¢; and 1 are easily obtained and
. 12 [3p— 59|
sin == = o ™ (3.24)
with .
Sy = 7 + [sin(¢p1 — 12)(80 — 7c) + sineha (81 — 7c)] (3.25)

sin ’lﬁl
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Figure 3.8: Spherical approximation of an adjacent plane triangle: The triplet of vertices
[505152] and the projection 5’;!] of the centre of gravity 3y of the triangle on the actual
surface determine a sphere, centre 7. and radius R, that approximates the actual surface.

After calculation of the solid angle for all the other triplets and summation, the total
solid angle €25, supported by 51, 82, ..., 8N, at Sp is approximated by :
ng = 9[5’0_’1 5] + 9[50*2 ] + ...+ Q[gogNadj 51 (326)
The fraction of missing solid angle Qs to be assigned to each triangle, e.g., [Sp5152], is
obtained by :

f[§o§1"2] =0 (3.27)

Note that, even though approximations are made in these calculations, since they only
involve ratios, the total solid angle subtended by the region around 8y will sum to 55,
and the total solid angle subtended by the entire surface at 3y will be exactly 27. For
the CPV approximation, the portion f(z)z,5,)¥miss of missing solid angle is simply equally
distributed between the three vertices of the triangle. For the LPV approximation, it is
necessary to further share this portion of missing solid angle between the vertices of the
adjacent triangles.

Assuming that 11, 19 and ¢12 are small and that the potential V' varies linearly with
the distance on the sphere, Heller (1990) showed that it is possible to share the solid angle
f[505152]$miss between the three vertices 3p, 81 and 83 such that:

95‘07[5’03‘15’2] + Q5’1,["0"1 5+ Qé’z,[“o"l 5] = f[é'oql *2]9"“'55 (3.28)
where
Qg (s0m55) = o1z (wl + Ty — o ¢—§> miss (3.29a)
$0,[508152 48 ,¢2 ¢1 Q_,o
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Figure 3.9: Autosolid angle approximation: The triangle defined by the triplet [5p5152]
is approximated by a portion of a sphere. The solid angle subtended at 53 by the curved
surface (bold line) can be calculated using the spherical coordinates of 8 and 35: 91, 19
and ¢12.
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scalp, o,

Figure 3.10: Simplified realistic head model: Three concentric volumes of isotropic con-
ductivity, brain (o), skull (os) and scalp (o), separated by the three surfaces Sy, So
and S3, are used as head model.

Qs [505152] = ¢12 (3% + 292 + Z?) (’2’”“ (3.29b)
50

Qs [505152] = ¢12 (2¢1 + 392 + Z;) (’2’”“ (3.29¢)
50

These approximations for the CPV and LPV auto-solid angle were employed in the im-
plementation of the BEM solution.

3.3 Matrix form of the BEM equation

3.3.1 Simple realistic head model

For the simplified head model, three concentric volumes of homogeneous conductivity are
considered : the brain, skull and scalp volumes, of respective conductivity oy,., o, and
Osc, a8 depicted in figure 3.10. The three interfaces: “brain-skull”, “skull-scalp” and
“scalp-air” separating the three volumes are numbered respectively 1, 2 and 3. With this
numbering convention, the conductivity inside and outside each surface is defined by :

0 = Opr
+ j—
01 - 02 - Usk
o (3.30)
2 3 sc
oF = 0

3.3.2 Matrix form

With the discrete approximation of the source term (equation 3.6) and the approximation
of the boundary element equation: CoG approximation (equation 3.9), CPV approxima-
tion (equation 3.11) or LPV approximation (equation 3.14) adopted in section 3.2, the
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BEM problem can be expressed under a matrix form:

Vi Bi1 B2 Bgs vy G
vo | = | Bar Baa Bos vo |+ | G2 |[]] (3.31)
v3 B3 B3 Bsas V3 Gs

or, in a reduced version,
v=Bv+Gj (3.32)

where :
e vi, a N, x 1 vector, contains the value of the potential at the N,, nodal points of

surface Sy : centre of gravity of each triangle for the CoG approximation or vertices
of the triangles for the CPV and LPV approximations.

e By, a N,, X N, matrix, represents the influence of the potential of surface S; on the
potential of surface Si. Its elements depend on the conductivity inside and outside
the surfaces S and S, and on the solid angles used in the BEM approximations 3.9.
B is a N, x N, matrix with N, = N,; + Ny, + Np,.

o j=[A"R" ... In']' a 3N; x 1 vector, is the source distribution vector where each
In = [Jn,z Jny Jnz]* is an orientation-free source vector.

e Gy, a N,, x 3N; matrix, is the free space potential matrix depending on the location
7y, of the sources 7, the nodal points on surface Sy and the conductivity inside and
outside surface Sy, (o} and o;'). G is a N, x 3N; matrix.

Self influence matrix B

For the CoG approximation, the element (p,q) of the matrix By; is calculated by :

1 (o7 —0of
BPY — — (ZL"%L g 3.33
kL 21 o, + J,;" Pa ( )

where

e p (resp. ¢) is the index of the nodal point on the surface Sy (resp. S).

e (), is the solid angle at the centre of gravity of the p** triangle of Sy subtended by
the ¢** triangle of S;.

For the CPV approximation, the element (p,q) of the matrix By; is calculated by :
N,
1 (o] —0of ‘0
B(P:‘I) - l l Sopn 3.34
ki 27 \ oy, +J,;" zn: 3 ( )

where

e p (resp. ¢) is the index of the nodal point on the surface Sy (resp. Sj).
e N, is the number of triangles comprising the ¢** vertex.

o (), is the solid angle at the p* vertex of the surface Sj, subtended by the n* triangle
(containing the g*"vertex) of S;.
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For the LPV approximation, the element (p,q) of the matrix By; is calculated by:
N,
1 (o] —0of ¢

B(P:‘I) — l l 04 3.35

kl 2 O_k— + O_]-: ; pn ( )

where

e p (resp. ¢) is the index of the nodal point on the surface Sy (resp. Sj).
e N, is the number of triangles comprising the ¢** vertex.

e Qf, is the portion of solid angle attributed to the ¢'" vertex, and subtended by the
n'™ triangle (containing the ¢"™ vertex) of S; at the p* vertex of the surface Sk.

Note that the correction for the aut-solid angle problem can only be performed after
calculating all the solid angles relative to one nodal point because the missing solid an-
gle Q55 18 estimated by equation 3.22. When Q.. is calculated, then the procedure
presented in section 3.2.3 can easily be applied for the CPV and LPV approximations.

Free potential matrix Gy

The elements (p,3q — 2), (p,3¢ — 1) and (p, 3¢) of the matrix Gy can be calculated with:

2 _ 2\t
cP3-2) psa-1) 39 _ (8p — 74) 3.36
[ k k k ] 2m(oy, +07)13p — 7|? (3:36)

where

e 5, is the p* nodal point of the surface Sj.

e 7, is the location of the ¢** current source 7.

Interpretation

The N, x N, matrix B can be interpreted as a “self influence” matrix: the potential at
any nodal point on any surface is influenced by the potential at all the other nodal points
on all the surfaces. The N, x 3N; matrix G is, on the contrary, the “direct influence”
matrix : in free space, the potential at any nodal point on any surface depends only on the
source distribution j. The matrices B and G can be calculated separately and they depend
solely on the geometry of the problem and the conductivity adopted for each volume. Any
change in the geometry or the conductivity implies the recalculation of these matrices.

The number and placement of triangles determines how well the true surface is approx-
imated by the set of plane triangles. The choice of the potential approximation on each
triangle determines how well the real potential is approximated but also how the matrices
B and G are calculated and therefore the number of equations to be solved. For a tessel-
lated closed surface there are about twice as many triangles than vertices. Thus with the
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same head model, there will be twice as many equations to solve if the CoG approximation
is used than with the CPV or LPV approximation. The LPV approximation is also the
only one that ensures a continuous variation of the electric potential from one triangle to
the next on the surfaces.

3.4 Solving the matrix BEM equation

The solution of the forward problem consists now in establishing a linear relationship
between the source distribution j and the potential on the surfaces v (or at least on the
scalp v3) of the form:

v=Lj (3.37)

An obvious solution of equation 3.32 would be to simply solve the system of equations :
(In, -B)v=G]j (3.38)

by inverting the matrix (In, — B). However we are dealing here with a problem of electric
potential and a potential function can only be measured relative to some reference point,
i.e. calculated to within a constant. The systems of equations 3.38 is therefore rank
deficient and the matrix (I, — B) cannot be inverted.

As vg = v and vy, = v + ¢ 1y, (with ¢ # 0) must both satisfy 3.32 and 3.38, it follows:

v = Bv+Gj B
(v+ecly,) = B(v+cly)+Gj, c#o} = cly, =Bcly, c#0

= (IMJ—B)IM} =0

The matrix (Iy, — B) has a null eigenvalue associated with the eigenvector 1y, i.e B has
a unit eigenvalue associated with the eigenvector 1y,. The only way to solve 3.38 is to
use a “deflation technique” (Lynn & Timlake, 1968a,b; Chan, 1984).

3.4.1 Deflation technique

By assuming that the unit eigenvalue of B is simple, it can easily be shown that any other
solution will only differ by an additive constant, that is, a scalar multiple of 1y,. Let p
be any vector such that 1}{,” p = 1 and suppose that we seek the solution of 3.32 such that
ptv = 0. Then looking for this particular solution, equation 3.32 becomes:

v=(B-1yp)v+Gj (3.39)

Under the assumption that p? v = 0, the matrix C = (B — 1y, p?) is a deflation of B and
has no unit eigenvalue, so that (Iy, — C)~! = (Iy, — B — 1y, p) ! exists. Equation 3.31
can be rewritten like

vy Cii Ci2 Cis vy G1
vy | = | Ca1 Caz Cos vy | + | G2 | []] (3.40)
V3 Cs1 Csz2 Cgs v3 Gs
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and this system of equations can be solved by calculating:
v = (I —C) 'Gj (3.41a)
= (Iy, -B-1yp") " 'Gj (3.41b)

where v will satisfy ptv = 0.

Each vector v, is of size N,, x 1, so if, for example, p is defined by :

_ t
p=[00...000...0pp...p] (3.42)
Ny, Ny, Ny

3

with p = 1/N,,, then p’v = 0 simply means that the mean of vs is zero. Therefore
equation 3.41 provides us with the solution that is mean corrected over the scalp surface.

3.4.2 Partial solution for the scalp

The number of equations (NV,) to solve in 3.40 is rather large, but only the direct rela-
tionship between the source distribution j and the potential on the scalp vs is of interest
in the EEG problem. After some algebraic manipulations, equation 3.40 can be rewritten
like this:

vy =T3j (3.43)
where
L = —(Cp-Ix,) (3.49)
—Cs [(Cu —In, ) — C12(Ca2 — IAIU2)_IC21] - [012(022 —1Iy,,) 'Cas — C13]
—Cas [(022 -Iy,) — Ca(Cu1 — IM,I)_ICH] - [021(011 —1Iy, ) 'Cis — C23]
and
L - G (3.45)

-1
+Cs1 [(Cu — Iy, ) — C12(Co2 — INU2)_IC21] [012(022 —1In, ) 'Go — GI]

-1
+Cs2 [(022 -Iy,) — Ca(Cu1 — IM,I)_ICH] [021(011 —Iy,) 'Gi - G2]

In order to reduce the number of operations required to calculate Iy and I'; in 3.44 and
3.45, these relations can be expressed using some common “intermediate matrices” Y, :

N = - ((C33 —In,) + Y5Ci3+ Ys 023) (3.46a)
I = G3+Y5G1+YsGo (346b)
where
Yo = Y4Yo—T;3 (3.47a)
Y5 = Y3X1— Yy (3.47b)
-1
Ty = Cs (—T2 Co1 + (Cu1 — IM,I)) (3.47¢)
-1
Y3 = Cz (—T1 Cio+ (Co — IM,2)) (3.47d)
-1
Yy = Cpo (C22 = IM,2) (3.47e)
-1
Y, = Cy (Cu - IM,I) (3.47f)
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By proceeding carefully, one has only to solve 4 systems of equations (3.47f, 3.47e, 3.47d
and 3.47c) to obtain I'y and I'y. The matrices to inverse are only of size N,, and N,,,
thus the calculation of I'y and T's require much less computational effort than inverting
directly C, which is of size N, = N, + Ny, + N,,.

The explicit solution for all nodal points on the scalp surface may then be obtained
from 3.43 by calculating :

vy = I['T%j (3.48a)
= Lj (3.48b)

Where I'; is only of size N,,. It would of course be possible to obtain a relation such as
3.43 for the other two surfaces.

It is important to note that I'; depends only on the matrix C, i.e. on the geometry and
the conductivity of the volumes, but not on the source distribution j. By pre-calculating
and saving I‘l_l, Y5 and Yg, the lead field matrix L can be obtained very easily for any
source distribution, using equations 3.46b and 3.48.

3.4.3 Partial solution for the electrode sites

In general it is not necessary to calculate the potential V' over the entire scalp surface as,
in practical cases, EEG is recorded from a limited number of electrodes. Therefore the
lead field for the electrode sites should only be calculated :

V3el — Lej (349)

In a realistic head model, the location of the electrodes is defined relative to the trian-
gular mesh of the scalp. As the electrodes have typically a diameter of a few millimetres,
the location of the electrodes can be approximated to the triangle directly underneath.
If the CoG approximation was used to model the potential over each triangle, the nodal
points for which the lead field should be calculated, are simply the centre of gravity of the
triangles under the electrodes. If the CPV or LPV approximation was used, the potential
is estimated at the vertices of each triangle. Therefore the lead field for the three vertices
of the electrode triangles has to be calculated, and should be combined afterwards to
provide a single lead field per electrode. If the electrodes are about the same size as the
triangles on the scalp, then a single mean can be used. But, if the electrodes are smaller
than the triangles, a linear interpolation between the vertices of the triangle should be
preferred.

A partial solution of equation 3.43 for a few nodal points is possible thanks to the
Frobenius-Schur formula that allows the partial calculation of the inverse of a matrix:
M N]" [M'+MNF'PM! —-M'NF-! (3.50)
P Q - -F'PM! F! :

here : M and Q must be square.
WHETE: ) M and F = Q — P M~!N must be invertible.
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Considering that the Ng interesting (respectively, N, other) nodal points are the
last N (respectively, first Ny;) elements of vy : vi = [v§ ,; v§ 4], then equation 3.43 can
be rewritten like this:

N
P ‘ Q V3,el S
| vset | _ M '+MINF'PM! |-MINF! R j
V3el -F'PM! \ F! S
‘;; 1:1:1 ITz
(3.52)

This partitioning of the vertices is not natural (as the electrodes are spread over the scalp
surface) but such ordering may be easily obtained by adequately permuting the rows and
columns in I’y and T's.

As only the bottom part of equation 3.52 is of interest, the lead field for the electrode
sites can be obtained from the submatrices of I'; and ' by:

Ly = [ ~F-'PM-! F! ] [ IS{] (3.53)

and only the two matrices F and M have to be inverted. The number N, of electrode
sites being much smaller than the number of nodal points on the scalp surface N,,, the
time spent to calculate F~! is negligible compared to M~

By using the simplified expression 3.46b for I's, equation 3.53 becomes:

Ly = [-F'PM' F!](Y5Gi+ TG+ Gs) (3.54a)
= E1G+E5:G2+E3G3 (3.54b)
where
2 = [ ~FlPM-! F! ] s (3.55a)
H, = [ ~F-'PM-! F-! ] Yo (3.55b)
2, = [ ~F-'PM-! F-! ] (3.55¢)

The three matrices B, Eo and E3 depend only on the geometry and conductivity of
the head model. If they are pre-calculated (and saved), the lead field L¢; can be rapidly
calculated for any source distribution j using equation 3.54. This is of particular interest
if the location of the dipoles has to be modified, for example, if a denser mesh of dipoles
is required in a linear distributed solution, or if an iterative procedure is used to optimise
the location of the ECDs in a ECD-based solution.



