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Overview 

• Voxel-Based Morphometry 

• Morphometry in general 

• Volumetrics 

• VBM preprocessing followed by SPM 

• Tissue Segmentation 

• Diffeomorphic Registration 

• Longitudinal Registration 

• Multivariate Shape Models 

 



Measuring differences with MRI 

• What are the significant differences between 

populations of subjects? 

• What effects do various genes have on the brain? 

• What changes occur in the brain through 

development or aging? 

 

• A significant amount of the difference (measured 

with MRI) is anatomical. 

 



There are many ways to model differences. 

• Usually, we try to localise regions of difference. 
• Univariate models. 

• Using methods similar to SPM 

• Typically localising volumetric differences 

 

• Some anatomical differences can not be localised. 
• Need multivariate models. 

• Differences in terms of proportions among measurements. 

• Where would the difference between male and female 
faces be localised? 

 

• Need to select the best model of difference to use, 
before trying to fill in the details. 



Voxel-Based Morphometry 

• Based on comparing regional volumes of tissue. 

• Produce a map of statistically significant differences 

among populations of subjects. 

• e.g. compare a patient group with a control group. 

• or identify correlations with age, test-score etc. 

• The data are pre-processed to sensitise the tests to 

regional tissue volumes. 

• Usually grey or white matter. 

 

 

• Suitable for studying focal volumetric differences of 

grey matter. 

 



Volumetry 

T1-Weighted MRI Grey Matter 



Original Warped Template 



“Modulation” – change of variables. 

Deformation Field Jacobians determinants 

Encode relative volumes. 



Smoothing 

Before convolution Convolved with a circle Convolved with a Gaussian 

Each voxel after smoothing effectively 

becomes the result of applying a weighted 

region of interest (ROI). 



VBM Pre-processing 

in SPM12 
• Use Segment for 

characterising intensity 

distributions of tissue classes, 

and writing out “imported” 

images that Dartel can use. 

• Run Dartel to estimate all the 

deformations. 

• Dartel warping to generate 

smoothed, “modulated”, 

warped grey matter. 

• Statistics. 



SPM for group fMRI 
fMRI time-series 

Preprocessing spm T 

Image 

Group-wise 

statistics 

Spatially Normalised  

“Contrast” Image 

Spatially Normalised  

“Contrast” Image 

Spatially Normalised  

“Contrast” Image 

Preprocessing 

Preprocessing 

fMRI time-series 

fMRI time-series 

Analysis 



SPM for Anatomical MRI  
Anatomical MRI 

Preprocessing 

Group-wise 

statistics 

Spatially Normalised  

Grey Matter Image 

Spatially Normalised  

Grey Matter Image 

Spatially Normalised  

Grey Matter Image 

Preprocessing 

Preprocessing 

Anatomical MRI 

Anatomical MRI 



“Globals” for VBM 

• Shape is really a multivariate concept 

• Dependencies among different regions 

• SPM is mass univariate 

• Combining voxel-wise information with 

“global” integrated tissue volume provides 

a compromise 

• Either ANCOVA or proportional scaling. 

(ii) is globally thicker, but locally 

thinner than (i) – either of these 

effects may be of interest to us. 

 

• Total intracranial volume (TIV) integrates GM, WM and CSF, or attempts to 

measure the skull-volume directly 

• Can still identify global brain shrinkage (skull is fixed!) 

• Can give more powerful and/or more interpretable results 

• See also Pell et al (2009) doi:10.1016/j.neuroimage.2008.02.050  

 



Some Explanations of the Differences 

Thickening 
Thinning 

Folding 

Mis-classify 

Mis-classify 

Mis-register 

Mis-register 



Selected References 
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Overview 

• Voxel-Based Morphometry 

• Tissue Segmentation 

• Gaussian mixture model 

• Intensity non-uniformity correction 

• Deformed tissue probability maps 

• Diffeomorphic Registration 

• Longitudinal Registration 

• Multivariate Shape Models 

 

 



Segmentation 

• Segmentation in SPM8 also 
estimates a spatial 
transformation that can be 
used for spatially normalising 
images. 

 

• It uses a generative model, 
which involves: 
• Mixture of Gaussians (MOG) 

• Bias Correction Component 

• Warping (Non-linear 
Registration) Component 



Image Intensity Distributions 

(T1-weighted MRI) 



Mixture of Gaussians (MOG) 

• Classification is based on a Mixture of Gaussians model 

(MOG), which represents the intensity probability density by a 

number of Gaussian distributions. 

Image Intensity 

Frequency 



Belonging Probabilities 

Belonging 

probabilities are 

assigned by 

normalising to 

one. 



Modelling a Bias Field 

• A bias field is modelled as a linear combination 

of basis functions. 

Corrupted image Corrected image Bias Field 



Tissue Probability Maps 

Includes additional non-brain tissue 

classes (bone, and soft tissue) 



Deforming the Tissue Probability Maps 

* Tissue probability 

images are deformed 

so that they can be 

overlaid on top of the 

image to segment. 





Multi-spectral 



Limitations of the current model 

• Assumes that the brain consists of only the tissues 

modelled by the TPMs 

• No spatial knowledge of lesions (stroke, tumours, etc) 

• Prior probability model is based on healthy brains 

(IXI dataset from London). 

• Less accurate for subjects outside this population 

• Needs reasonable quality images to work with 

• No severe artefacts 

• Good separation of intensities 

• Reasonable initial alignment with TPMs. 



Selected References 
• Ashburner & Friston (2005). “Unified Segmentation”. NeuroImage 26:839-851. 

 



Overview 

• Morphometry 

• Voxel-Based Morphometry 

• Tissue Segmentation 

• Diffeomorphic Registration 

• Compositions 

• Objective function 

• Template creation 

• Longitudinal Registration 

• Multivariate Shape Models 

 

 

 



Diffeomorphic Deformations 



Composition 



Small 

Deformation 

Approximation 

The composition: 

 ϑ  φ 
Would be approximated with: 

Id +((ϑ-Id) + (φ-Id)) 

 
The inversion: 

 φ-1 

Would be approximated with: 

 Id -(φ-Id) 

Not good approximations for large deformations. 



Diffeomorphic Image Registration 

• Minimises two terms: 

1. A measure of distance between images 

2. A measure of the amount of distortion. 

 

 Because we can not simply add displacement 

fields, large deformations are generated by 

composing many small deformations. 

 

 The amount of distortion is computed by summing 

up the distortion measures from the small 

displacements. 



Effect of Different Distortion Measures 



Two diffeomorphic approaches in SPM 

Dartel. 

• Uses the same small 

deformation composed 

multiple times. 

• Faster than Geodesic 

Shooting. 

• Gives similar deformations 

to Geodesic Shooting. 

• Currently more additional 

utilities. 

Geodesic Shooting 

• Uses the optimal series of 

small deformations, which 

are composed together. 

• More mathematically correct 

than Dartel. 

• Gives nicer maps of volume 

change than Dartel. 

• Likely to replace Dartel in 

future. 



In case anyone asks for equations 

Dartel Geodesic Shooting 
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Dartel & GS Compared 

Dartel Geodesic Shooting 



Simultaneous registration of GM to GM 

and WM to WM 

Grey matter  

White matter 

Grey matter  

White matter 

Grey matter  

White matter 

Grey matter  

White matter 

Grey matter  

White matter 

Template 

Subject 1 

Subject 2 

Subject 3 

Subject 4 



Template 
Initial 

Average 

After a few 

iterations 

Final 

template 

Iteratively generated 

from 471 subjects 

 

Began with rigidly 

aligned tissue 

probability maps 

 

Used an inverse 

consistent 

formulation 



Grey matter 

average of 452 

subjects – affine 



Grey matter 

average of 471 

subjects - 

nonlinear 



Initial  

GM images 



Warped  

GM images 



 

471 Subject Average 



 

471 Subject Average 



 

471 Subject Average 



 

    Subject 1 



 

471 Subject Average 



 

    Subject 2 



 

471 Subject Average 



 

    Subject 3 



 

471 Subject Average 



Evaluations of 

nonlinear 

registration 

algorithms 
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Overview 

• Morphometry 

• Voxel-Based Morphometry 

• Tissue Segmentation 

• Diffeomorphic Registration 

• Longitudinal Registration 

• Multivariate Shape Models 

 



Longitudinal Registration 

 

• Unified model combines: 

• Nonlinear diffeomorphic 

registration. 

• Rigid-body registration. 

• Intensity inhomoheneity 

correction. 

 



Two Longitudinal Scans 

Two scans taken 6 years apart 

(after rigid registration). 

Average and difference images. 

Shape average and map of 

expansion/contraction 

(after nonlinear registration) 



Oasis Data 
OAS2 0002 

75 year old male, 

with MCI 

(MMSE=22, 

CDR=0.5). 

 
 



Oasis Data 
OAS2 0002 

75 year old male, 

with MCI 

(MMSE=22, 

CDR=0.5). 

 

 



Oasis Data 
OAS2 0048 

66 year old male, with MCI (MMSE=19, CDR=1). 

 
 



Oasis Data 
Data from first 82 subjects (OAS2 0001 to OAS2 0099). 

Computed average expansion/contraction rates for each subject. 

Warped all data to common anatomical space. 

Generated averages. 
 

 

Mean 

image 

intensity 

Control 

subjects 

Dementia 

subjects 



Selected References 
• Fox, Ridgway & Schott (2011). “Algorithms, atrophy and Alzheimer's disease: 

cautionary tales for clinical trials”. Neuroimage 57(1):15-18. 

• Ashburner & Ridgway (2013). “Symmetric diffeomorphic modelling of longitudinal 

structural MRI”. Frontiers in Neuroscience 6(197). 

 

 



Overview 

• Morphometry 

• Voxel-Based Morphometry 

• Tissue Segmentation 

• Diffeomorphic Registration 

• Longitudinal Registration 

• Multivariate Shape Models 

• Multivariate nature of shape 

• “Scalar momentum” 

• Some evaluations 

 



Multivariate shape models 

• In theory, assumptions about structural covariance 

among brain regions are more biologically plausible. 

 Form determined (in part) by spatio-temporal modes of 

gene expression. 

• Empirical evidence in (eg) 

 Mechelli, Friston, Frackowiak & Price. Structural 

covariance in the human cortex. Journal of Neuroscience 

25(36):8303-8310 (2005). 

 

• We should work with the most accurate modelling 

assumptions available. 

• If a model is accurate, it will make accurate predictions. 

 



Argument from authority I 

 “The morphologist, when comparing one organism with 

another, describes the differences between them point by 

point, and “character” by “character”.  If he is from time to 

time constrained to admit the existence of “correlation” 

between characters, yet all the while he recognises this fact 

of correlation somewhat vaguely, as a phenomenon due to 

causes which, except in rare instances, he cannot hope to 

trace ; and he falls readily into the habit of thinking and 

talking of evolution as though it had proceeded on the lines of 

his own descriptions, point by point, and character by 

character.” 

 D’Arcy Thompson (Growth and Form, 1917). 



Argument from authority II 

“This unhappy result can be traced to the piecemeal tests which 

have hitherto been used. A bone or a tooth is a unit ; it is not 

a discrete assembly of independent measurements.” 

 Jacob Bronowski & W.M. Long (Nature, 1951). 

 

 “The right statistical method must treat the set of variates as a 

single coherent matrix ; and this is, in fact, the technique of 

multivariate analysis.” 

 Jacob Bronowski & W.M. Long (Nature, 1951). 



Some 2D Shapes 



Shapes aligned to their average 



These were the deformations for that 



and these are the Jacobian determinants 



Fisher’s Linear Discriminant Analysis 

• A multivariate 

model. 

• Special case of 

canonical 

variates analysis. 

• A generative 

model. 



Other linear discrimination approaches 

• Can also use 

discriminative models. 

 

• Anatomical differences 

are encoded by the 

vector orthogonal to the 

separating hyper-plane. 

 

• The most accurate 

model of difference is 

the one that best 

separates the groups. 



Regression 

• For predicting a continuous variable 

 



Weight Map 

 

For linear classifiers, predictions are made by: 

 
 

 

where: y is the prediction 

  x1, x2, x3 etc are voxels in the image to classify 

  a1, a2, a3 etc are voxels in a weight map 

  b is a constant offset. 

 

The weight map can be visualised 



Maps 

Multivariate weight map Simple T statistic image 

Prettier – but 

does not 

accurately 

characterise the 

effects of age. 



“Scalar Momentum” 
• For diffeomorphic registration by least-squares 

matching, the warps (φ) are encoded by an initial 

velocity (v(0)): 

Template 

Warped 

individual 

Gradient of template 

Jacobian 

determinants 

Initial Momentum 



The 2D shapes (again) 



“Scalar momentum”  



The 2D shapes (yet again) 



Reconstructed from scalar momentum and template. 



“Scalar momentum” – encodes the original shapes 





IXI Data 

Original Images Rigidly Aligned Grey Matter 



VBM-type Features 

Warped Grey Matter “Modulated” Warped GM 



Volumetric Measures from Deformation Fields 

Jacobian determinants Initial Velocity Divergence 



Scalar Momentum 

1st Component 2nd Component 



Age Prediction - Best Result 



Age Prediction – Comparison Among Features 



Age Prediction – Model Log Likelihoods 

 

Differences > 4.6 

indicate “decisive” 

evidence in favour 

of one approach 

over another. 

 



Sex Prediction – Best Result  



Sex Prediction – Best Result  



Sex Prediction – Comparison Among Features 



Sex Prediction – Model Log Likelihoods 

 

Differences > 4.6 

indicate “decisive” 

evidence in favour 

of one approach 

over another. 
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