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Applications of random field theory to electrophysiology
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Abstract

The analysis of electrophysiological data often produces results that are continuous in one or more dimensions, e.g., time–frequency maps,
peri-stimulus time histograms, and cross-correlation functions. Classical inferences made on the ensuing statistical maps must control family
wise error (FWE) when searching across the map’s dimensions. In this paper, we borrow multiple comparisons procedures, established in
neuroimaging, and apply them to electrophysiological data. These procedures use random field theory (RFT) to adjustp-values from statistics
that are functions of time and/or frequency. This RFT adjustment for continuous statistical processes plays the same role as a Bonnferonni
adjustment in the context of discrete statistical tests. Here, by analysing the time–frequency decompositions of single channel EEG data we
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how that RFT adjustments can be used in the analysis of electrophysiological data and illustrate the advantages of this method o
pproaches.
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ime–frequency decomposition of EEG signals facilitates the
tudy, in peri-stimulus time, of EEG components that occur
n different frequency ranges[8,13,15]. Such analyses result
n channel-wise 2-dimensional (2D) time–frequency maps.
ommonly, researchers are interested in whether condition-
pecific effects, in a particular frequency range over some
eriod of peri-stimulus time, are statistical significant. To

est for these effects the individual time–frequency maps are
ften combined into a single statistical map (SPM), with one
tatistic per time–frequency bin[13]. However, inference on
hese 2D time–frequency statistical maps must account for
he large number of multiple non-independent comparisons.
n other words, significant effects must survive a threshold
o there is only a small chance of false positives over all
ime–frequency bins. A simple, but inexact, method for set-
ing this threshold is a Bonferroni correction. In practice, this
ethod is rarely adopted because it assumes that all the statis-

ics are independent. As a consequence, the corrected thresh-
lds are too conservative for time–frequency SPMs where
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there is a high degree of correlation among neighbou
bins.

In many analyses the multiple comparisons problem is
cumvented by restricting the search space prior to infer
such that there is only one statistic per repeated measure
is usually accomplished by averaging the time–frequ
data over a time–frequency window defined a priori[8,13,15].
A major limitation of this approach is that it requires the
quency range and time-period of the effect to be know
advance. A more natural approach would be to make i
ences of the topography of the effect in time–frequency s
using the SPM directly.

In the analysis of spatially correlated 3D fMRI and P
random field theory (RFT) is used to assign ap-value to
topological features of the SPM such as its peak he
[3,5,6,16–18]. This p-value is adjusted for the search w
dow specified by the user. Recently, this approach has
adopted for SPMs of EEG[11] and MEG data[1]. RFT gives
adjustedp-values by using results for the expected Euler c
acteristic (EC) of the excursion set of a smooth statis
process. The expected EC approximates the probabilit
ax: +44 020 7813 1445.
E-mail address:j.kilner@fil.ion.ucl.ac.uk (J.M. Kilner).

map exceeds some height by chance. The ensuingp-values
can be used to find a corrected height threshold (see[3,16]
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for a more detailed introduction to RFT). One advantage of
RFT is that it models continuous statistical processes and not
a set of individual statistics. This means that RFT procedures
can be used to characterise several topological features of
the statistical map, e.g., maximal height, extent and number
of clusters. The key intuition behind RFT procedures is that
they control the false positive rate of maxima, or blobs, in
statistical maps. A Bonferroni correction would control the
false positive rate of bins, which would be inexact and un-
necessarily conservative.

The assumptions under which the random field correc-
tion operates are quite simple and are, happily, satisfied by
time–frequency data because of their inherent smoothness.
RFT is a cornerstone of inference in human brain mapping
that enables researchers to adjust theirp-values to control
false positive rates over spatial search volumes within the
brain. As noted above, the key null distribution is that of
the maximum statistic over the search volume. By evaluat-
ing any observed statistic, in relation to the null distribu-
tion of the maximum statistic, one is implicitly implementing
a multiple comparisons procedure for continuous data. The
distribution of the maximum statistic can be estimated non-
parametrically using randomisation or permutation methods.
More commonly, analytic forms of this distribution are de-
rived using results from RFT. These results use the expected
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Here we use RFT, as implemented in SPM2 (Wellcome
Department of Imaging Neuroscience, London, UK), to
adjust p-values from SPMs of time–frequency data. The
time–frequency maps were calculated from the EEG time-
series from a single occipital electrode in two experi-
mental conditions: one where the presentation of a visual
stimulus was cued, C and a second, where it was not-
cued, NC. Time–frequency maps were calculated for each
trial, using a continuous wavelet decomposition (Morlet)
from 5 to 70 Hz in a 750 ms time period prior to stim-
ulus presentation. These time–frequency maps were av-
eraged over trials and log transformed to produce one
time–frequency of power per condition per subject. For each
subject a contrast was taken as the difference between C and
NC.

These contrasts were smoothed by convolution with a
Gaussian kernel in both time (96 ms FWHM) and frequency
(12 Hz FWHM) domains (seeFig. 1A for a schematic of
the processing stream). This smoothing step is important for
two reasons. First, it acts to blur any effects that are focal
in the time and/or frequency dimensions, ensuring overlap
among subjects. Secondly, it assures one of the assump-
tions of RFT: namely, that the errors conform to a good
lattice approximation of a random field with a multivariate
Gaussian distribution. The size of the Gaussian kernel used
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uler characteristic of excursion sets above some spe
hreshold. For high thresholds this expectation is the sam
he probability of getting a maximum statistic above thre
ld. By treating the data, under the null hypothesis, as co
ous random fields the distribution of the Euler character
f any statistical process derived from these fields can
e used as an approximation to the null distribution requ

or inference. This assumes that the random variables
rrors) conform to a good lattice approximation of an
erlying random field. Furthermore, the expressions req

hat the random fields are multivariate Gaussian with a
inuously differentiable autocorrelation function. It is a co
on misconception that this correlation function has to
aussian. It does not. Furthermore, the autocorrelation

ion does not have to be stationary. The ensuingp-value is a
unction of the search volume, over any arbitrary numbe
imensions, and the smoothness (expressed in terms o
idth, half-maximum (FWHM)) of the underlying fields.
seful concept, that combines these two measures, is the
r resolution element. The resel corresponds to the num
WHM elements that comprise the search volume. Heu
ally these correspond roughly to the number of indepen
bservations. In other words, even a large search volume
ontain a relatively small number of resels, if it is smo
his calls for a much less severe adjustment to thep-value

han would be obtained with a Bonferroni correction ba
n the number of bins, voxels or grid points. RFT now ha
stablished role in imaging statistics. Some of the key pa

n its development include[5,6,17]. Useful reviews of thi
ill be found in the chapters by Brett et al.[3] and Worsley

16].
l

hould reflect the heterogeneity of the locus of the pea
ect in time–frequency space across subjects. Here the s
moothing kernel was based on the reported variability
ubjects in the latency and frequency of peak gamma-
ctivity [12,15].

In our example, the time–frequency SPM(T) for
ects greater than zero was calculated from the smoo
ontrasts using a one-sampledt-test (Fig. 1B). The peak
ime–frequency bin was 410 ms prior to the stimulus
entation at 42 Hz. However, although this peak bin h
-score of 3.36, which would be significant atp< 0.0005 un
orrected for family wise error (FWE), this bin did not rea
he height threshold corrected for the entire time–frequ
pace (p= 0.109 corrected for FWE). Therefore, based on
eight threshold, and in the absence of any a priori search
ow, we would not be able to infer any significant differe

n modulation prior to the cued and non-cued stimuli. H
ver, the RFT approach affords not only adjustedp-values
ased on height but also extent[6]. Extent-based inference
ased on the probability that a cluster of time–freque
ins could have occurred by chance can be more pow

han height based inferences, but at the expense of re
ocalisation in time–frequency. For the SPM thresholde
< 0.01 uncorrected, shown inFig. 1B, there was a significa
luster of bins atp< 0.05 corrected (Fig. 1C). In this exam
le, despite the absence of a priori information of wher

ime–frequency we should have expected any effect, th
f RFT, revealed a significant increase in oscillatory ac

ty that occurred in the 33–62 Hz frequency range in a
indow extending from 340 to 470 ms prior to stimulus p
entation.



176 J.M. Kilner et al. / Neuroscience Letters 374 (2005) 174–178

Fig. 1. (A) Shows the pipeline for the approach used here. Time–frequency contrasts were calculated for each subject and smoothed by convolution witha
Gaussian kernel. These data were then analysed in SPM2 (Wellcome Department of Imaging Neuroscience, London, UK); (B) the SPM calculated from the
smoothed time–frequency images and thresholded atp< 0.01 uncorrected. The location of the peak bin is shown. The white dotted box indicates our illustrative
a priori window of interest; (C) the significant cluster of bins atp< 0.01 uncorrected; and (D) the results table from the analysis of the time–frequency SPM
restricted to the window of interest as shown in B.With this analysis both the cluster level and bin level results are significant atp< 0.05 corrected for FWE. Note
that although the data were smoothed with a Gaussian kernel of FWHM 96 ms and 12 Hz the smoothness calculated from the data was greater with FWHM of
107.8 ms and 16.8 Hz. (i) This difference reflects the correlation in the underlying data between adjacent bins in both the time and frequency dimensions. Note
also that at a height threshold ofT= 2.72 the expected number of clusters was 0.49, (ii) where one cluster was expected to be 252.493 bins, and (iii) whereas
the cluster level analysis revealed one cluster of 1163 bins (KE). Resel size means the number of bins in one resel. A resel is a “resolution element” and can be
regarded as roughly equivalent to one independent observation.

In most instances searches over SPMs are constrained or
directed. This is common in neuroimaging when we know
where in the brain to look. For the example considered here
we may want to constrain the search space to some expected
time and frequency of the effect. In this instance the RFT

adjustment of thep-values would only be over bins within
this search window. For example, had we defined a pri-
ori a window of interest 500 ms prior to stimulus presen-
tation in the gamma-band range, 30–65 Hz (Fig. 1B and D)
then the peak bin would have been significant atp< 0.05
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Fig. 2. (A) Shows the SPM calculated from the smoothed time–frequency images of a null contrast and thresholded atp< 0.05 uncorrected. The location of
the peak bin is shown. The white dotted box indicates our illustrative a priori window of interest fromFig. 1B and (B) the results table from the analysis of
the time–frequency SPM restricted to the within the window of interest shown in A. With this analysis neither the cluster level nor the bin level results are
significant atp< 0.05 corrected for FWE.

corrected for FWE (details of this analysis are given in
Fig. 1D).

To illustrate the importance of adjusting thep-value, we
repeated the above analysis exactly but using a null con-
trast. This null contrast involved randomly exchanging or
re-assigning the normalised time–frequency data to differ-
ent levels of the experimental factor. The results of the null
contrast are presented using the same format as the previous
figure inFig. 2 (note we have used a much lower threshold
for the SPM). Inspection of the table (Fig. 2B) will show that
the largestt value falling within the search volume (dotted
white line) had an uncorrectedp-value of 0.031. However,
this is not a significant result because the adjustedp-value,
corrected for FWE was 0.533. Incidentally, if we repeated
the randomisation to produce a large number of null con-
trasts, and recorded the distribution of the maximum statistic
within the search volume, we would have an empirical esti-
mate of the null distribution required for inference. This is
exactly how non-parametric versions of statistical parametric
mapping are implemented.

This null example is presented in a purely heuristic way
to highlight the importance of correcting forp-values. More
thorough evaluations of SPM for log transformed power

data suggests that the approach is robust[10]. In brief, both
smoothing, and the construction of contrasts, involve tak-
ing linear mixtures of (non-Gaussian) power data. By central
limit theorem these mixtures are effectively Gaussian leading
to valid and exact tests in Monte Carlo simulations[10].

Above we have commented upon inference based upon
the peak height of the SPM and the spatial extent above
a pre-specified threshold. The latterp-values were based
on relatively simple expressions that assume the study has
high degrees of freedom and that the smoothness is sta-
tionary over time–frequency space. This is easily moti-
vated in the present context because the time–frequency
data was smoothed with a large smoothing kernel prior
to inference. However, in the absence of this smoothing
better approximations are available (e.g., in FMRISTAT
http://www.math.mcgill.ca/keith/fmristat/). More refined
distributional approximations accommodate non-stationary
smoothness[4] and uncertainty about the estimation of
smoothness or FWHM (see the appendix of reference[7]).

In this introductory paper, we have focussed on multiple
comparison procedures for continuous data based on RFT. As
mentioned earlier, the requisite null distribution of the max-
imal statistic can be estimated using non-parametric proce-

http://www.math.mcgill.ca/keith/fmristat/
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dures. This is referred to as statistical non-parametric map-
ping. The analytic and closed form expressions provided by
RFT are based on assumptions that render it more power-
ful or sensitive than equivalent non-parametric approaches.
However, if these assumptions are violated non-parametric
approaches can be employed. An interesting example of this
is the application of statistical non-parametric mapping to
source reconstructed MEG data at a particular time and fre-
quency[14]. In this example, the reconstruction uses beam
former techniques that induce some badly behaved spa-
tial correlations among remote sources that may confound
RFT. For this reason the authors prefer non-parametric ap-
proaches. In the context of time–frequency analyses a well-
behaved correlation structure is assured by the nature of
the decomposition and by the post hoc smoothing described
above.

This paper has focussed on the analysis of a sin-
gle channel over time and frequency. The procedures de-
scribed above complement the analysis of single time and/or
time–frequency points that are continuous over spatially re-
constructed electrical or magnetic sources[1,2,11,14]. In
Kiebel and Friston[9] we consider high dimensional SPMs
that encompass both space and peristimulus time to form a
four-dimensional search space. Given that RFT can accom-
modate high dimensional search spaces it would, in princi-
p s de-
s fre-
q sta-
t , or
o ptual
a
T ribed
a ular
i odes
o at a
p

PM
t ncy
s

are

r

( nt of
ght.

( are
e as

how-
e ulti-
d ams,
t phase
s de-
v

Acknowledgement

The Wellcome Trust funded this work.

References

[1] G. Barnes, A. Hillebrand, Statistical flattening of MEG beamformer
images, Hum. Brain Mapp. 18 (2003) 1–12.

[2] J. Bosch-Bayard, P. Valdes-Sosa, T. Virues-Alba, E. Aubert-Vazquez,
E. John, T. Harmony, J. Riera-Diaz, N. Trujillo-Barreto, 3D statisti-
cal parametric mapping of EEG source spectra by means of variable
resolution electromagnetic tomography (VARETA), Clin. EEG Elec-
troencephalogr. 32 (2001) 47–61.

[3] M. Brett, W. Penny, S. Kiebel, An introduction to random field
theory, in: Human Brain Function II, Academic Press, London, UK,
2003 (Chapter 14).

[4] J. Cao, K.J Worsley, Applications of random fields in human brain
mapping, in: M. Moore (Ed.) Spatial Statistics: Methodological As-
pects and Applications, Springer Lecture Notes in Statistics, vol.
159, 2001, pp. 169–182.

[5] K.J. Friston, C.D. Frith, P.F. Liddle, R.S.J. Frackowiak, Comparing
functional (PET) images: the assessment of significant change, J.
Cereb. Blood Flow Metab. 11 (1991) 690–699.

[6] K.J. Friston, K.J. Worsley, R.S.J. Frackowiak, J.C. Mazziotta, A.C.
Evans, Assessing the significance of focal activations using their
spatial extent, Hum. Brain Mapp. 1 (1994) 214–220.

[7] S. Hayasaka, K. Luan-Phan, I. Liberzon, K.J. Worsley, T.E. Nichols,
Non-Stationary cluster-size inference with random field and permu-

ma
999)

ent-
2004)

[ ory
map-

[ ical
ndi-
nia,

[ ation
Eur.

[ ault,
on of

[ sk-
c per-

[ tory
sk in

[ rain

[ onal
in, J.

[ .C.
vox-
96)
le, be possible to extend the time–frequency analyse
cribed here to five dimensions (three spatial, time and
uency). However, in practical terms we anticipate that

istical parametric mapping will be applied over space
ver time–frequency but not both. There are both conce
nd computational reasons for this, which are detailed in[9].
his means that time–frequency analyses of the sort desc
bove, would be performed on single channels of partic

nterest, the temporal expression of specified spatial m
f distributed activity or the electromagnetic responses
articular point in the brain in source space.

In this paper, we have described the application of S
o EEG data to allow statistical inferences in time–freque
pace. The advantages of this approach are:

(i) No a priori predictions about the location of effects
required to make statistically valid inferences.

(ii) Statistical inferences are based onp-values adjusted fo
multiple comparisons.

iii) Statistical inferences can also be made on the exte
any effect, which may be more powerful than the hei

iv) The machinery for analysis and statistical inference
already fully established, widely used and availabl
academic software (http://www.fil.ion.ucl.ac.uk/spm).

Here we have focussed on time–frequency SPMs,
ver, this approach can also be applied to other m
imensional data such as peri-stimulus time histogr

ime-dependent cross-correlations and time-dependent
ynchronisation maps. We will be using these inference
ices in forthcoming publications.
tation methods, Neuroimage 22 (2004) 676–687.
[8] A. Keil, M.M. Muller, W.J. Ray, T. Gruber, T. Elbert, Human gam

band activity and perception of a gestalt, J. Neurosci. 19 (1
7152–7161.

[9] S.J. Kiebel, K.J. Friston, Statistical parametric mapping for ev
related potentials: I. Generic considerations, Neuroimage 22 (
492–502.

10] S.J. Kiebel, C. Tallon-Baudry, K.J. Friston. Analysis of oscillat
activity as measured with eeg/meg using statistical parametric
ping, submitted for publication.

11] H. Park, J. Kwon, T. Youn, J. Pae, J. Kim, M. Kim, K. Ha, Statist
parametric mapping of LORETA using high density EEG and i
vidual MRI: application to mismatch negativities in schizophre
Hum. Brain Mapp. 17 (2002) 168–178.

12] A. Posada, E. Hugues, P. Vianin, N. Franck, J. Kilner, Augment
of induced visual gamma activity by increased task complexity,
J. Neurosci. 18 (2003) 1–6.

13] E. Rodriguez, N. George, J.-P. Lachaux, J. Martinerie, B. Ren
F.J. Varela, Perception’s shadow: long-distance synchronizati
human brain activity, Nature 397 (1999) 430–433.

14] K.D. Singh, G.R. Barnes, A. Hillebrand, Group imaging of ta
related changes in cortical synchronisation using nonparametri
mutation testing, Neuroimage 19 (2003) 1589–1601.

15] C. Tallon-Baudry, O. Bertrand, C. Delpuech, J. Pernier, Oscilla
gamma-band (30–70 Hz) activity induced by a visual search ta
humans, J. Neurosci. 17 (1997) 722–734.

16] K.J. Worsley, Developments in random field theory, in: Human B
Function II, Academic Press, London, UK, 2003 (Chapter 15).

17] K.J. Worsley, A.C. Evans, S. Marrett, P. Neelin, A three dimensi
statistical analysis for CBF activation studies in the human bra
Cereb. Blood Flow Metab. 12 (1992) 900–918.

18] K.J. Worsley, S. Marrett, P. Neelin, A.C. Nandal, K.J. Friston, A
Evans, A unified statistical approach for determining significant
els in images of cerebral activation, Hum. Brain Mapp. 4 (19
58–73.

http://www.fil.ion.ucl.ac.uk/spm

