
FEATURE EXTRACTION FRAMEWORK 
Data mining is to be based on a number of brain structure volume features, which are automatically 

extracted from patient MRI scans1. 

How it works 
Single NIfTI volumes of the brain are first partitioned into three classes: grey matter, white matter and 

background.   This procedure also incorporates an approximate image alignment step and a correction for 

image intensity non-uniformities.  This procedure is done using the Segment2 tool from within the SPM123 

software, which runs within the MATLAB4 programming language.  

Tissue atlases, precomputed from the training data (see later), are then spatially registered with the 

extracted grey and white matter maps, using the Shoot5 tool from SPM12. The warps estimated from this 

registration step are then used to project other pre-computed image data in to alignment with the original 

scans (and their grey and white matter maps). 

The rules of probability6 are then used to combine the various images to give a probabilistic label map for 

each brain structure.  These probabilities are summed for each structure, to give probabilistic volume 

estimates.  These estimates serve as features for data mining.  Optionally, the method also allows 

maximum probability label maps to be saved. 

                                                           
1 http://xkcd.com/1425/ 
2 Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005 Jul 1;26(3):839-51. 
3 http://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
4 http://uk.mathworks.com/products/matlab/ 
5  Ashburner, John, and Karl J. Friston. "Diffeomorphic registration using geodesic shooting and Gauss–Newton 

optimisation." NeuroImage 55.3 (2011): 954-967. 
6For example, for labelling the hippocampus, we have: P(structure=hippocampus) = P(structure=hippocampus | 

tissue=grey) × P(tissue=grey) + P(structure=hippocampus | tissue=white) × P(tissue=white) + 

P(structure=hippocampus | tissue=other) × P(tissue=other). 

Figure 1. An original T1-weighted MRI scan (left), along with automatically extracted grey (middle) and white matter (right) 

tissue maps.  The tissue maps encode the probability of each tissue type (given the model and data). 



Motivation for approach 

Needs to be fully automated and robust 
The datasets are too large for manual interventions to be involved.  Also, privacy concerns prohibit visual 

inspection of the image data. 

Small number of features 
The format of the current database framework (comma separated value text files, interrogation via SQL 

and privacy preserving requirements) precludes the use of many modern machine learning approaches 

suitable for images.  For this reason, the Mbytes of information in each patient’s image is reduced to a 

small number of features, which are more suitable for privacy-preserving data mining. This allows 

sufficient statistics, such as mean vectors and covariance matrices accumulated from many patients’ data, 

to be passed easily from each hospital site. 

Features interpretable by clinicians 
The proposed rule-based data mining strategies emphasizes interpretability over accuracy.  For this 

reason, the image features that enter into the data mining ought to be interpretable by clinicians.  The 

features chosen are the volumes of various brain structures.  This requires a robust and fully automated 

way to segment (label) brain scans into several different regions.  Alternative feature types could have 

included cortical thickness of different regions, but these can usually not be obtained in a fully automated 

way.  Some manual intervention is often required. 

Needs to be relatively fast 
The feature extraction procedure is to be applied to several thousand scans, so computational speed is 

important.  The privacy-preserving nature of the work means that feature extraction can only be done at 

each hospital site, which precludes the use of the HBP supercomputing facilities. The current state-of-the-

art in automated brain labelling are very computationally expensive, relying on estimating the detailed 

Figure 2. Grey and white matter from the original tissue atlases (left), along with registered versions (middle and right). 



nonlinear registration of multiple images from the training set with 

each patient’s image.  Each of these registration steps may take 

several hours7.  Instead, the approach used in SP8 involves a single 

image alignment between the patient’s image and a pre-defined 

template derived from averaged data8 from multiple training images.  

The approach for propagating the labels is also much simpler (and 

faster) than the state-of-the-art methods. 

Needs to be flexible for different MRI contrasts 
MRI scans come in many different types, with a variety of image 

“contrasts”.  In some types of scans, the grey matter in the brain 

appears darker than the white matter, whereas in other types, the 

grey matter appears brighter.  There are also many subtle variations 

due to artifacts from different scanners etc.  State-of-the-art brain 

labelling methods usually rely on having manually labelled training 

scans with exactly the same properties as the patient scans to be 

segmented.  Within a hospital environment, there are hundreds of 

variations in the types of scans acquired.  It is not feasible to obtain 

labelled training data for all these varieties - simply because 

manually labelling scans is very time consuming and tedious, yet 

requires a lot of expertise.  Instead of basing the labelling procedure 

on the raw scans, the adopted approach first segments the images 

into a different tissue classes, and bases the labelling procedure on 

these.  Many automated methods are available for this tissue 

classification procedure, and they can usually adapt to a variety of 

MRI contrasts.  The tissue classification method chosen is widely 

used, well supported and very familiar to several SP8 team 

members 9 .  It is also under constant development, and can be 

extended to suit the needs of SP8. 

Needs to be relatively accurate 
Many label propagation approaches use the ANTs software10 for image alignment, as it performed best in 

an extensive comparison11. In a separate evaluation, the image registration adopted for this work12 

outperformed all methods from that comparison.  It also runs an order of magnitude faster than ANTs.  

Label fusion can be made much more accurate for scans with the same properties as the training data.  

Some information that could be useful for label fusion is inevitably lost through partitioning the scans into 

                                                           
7 https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Workshop_Proceedings 
8  Ashburner J, Friston KJ. Computing average shaped tissue probability templates. Neuroimage. 2009 Apr 

1;45(2):333-41. 
9 Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005 Jul 1;26(3):839-51. 
10 http://stnava.github.io/ANTs/ 
11 Klein, Arno, et al. "Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration." 

Neuroimage 46.3 (2009): 786-802. 
12 Ashburner, John, and Karl J. Friston. "Diffeomorphic registration using geodesic shooting and Gauss–Newton 

optimisation." NeuroImage 55.3 (2011): 954-967. 

Figure 3. Detail of the label propagation procedure, in 

the region around the right hippocampus.  The top 

row shows a map of the probability of each voxel 

being part of the hippocampus, given that it has been 

labelled as grey matter (left) or white matter (right).  

The second row shows the probability of 

hippocampus given that a voxel has not been labelled 

as grey or white matter, followed by a detail from the 

original scan.  The bottom row shows the grey and 

white matter tissue probability maps.  



different tissue types. Even so, by using a principled probabilistic fusion method, the computed volumes 

are still reasonably accurate. 

Scope of data 
The range of image types suitable for accurate 

labelling is restricted.  For reliable results, scans 

should be high resolution (1.5 mm isotropic or 

better), and it should be possible to visually 

distinguish between grey and white matter in the 

brain.  The brain should also be visually distinct 

from surrounding tissues.  A relatively small 

amount of intensity non-uniformity artifact 

should not impact the method.  The volumetric 

T1-weighted scans collected for research 

purposes and clinical scans with similar properties 

can usually be easily labelled.  Images of lower 

resolution can still be labelled, but the accuracies 

of the volume estimates are much lower.  Artifacts 

that are not modelled, such as motion artifact, 

also degrade the accuracy of the features. 

Scans must be of brains.  If the algorithm is 

presented with scans of other organs, it will not 

identify them as such and give meaningless 

results.  Because the procedure begins with an 

affine registration, using a local optimization 

procedure, it can be susceptible to failure if the 

centre of the brain is too far from the centre of the magnetic field of the scanner.  Providing the anterior 

commissure is within about 5 cm from the centre of the magnetic field, then a good solution is invariably 

obtained. Scan data must be presented as NIfTI format13, after having been converted from DICOM14 in a 

way that preserves the orientation and positional information from the headers (correctly using the Image 

Orientation Patient, Image Position Patient and Pixel Spacing tags).  Data must be volumetric with good 

coverage of the brain.  Brain structures that fall outside the field of view will be assigned volumes of zero.  

Brain structures that lie at the edge of the field of view will be assigned volumes based on how much of 

the structure is included within the scan. 

The approach works on a single volumetric patient scan.  It does not yet have the ability to combine the 

multiple scans typically acquired from a patient during a scanning session. 

                                                           
13 http://nifti.nimh.nih.gov/nifti-1/ 
14 http://dicom.nema.org/standard.html 

Figure 4. An automatically labelled image, showing the most 

probable structure labels (according to the approach). 



Training data 
The training labels were derived from the MICCAI 2012 Grand Challenge and Workshop on Multi-Atlas 

Labeling15. These data were released under the Creative Commons Attribution-NonCommercial16 (CC BY-

NC) with no end date.  Users should credit the T1-weighted MRI scans as originating from the OASIS 

project 17  and the labeled data as "provided by Neuromorphometrics, Inc. 

(http://Neuromorphometrics.com/) under 

academic subscription".  These references 

should be included in all workshop and final 

publications.  The brain labelling protocol18 

was developed by Jason Tourville and Ruth 

Carpenter at Neuromorphometrics, 

following consultation with the 

neuroscience community.  Brain labels were 

provided for the scans of 30 subjects from 

the OASIS dataset (20 female).   

Each subject had a T1-weighted MRI scan of 

isotropic 1 mm resolution, which had been 

anonymized by removing the face before 

being released.  The dimensions of each 

volume ranged between 256×256×264 and 

256×256×264. 

                                                           
15 https://masi.vuse.vanderbilt.edu/workshop2012/index.php/Challenge_Details 
16 https://creativecommons.org/licenses/by-nc/3.0/ 
17 http://www.oasis-brains.org/ 
18 http://braincolor.mindboggle.info/docs/BrainCOLOR_cortical_parcellation_protocol.pdf 

Figure 6. One of the training scans, with the MRI (left) and manually defined labels (right). 

Figure 5. The distribution of ages of subjects in the training set, shown 

as a histogram. 

http://neuromorphometrics.com/


Labels are coded as defined in this table: 

  4   3rd Ventricle 
 11  4th Ventricle 
 23  Right Accumbens Area 
 30  Left Accumbens Area 
 31  Right Amygdala 
 32  Left Amygdala 
 35  Brain Stem 
 36  Right Caudate 
 37  Left Caudate 
 38  Right Cerebellum Exterior 
 39  Left Cerebellum Exterior 
 40  Right Cerebellum White Matter 
 41  Left Cerebellum White Matter 
 44  Right Cerebral White Matter 
 45  Left Cerebral White Matter 
 46  CSF 
 47  Right Hippocampus 
 48  Left Hippocampus 
 49  Right Inf Lat Vent 
 50  Left Inf Lat Vent 
 51  Right Lateral Ventricle 
 52  Left Lateral Ventricle 
 55  Right Pallidum 
 56  Left Pallidum 
 57  Right Putamen 
 58  Left Putamen 
 59  Right Thalamus Proper 
 60  Left Thalamus Proper 
 61  Right Ventral DC 
 62  Left Ventral DC 
 63  Right vessel 
 64  Left vessel 
 69  Optic Chiasm 
 71  Cerebellar Vermal Lobules I-V 
 72  Cerebellar Vermal Lobules VI-VII 
 73  Cerebellar Vermal Lobules VIII-X 
 75  Left Basal Forebrain 
 76  Right Basal Forebrain 
 100 Right anterior cingulate gyrus 
 101 Left anterior cingulate gyrus 
 102 Right anterior insula 
 103 Left anterior insula 
 104 Right anterior orbital gyrus 
 105 Left anterior orbital gyrus 
 106 Right angular gyrus 
 107 Left angular gyrus 
 108 Right calcarine cortex 
 109 Left calcarine cortex 
 112 Right central operculum 
 113 Left central operculum 
 114 Right cuneus 

 136 Right lateral orbital gyrus 

 137 Left lateral orbital gyrus 

 138 Right middle cingulate gyrus 

 139 Left middle cingulate gyrus 

 140 Right medial frontal cortex 
 141 Left medial frontal cortex 
 142 Right middle frontal gyrus 
 143 Left middle frontal gyrus 
 144 Right middle occipital gyrus 
 145 Left middle occipital gyrus 
 146 Right medial orbital gyrus 
 147 Left medial orbital gyrus 
 148 Right postcentral gyrus medial segment 
 149 Left postcentral gyrus medial segment 
 150 Right precentral gyrus medial segment 
 151 Left precentral gyrus medial segment 
 152 Right superior frontal gyrus medial segment 
 153 Left superior frontal gyrus medial segment 
 154 Right middle temporal gyrus 
 155 Left middle temporal gyrus 
 156 Right occipital pole 
 157 Left occipital pole 
 160 Right occipital fusiform gyrus 
 161 Left occipital fusiform gyrus 
 162 Right opercular part of the inferior frontal gyrus 
 163 Left opercular part of the inferior frontal gyrus 
 164 Right orbital part of the inferior frontal gyrus 
 165 Left orbital part of the inferior frontal gyrus 
 166 Right posterior cingulate gyrus 
 167 Left posterior cingulate gyrus 
 168 Right precuneus 
 169 Left precuneus 
 170 Right parahippocampal gyrus 
 171 Left parahippocampal gyrus 
 172 Right posterior insula 
 173 Left posterior insula 
 174 Right parietal operculum 
 175 Left parietal operculum 
 176 Right postcentral gyrus 
 177 Left postcentral gyrus 
 178 Right posterior orbital gyrus 
 179 Left posterior orbital gyrus 
 180 Right planum polare 
 181 Left planum polare 
 182 Right precentral gyrus 
 183 Left precentral gyrus 
 184 Right planum temporale 
 185 Left planum temporale 
 186 Right subcallosal area 
 187 Left subcallosal area 



 115 Left cuneus 
 116 Right entorhinal area 
 117 Left entorhinal area 
 118 Right frontal operculum 
 119 Left frontal operculum 
 120 Right frontal pole 
 121 Left frontal pole 
 122 Right fusiform gyrus 
 123 Left fusiform gyrus 
 124 Right gyrus rectus 
 125 Left gyrus rectus 
 128 Right inferior occipital gyrus 
 129 Left inferior occipital gyrus 
 132 Right inferior temporal gyrus 
 133 Left inferior temporal gyrus 
 134 Right lingual gyrus 
 135 Left lingual gyrus 

 190 Right superior frontal gyrus 
 191 Left superior frontal gyrus 
 192 Right supplementary motor cortex 
 193 Left supplementary motor cortex 
 194 Right supramarginal gyrus 
 195 Left supramarginal gyrus 
 196 Right superior occipital gyrus 
 197 Left superior occipital gyrus 
 198 Right superior parietal lobule 
 199 Left superior parietal lobule 
 200 Right superior temporal gyrus 
 201 Left superior temporal gyrus 
 202 Right temporal pole 
 203 Left temporal pole 
 204 Right triangular part of the inferior frontal gyrus 
 205 Left triangular part of the inferior frontal gyrus 
 206 Right transverse temporal gyrus 
 207 Left transverse temporal gyrus 

 

 


