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Some key concepts

supervised learning: The data comes with additional attributes
that we want to predict =⇒ classification and regression.

unsupervised learning: No target values.

Discover groups of similar examples within the data
(clustering).

Determine the distribution of data within the input space
(density estimation).

Project the data down to two or three dimensions for
visualization.
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General supervised learning setting

We have a training dataset of n observations, each consisting of an
input xi and a target yi .
Each input, xi , consists of a vector of p features.

D = {(xi , yi )|i = 1, .., n}

The aim is to predict the target for a new input x∗.
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Classification

Targets (y) are categorical
labels.
Train with D and use
result to make best guess
of y∗ given x∗.
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Probabilistic classification

Targets (y) are categorical
labels.
Train with D and compute
P(y∗ = k |x∗,D).

Probabilistic classification
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Regression

Targets (y) are continuous
real variables.
Train with D and compute
p(y∗|x∗,D).
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Many other settings

Multi-class classification when there are more than two
possible categories.

Ordinal regression for classification when there is some
ordering of the categories.
Chu, Wei, and Zoubin Ghahramani. “Gaussian processes for ordinal regression.” In Journal of Machine
Learning Research, pp. 1019-1041. 2005.

Multi-task learning when there are multiple targets to
predict, which may be related.

etc
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Multi-Class classification

Multinomial Logistic regression Theoretically optimal.
Expensive optimization.

One-versus-all classification [SVMs] Among several
hyperplane, choose the one with maximal margin.
=⇒ recommended

One-versus-one classification Vote across each pair of class.
Expensive, not optimal.
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Curse of dimensionality

Large p, small n.
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Nearest-neighbour classification
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Not nice
smooth
separations.

Lots of sharp
corners.

May be
improved with
K-nearest
neighbours.
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Behaviour changes in high-dimensions
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Behaviour changes in high-dimensions
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Occam’s razor

“Everything should be kept as simple as possible, but no
simpler.”

— Einstein (allegedly)

Complex models (with many estimated parameters) usually
explain training data better than simpler models.

Simpler models often generalise better to new data than nore
complex models.

Need to find the model with the optimal bias/variance tradeoff.
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Bayesian model selection

Real Bayesians don’t cross-validate (except when they need to).

P(M|D) =
p(D|M)P(M)

p(D)

The Bayes factor allows the plausibility of two models (M1 and
M2) to be compared:

K =
p(D|M1)

p(D|M2)
=

∫
θM1

p(D|θM1 ,M1)p(θM1 |M1)dθM1∫
θM2

p(D|θM2 ,M2)p(θM2 |M2)dθM2

This is usually too costly in practice, so approximations are used.
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Model selection

Some approximations/alternatives to the Bayesian approach:

Laplace approximations: find the MAP/ML solution and use
a Gaussian approximation to the parameter uncertainty.

Minimum Message Length (MML): an information
theoretic approach.

Minimum Description Length (MDL): an information
theoretic approach based on how well the model compresses
the data.

Akaike Information Criterion (AIC): −2 log p(D|θ) + 2k ,
where k is the number of estimated parameters.

Bayesian Information Criterion (BIC):
−2 log p(D|θ) + k log q, where q is the number of
observations.
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Model selection by nested cross-validation

Inner cross-validation loop used to evaluate model’s performance
on a pre-defined grid of parameters and retain the best one.

Safe, but costly.

Supported by some libraries (e.g. scikit-learn).

Some estimators have path model, hence allow faster
evaluation (e.g. LASSO).

Randomized techniques also exist, sometimes more efficient.

Caveat: Inner cross-validation loop 6= outer cross-validation
loop for parameter evaluation.
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Accuracy measures for regression

Root-mean squared error for point predictions.

Correlation coefficient for point predictions.

Log predictive probability can be used for probabilistic
predictions.

Expected loss/risk for point predictions for decision making.
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Accuracy measures for binary classification

Wikipedia contributors,
“Sensitivity and specificity,”
Wikipedia, The Free
Encyclopedia, http:
//en.wikipedia.org/w/index.

php?title=Sensitivity_and_

specificity&oldid=655245669

(accessed April 9, 2015).
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Accuracy measures from ROC curve

The Receiver operating
characteristic (ROC) curve is a
plot of true-positive rate
(sensitivity) versus false-positive
rate (1-specificity) over the full
range of possible thresholds.

The area under the curve
(AUC) is the integral under the
ROC curve.
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Log predictive probability

Some data are more easily classified than others.
Probabilistic classifiers provide a level of confidence for each
prediction.

p(y∗|x∗, y,X, θ)

Quality of predictions can be assessed using the test log
predictive probability:

1
m

m∑
i=1

log2 p(y∗i = ti |x∗i , y,X, θ)

After subtracting the baseline measure, this shows the average bits
of information given by the model.

Rasmussen & Williams. “Gaussian Processes for Machine Learning”, MIT Press (2006).
http://www.gaussianprocess.org/gpml/
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Overview of classification tools

Only one rule: No tool wins in all situations.
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Generative models for classification

P(y =k |x) =
P(y =k)p(x|y =k)∑
j P(y = j)p(x|y = j)

Ground truth
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Linear discriminant analysis

P(y =k |x) =
P(y =k)p(x|y =k)∑
j P(y = j)p(x|y = j)

Assumes:

P(x|y =k) = N (x|µk ,Σ)

p(x,y=0) = p(x|y=0) p(y=0)
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p(x,y=1) = p(x|y=1) p(y=1)
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p(x) = p(x,y=0) + p(x,y=1)
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p(y=0|x) = p(x,y=0)/p(x)
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Model has 2p + p(p − 1) parameters to estimate (two means and a
single covariance).
Number of observations is pn (size of inputs).
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Quadratic discriminant analysis

P(y =k |x) =
P(y =k)p(x|y =k)∑
j P(y = j)p(x|y = j)

Assumes different covariances:

P(x|y =k) = N (x|µk ,Σk)

p(x,y=0) = p(x|y=0) p(y=0)
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Model has 2p + 2p(p − 1) parameters to estimate (two means and
two covariances).
Number of observations is pn.
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Naive Bayes

P(y =k |x) =
P(y =k)p(x|y =k)∑
j P(y = j)p(x|y = j)

Assumes that features are
independent:

p(x|y =k) =
∏
i

p(xi |y =k)

p(x,y=0) = p(x|y=0) p(y=0)
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Model has variable number of parameters to estimate, but the
above example has 3p.
Number of observations is pn.
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Linear regression: maximum likelihood

A simple way to do regression is by:

f (x∗) = wTx∗

Assuming Gaussian noise on y, the ML estimate of w is by:

ŵ = (XTX)−1XTy

where

X =
(
x1 x2 . . . xn

)T
, and y =

(
y1 y2 . . . yn

)T
Model has p parameters to estimate.
Number of observations is n (number of targets).
Usually needs dimensionality reduction, with (eg) SVD.
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Linear regression: maximum posterior

We may have prior knowledge about various distributions:

p(y∗|x∗,w) =N (wTx∗, σ
2)

p(w) =N (0,Σ0)

Therefore,

p(w|y,X) =N (σ−2B−1XTy,B−1), where B = σ−2XTX + Σ−1
0

Maximum a posteriori (MAP) estimate of w is by:

ŵ = σ−2B−1XTy, where B = σ−2XTX + Σ−1
0

Bertrand Thirion and John Ashburner Pattern Recognition
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Linear regression: Bayesian

We may have prior knowledge about various distributions:

p(y∗|x∗,w) =N (wTx∗, σ
2)

p(w) =N (0,Σ0)

Therefore,

p(w|y,X) =N (σ−2B−1XTy,B−1), where B = σ−2XTX + Σ−1
0

Predictions are made by integrating out the uncertainty of the
weights, rather than estimating them:

p(y∗|x∗, y,X) =

∫
w
p(y∗|x∗,w)p(w|y,X)dw

=N (σ−2xT∗ B−1XTy, xT∗ B−1x∗)

Estimated parameters may be σ2, and parameters encoding Σ0.
Bertrand Thirion and John Ashburner Pattern Recognition
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Kernel methods: Woodbury matrix identity

B−1 =
(
σ−2XTX + Σ−1

0

)−1
invert a p × p matrix

=Σ0 −Σ0XT (Iσ2 + XΣ0XT )−1XΣ0 invert an n × n matrix

Wikipedia contributors, “Woodbury matrix identity,” Wikipedia, The Free Encyclopedia,
http://en.wikipedia.org/w/index.php?title=Woodbury_matrix_identity&oldid=638370219 (accessed April
1, 2015).

(A + UCV)−1 = A−1 − A−1U(C−1 + VA−1U)−1VA−1.
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Kernel methods: Gaussian process regression

The predicted distribution is:

p(y∗|x∗, y,X) =N (kTC−1y, c − kTC−1k)

where:

C =XΣ0XT + Iσ2

k =XΣ0x∗

c =xT∗ Σ0x∗ + σ2

Bertrand Thirion and John Ashburner Pattern Recognition
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Kernel methods: nonlinear methods

Sometimes, we want alternatives to C = XΣ0XT + Iσ2.
Nonlinearity is achieved by replacing the matrix K = XΣ0XT with
some function of the data that gives a positive definite matrix
encoding similarities.
eg

k(xi , xj) = θ1 + θ2xi · xj + θ3 exp

(
−
||xi − xj||2

2θ2
4

)
Hyper-parameters θ1 to θ4 can be optimised in a number of ways.
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Kernel methods: nonlinear methods

Non-linear methods are
useful in low-dimension to
adapt the shape of
decision boundaries.

For large p, small n problems, nonlinear methods do not seem to
help much.
Nonlinearity also reduces interpretability.
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Probabilistic discriminative models

Regression

Continuous targets:

y ∈ R

Usually assume a Gaussian
distribution:

p(y |x,w) =

N (f (x,w), σ2)

where σ2 is a variance.

Binary Classification

Categorical targets:

y ∈ {0, 1}

Usually assume a binomial
distribution:

p(y |x,w) =

σ(f (x,w))y (1− σ(f (x,w)))1−y

where σ is a squashing function.
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Probabilistic discriminative models

For binary classification:

p(y∗ = 1|x∗,w) = σ(f (x∗,w))

where σ is some squashing
function, eg:

Logistic sigmoid function
(inverse of Logit).

Normal CDF (inverse of
Probit).
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Probabilistic discriminative models

Integrating over the uncertainty
of the separating hyperplane
allows probabilistic predictions
further from the training data.
This is not usually done for
methods such as the
relevance-vector machine (RVM).

Rasmussen, Carl Edward, and Joaquin
Quinonero-Candela. “Healing the relevance vector
machine through augmentation.” In Proceedings of the
22nd international conference on Machine learning, pp.
689-696. ACM, 2005.

Simple Logistic Regression
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Probabilistic discriminative models

Making probabilistic predictions involves:

1 Computing the distribution of a latent variable corresponding
to the test data (cf regression):

p(f∗|x∗, y,X) =

∫
f
p(f∗|x∗, f)p(f|y,X)df

2 Using this distribution to give a probabilistic prediction:

P(y∗ = 1|x∗, y,X) =

∫
f∗

σ(f∗)p(f∗|x∗, y,X)df∗

Unfortunately, these integrals are analytically intractable, so
approximations are needed.
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Probabilistic discriminative models

Approximate methods for probabilistic classification include:

The Laplace Approximation (LA). Fastest, but less
accurate.

Expectation Propagation (EP). More accurate than the
Laplace approximation, but slightly slower.

MCMC methods. The “gold standard”, but very slow to
draw lots of random samples.

Nickisch, Hannes, and Carl Edward Rasmussen. “Approximations for Binary Gaussian Process Classification.”
Journal of Machine Learning Research 9 (2008): 2035-2078.
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Discriminative models for classification

t = σ(f (x∗))

where σ is some squashing
function, eg:

Logistic function (inverse of
Logit).

Normal CDF (inverse of
Probit).

Hinge loss (support vector
machines)
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Discriminative models for classification:
convexity

In practice, the hinge and logistic losses yield a convex estimation
problem and are preferred.

minw

n∑
i=1

L(yi ,Xi,w) + λR(w)

(M-estimators framework)

L is the loss function (hinge, logistic, quadratic...)

R is the regularizer (typically a norm on w)

λ > 0 balances the two terms

L and R convex → unique minimizer (SVMs, `2-logistic,
`1-logistic).
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Support vector classification

SVMs are reasonably fast,
accurate and easy to tune
(C = 103 is a good default, no
dramatic failure).
Multi-class: One-versus-one,
One-versus all.
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Ensemble learning

Combining predictions from weak learners.

Bootstrap aggregating (bagging)
Train several weak classifiers, with different models or
randomly drawn subsets of the data.
Average their predictions with equal weight.

Boosting
A family of approaches, where models are weighted according
to their accuracy.
AdaBoost is popular, but has problems with target noise.

Bayesian model averaging
Really a model selection method.
Relatively ineffective for combining models.

Bayesian model combination
Shows promise.

Monteith, et al. “Turning Bayesian model averaging into Bayesian model combination.” Neural Networks (IJCNN),
The 2011 International Joint Conference on. IEEE, 2011.
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Generalization

Overview of the main methods
Resources

Simple Generative Models: Naive Bayes, Linear Discriminant Analysis
Simple Discriminative Models: Gaussian Processes, Support-Vector Machines
Model Averaging

Boosting

Reduce sequentially the bias of the combined estimator.
Examples: AdaBoost, Gradient Tree Boosting, ...
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Overview of the main methods
Resources

Simple Generative Models: Naive Bayes, Linear Discriminant Analysis
Simple Discriminative Models: Gaussian Processes, Support-Vector Machines
Model Averaging

Bagging

Build several estimators independently and average their
predictions. Reduce the variance.
Examples: Bagging methods, Forests of randomized trees, ...
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Free Books

The Elements of Statistical Learning: Data Mining,
Inference, and Prediction Trevor Hastie, Robert Tibshirani,
Jerome Fried(2009)
http://statweb.stanford.edu/~tibs/ElemStatLearn/

An Introduction to Statistical Learning with Applications
in R Gareth James, Daniela Witten, Trevor Hastie and Robert
Tibshirani (2013)
http://www-bcf.usc.edu/%7Egareth/ISL/

Introduction to Machine Learning Amnon Shashua (2008)
http://arxiv.org/pdf/0904.3664.pdf
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Free Books

Bayesian Reasoning and Machine Learning David Barber
(2014)
http://www.cs.ucl.ac.uk/staff/d.barber/brml/

Gaussian Processes for Machine Learning Carl Edward
Rasmussen and Christopher K. I. Williams (2006)
http://www.gaussianprocess.org/gpml/chapters/

Information Theory, Inference, and Learning Algorithms
David J.C. MacKay (2003) http:

//www.inference.phy.cam.ac.uk/itila/book.html
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Web sites

Kernel Machines http://www.kernel-machines.org/

The Gaussian Processes Web Site includes links to
software. http://www.gaussianprocess.org/

SVM - Support Vector Machines includes links to software.
http://www.support-vector-machines.org/

Pascal Video Lectures
http://videolectures.net/pascal
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MATLAB tools

Spider Object orientated environment for machine learning in
MATLAB.

GPML Gaussian processes for supervised learning.

Pronto MATLAB ML tbx for neuroimaging. GUI. Implements
many ML concepts. Continuity with SPM.
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Python tools

Scikit-learn Generic ML in Python. Complete, high-quality,
well-documented, reference implementations.

Nilearn Python interface to Scikit-learn for Neuroimaging.
Easy-to-use/install. Good viz.

Pymvpa Python tool for ML. Advanced stuff (Pipelines,
Hyperalignment).
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