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Abstract

The analysis of electrophysiological data often produces results that are continuous in one or more dimensions, e.g., time—frequency map
peri-stimulus time histograms, and cross-correlation functions. Classical inferences made on the ensuing statistical maps must control famil
wise error (FWE) when searching across the map’s dimensions. In this paper, we borrow multiple comparisons procedures, established |
neuroimaging, and apply them to electrophysiological data. These procedures use random field theory (RFTptead@sstrom statistics
that are functions of time and/or frequency. This RFT adjustment for continuous statistical processes plays the same role as a Bonnferon
adjustment in the context of discrete statistical tests. Here, by analysing the time—frequency decompositions of single channel EEG data w
show that RFT adjustments can be used in the analysis of electrophysiological data and illustrate the advantages of this method over existir
approaches.
© 2004 Elsevier Ireland Ltd. All rights reserved.
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Time—frequency decomposition of EEG signals facilitates the there is a high degree of correlation among neighbouring
study, in peri-stimulus time, of EEG components that occur bins.
in different frequency rangd8,13,15] Such analyses result In many analyses the multiple comparisons problemis cir-
in channel-wise 2-dimensional (2D) time—frequency maps. cumvented by restricting the search space prior to inference
Commonly, researchers are interested in whether condition-such that there is only one statistic per repeated measure. This
specific effects, in a particular frequency range over someis usually accomplished by averaging the time—frequency
period of peri-stimulus time, are statistical significant. To dataoveratime—frequencywindow defined a pfi®y13,15]
test for these effects the individual time—frequency maps are A major limitation of this approach is that it requires the fre-
often combined into a single statistical map (SPM), with one quency range and time-period of the effect to be known in
statistic per time—frequency bjf3]. However, inference on  advance. A more natural approach would be to make infer-
these 2D time—frequency statistical maps must account forences of the topography of the effect in time—frequency space
the large number of multiple non-independent comparisons. using the SPM directly.
In other words, significant effects must survive a threshold  In the analysis of spatially correlated 3D fMRI and PET
so there is only a small chance of false positives over all random field theory (RFT) is used to assigmp-@alue to
time—frequency bins. A simple, but inexact, method for set- topological features of the SPM such as its peak height
ting this threshold is a Bonferroni correction. In practice, this [3,5,6,16—18] This p-value is adjusted for the search win-
method is rarely adopted because it assumes that all the statisdow specified by the user. Recently, this approach has been
tics are independent. As a consequence, the corrected thresradopted for SPMs of EE(A1] and MEG datdl]. RFT gives
olds are too conservative for time—frequency SPMs where adjusteg-values by using results for the expected Euler char-
acteristic (EC) of the excursion set of a smooth statistical
msponding author. Tel.: +44 020 7833 7457: process. The expected_ EC approximates the prqbability the
fax: +44 020 7813 1445, map exceeds some height by chance. The enguiredues
E-mail addressj.kilner@fil.ion.ucl.ac.uk (J.M. Kilner). can be used to find a corrected height threshold [366)]
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for a more detailed introduction to RFT). One advantage of  Here we use RFT, as implemented in SPM2 (Wellcome
RFT is that it models continuous statistical processes and notDepartment of Imaging Neuroscience, London, UK), to
a set of individual statistics. This means that RFT proceduresadjust p-values from SPMs of time—frequency data. The
can be used to characterise several topological features otime—frequency maps were calculated from the EEG time-
the statistical map, e.g., maximal height, extent and numberseries from a single occipital electrode in two experi-
of clusters. The key intuition behind RFT procedures is that mental conditions: one where the presentation of a visual
they control the false positive rate of maxima, or blobs, in stimulus was cued, C and a second, where it was not-
statistical maps. A Bonferroni correction would control the cued, NC. Time—frequency maps were calculated for each
false positive rate of bins, which would be inexact and un- trial, using a continuous wavelet decomposition (Morlet)
necessarily conservative. from 5 to 70Hz in a 750ms time period prior to stim-
The assumptions under which the random field correc- ulus presentation. These time—frequency maps were av-
tion operates are quite simple and are, happily, satisfied byeraged over trials and log transformed to produce one
time—frequency data because of their inherent smoothnesstime—frequency of power per condition per subject. For each
RFT is a cornerstone of inference in human brain mapping subject a contrast was taken as the difference between C and
that enables researchers to adjust tipeialues to control NC.
false positive rates over spatial search volumes within the  These contrasts were smoothed by convolution with a
brain. As noted above, the key null distribution is that of Gaussian kernel in both time (96 ms FWHM) and frequency
the maximum statistic over the search volume. By evaluat- (12 Hz FWHM) domains (se€ig. 1A for a schematic of
ing any observed statistic, in relation to the null distribu- the processing stream). This smoothing step is important for
tion of the maximum statistic, one is implicitly implementing two reasons. First, it acts to blur any effects that are focal
a multiple comparisons procedure for continuous data. Thein the time and/or frequency dimensions, ensuring overlap
distribution of the maximum statistic can be estimated non- among subjects. Secondly, it assures one of the assump-
parametrically using randomisation or permutation methods. tions of RFT: namely, that the errors conform to a good
More commonly, analytic forms of this distribution are de- lattice approximation of a random field with a multivariate
rived using results from RFT. These results use the expectedGaussian distribution. The size of the Gaussian kernel used
Euler characteristic of excursion sets above some specifiedshould reflect the heterogeneity of the locus of the peak ef-
threshold. For high thresholds this expectation is the same adect in time—frequency space across subjects. Here the size of
the probability of getting a maximum statistic above thresh- smoothing kernel was based on the reported variability over
old. By treating the data, under the null hypothesis, as contin- subjects in the latency and frequency of peak gamma-band
uous random fields the distribution of the Euler characteristic activity [12,15].
of any statistical process derived from these fields can then In our example, the time—frequency SPM(T) for ef-
be used as an approximation to the null distribution required fects greater than zero was calculated from the smoothed
for inference. This assumes that the random variables (i.e.,contrasts using a one-sampletest Fig. 1B). The peak
errors) conform to a good lattice approximation of an un- time—frequency bin was 410 ms prior to the stimulus pre-
derlying random field. Furthermore, the expressions require sentation at 42 Hz. However, although this peak bin had a
that the random fields are multivariate Gaussian with a con- Z-score of 3.36, which would be significant@at 0.0005 un-
tinuously differentiable autocorrelation function. Itis a com- corrected for family wise error (FWE), this bin did not reach
mon misconception that this correlation function has to be the height threshold corrected for the entire time—frequency
Gaussian. It does not. Furthermore, the autocorrelation func-spacef=0.109 corrected for FWE). Therefore, based on the
tion does not have to be stationary. The ensyiwglue is a heightthreshold, and in the absence of any a priori search win-
function of the search volume, over any arbitrary number of dow, we would not be able to infer any significant difference
dimensions, and the smoothness (expressed in terms of full-in modulation prior to the cued and non-cued stimuli. How-
width, half-maximum (FWHM)) of the underlying fields. A ever, the RFT approach affords not only adjuspeealues
useful concept, that combines these two measures, is the resddased on height but also extg¢6j. Extent-based inferences,
orresolution element. The resel corresponds to the number ofbased on the probability that a cluster of time—frequency
FWHM elements that comprise the search volume. Heuristi- bins could have occurred by chance can be more powerful
cally these correspond roughly to the number of independentthan height based inferences, but at the expense of reduced
observations. In other words, even a large search volume mayocalisation in time—frequency. For the SPM thresholded at
contain a relatively small number of resels, if it is smooth. p<0.01uncorrected, shownkig. 1B, there was a significant
This calls for a much less severe adjustment topvalue cluster of bins ap<0.05 correctedKig. 1C). In this exam-
than would be obtained with a Bonferroni correction based ple, despite the absence of a priori information of where in
on the number of bins, voxels or grid points. RFT now has an time—frequency we should have expected any effect, the use
established role in imaging statistics. Some of the key papersof RFT, revealed a significant increase in oscillatory activ-
in its development includg,6,17] Useful reviews of this ity that occurred in the 33—62 Hz frequency range in a time
will be found in the chapters by Brett et ] and Worsley window extending from 340 to 470 ms prior to stimulus pre-
[16]. sentation.
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STATISTICS: p-values restricted to the 500 ms by 35 Hz search volume
Cluster Level Bin Level
P s K m— P P s T z —
0.005 1163 0.010 0.045 0.038 4.58 3.36 0.000

Height threshold: T = 2.72, p = 0.010 {0.389)
Extent threshold: k = D bins, p = 1.000 (0.389)

(i Expected bins per cluster, <k> = 252.493

(i) Expected number of clusters, <c> =0.49

Expected false discovery rate, <= 0.08

Degrees of freedom = [1.0, 11.0]

(i) Smoothness FWHM = 107.8 ms 16.8 Hz = 53.9 16.8 [bins}

Search vol: 8785 bins; 9.7 resels
Bin size: [2.0 ms, 1.0 Hz]
Resel size: 904.3 hins

(D)

Fig. 1. (A) Shows the pipeline for the approach used here. Time—frequency contrasts were calculated for each subject and smoothed by conlution with
Gaussian kernel. These data were then analysed in SPM2 (Wellcome Department of Imaging Neuroscience, London, UK); (B) the SPM calculated from the
smoothed time—frequency images and thresholdp& &01 uncorrected. The location of the peak bin is shown. The white dotted box indicates our illustrative

a priori window of interest; (C) the significant cluster of bingat0.01 uncorrected; and (D) the results table from the analysis of the time—frequency SPM
restricted to the window of interest as shown in B.With this analysis both the cluster level and bin level results are sigmfcafSatorrected for FWE. Note

that although the data were smoothed with a Gaussian kernel of FWHM 96 ms and 12 Hz the smoothness calculated from the data was greater with FWHM c
107.8 ms and 16.8 Hz. (i) This difference reflects the correlation in the underlying data between adjacent bins in both the time and frequency. dNotension

also that at a height threshold ©f 2.72 the expected number of clusters was 0.49, (ii) where one cluster was expected to be 252.493 bins, and (iii) whereas
the cluster level analysis revealed one cluster of 1163 ik Resel size means the number of bins in one resel. A resel is a “resolution element” and can be
regarded as roughly equivalent to one independent observation.

In most instances searches over SPMs are constrained oadjustment of thg-values would only be over bins within
directed. This is common in neuroimaging when we know this search window. For example, had we defined a pri-
where in the brain to look. For the example considered hereori a window of interest 500 ms prior to stimulus presen-
we may want to constrain the search space to some expectethtion in the gamma-band range, 30-65 IRig( 1B and D)
time and frequency of the effect. In this instance the RFT then the peak bin would have been significanp&t0.05



J.M. Kilner et al. / Neuroscience Letters 374 (2005) 174-178

4
3
2
1

STATISTICS: p-values restricted to the 500 ms by 35 Hz search volume

177

Peak pixel Z=1.87, P<0.05 Uncorrected

70

60

50

-0.75 -0.5 -0.25 0
(s)

(A) Time (s,

Freguency (Hz)
8
(Tvalue)

Cluster Level Bin Level
Pl K. P e Pre con P cor T z P
0613 523 0,650 0.533 0.968 2.07 1.87 0.031
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Degrees of freedom =[1.0, 11.0]

Smoothness FWHM = 158.6 ms 16.5 Hz = 79.3 16.5 {hins}
Search vol: 8785 bins; 6.7 resels
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Expected false discovery rate, <= 0.97 Resel size: 12905 bins
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Fig. 2. (A) Shows the SPM calculated from the smoothed time—frequency images of a null contrast and threshpei@e@d5atincorrected. The location of
the peak bin is shown. The white dotted box indicates our illustrative a priori window of interesFfpriB and (B) the results table from the analysis of
the time—frequency SPM restricted to the within the window of interest shown in A. With this analysis neither the cluster level nor the bin levateesult
significant a(p<0.05 corrected for FWE.

corrected for FWE (details of this analysis are given in data suggests that the approach is rofiL@k In brief, both
Fig. 1D). smoothing, and the construction of contrasts, involve tak-
To illustrate the importance of adjusting tpevalue, we ing linear mixtures of (non-Gaussian) power data. By central
repeated the above analysis exactly but using a null con-limittheorem these mixtures are effectively Gaussian leading
trast. This null contrast involved randomly exchanging or to valid and exact tests in Monte Carlo simulati¢h8].
re-assigning the normalised time—frequency data to differ- Above we have commented upon inference based upon
ent levels of the experimental factor. The results of the null the peak height of the SPM and the spatial extent above
contrast are presented using the same format as the previoua pre-specified threshold. The lattpvalues were based
figure inFig. 2 (note we have used a much lower threshold on relatively simple expressions that assume the study has

for the SPM). Inspection of the tablEif. 2B) will show that
the largest value falling within the search volume (dotted
white line) had an uncorrectguvalue of 0.031. However,
this is not a significant result because the adjugtedlue,

high degrees of freedom and that the smoothness is sta-
tionary over time—frequency space. This is easily moti-
vated in the present context because the time—frequency
data was smoothed with a large smoothing kernel prior

corrected for FWE was 0.533. Incidentally, if we repeated to inference. However, in the absence of this smoothing
the randomisation to produce a large number of null con- better approximations are available (e.g., in FMRISTAT
trasts, and recorded the distribution of the maximum statistic http://www.math.mcgill.ca/keith/fmristgt/ More refined
within the search volume, we would have an empirical esti- distributional approximations accommodate non-stationary
mate of the null distribution required for inference. This is smoothnesq4] and uncertainty about the estimation of

exactly how non-parametric versions of statistical parametric smoothness or FWHM (see the appendix of refergiipe

mapping are implemented.

In this introductory paper, we have focussed on multiple

This null example is presented in a purely heuristic way comparison procedures for continuous data based on RFT. As

to highlight the importance of correcting fprvalues. More

mentioned earlier, the requisite null distribution of the max-

thorough evaluations of SPM for log transformed power imal statistic can be estimated using non-parametric proce-
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