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Summary: Many studies of brain function with positron 
emission tomography (PET) involve the interpretation of 
a subtracted PET image, usually the difference between 
two images under baseline and stimulation conditions. 
The purpose of these studies is to see which areas of the 
brain are activated by the stimulation condition. In many 
cognitive studies, the activation is so slight that the ex­
periment must be repeated on several subjects and the 
subtracted images are averaged to improve the signal-to­
noise ratio. The averaged image is then standardized to 
have unit variance and then searched for local maxima. 
The main problem facing investigators is which of these 
local maxima are statistically significant. We describe a 
simple method for determining an approximate p value 
for the global maximum based on the theory of Gaussian 

An increasingly important application of positron 
emission tomography (PET) involves the measure­
ment of regional CBF during the performance of 
various sensorimotor or cognitive tasks . Regional 
changes in CBF between two tasks reflect the mo­
bilization of functional units specific to the new 
task. For subtle cognitive tasks , these changes are 
small (�10%) and are usually not apparent from a 
single subtraction study. The signal-to-noise ratio 
can be improved with an image-averaging proce­
dure that requires the geometrical scaling and re­
sampling of PET image data from each of a number 
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random fields. The p value is proportional to the volume 
searched divided by the product of the full widths at half­
maximum of the image reconstruction process or number 
of resolution elements. Rather than working with local 
maxima, our method focuses on the Euler characteristic 
of the set of voxels with a value larger than a given thresh­
old. The Euler characteristic depends only on the topol­
ogy of the regions of high activation, irrespective of their 
shape. For large threshold values this is approximately 
the same as the number of isolated regions of activation 
above the threshold. We can thus not only determine if 
any activation has taken place, but we can also estimate 
how many isolated regions of activation are present. Key 
Words: Activation studies-Cerebral blood flow­
Positron emission tomography-Statistical analysis. 

of subjects , or repeated experiments in a single sub­
ject , onto a standardized stereotaxic coordinate 
framework (Fox et al. , 1985, 1988; Talairach and 
Tournoux, 1988; Fox and Mintun, 1989) . Using this 
transformation on each of a set of typically 8-12 
change images ,  one can generate a three-dimension­
al (3D) composite dataset where each voxel con­
tains a statistic for the change in CBF at that brain 
location when measured across the repeated exper­
iments. This may be simply the mean relative 
change in CBF or a measure that includes informa­
tion about the variance across subjects (repeats) 
such as a t statistic . If each voxel were an indepen­
dent measure , such a dataset would contain 105_106 

samples ,  and even at a threshold set to correspond 
to p = 0.01 for a significant CBF change , there 
would be 103-104 voxels exceeding the threshold by 
chance alone . Hence , a Bonferroni-type correction 
for multiple comparisons would raise the signifi­
cance threshold to prohibitive levels. In reality , ad­
jacent voxels are highly correlated by the initial im­
age reconstruction process .  This spatial coherence 
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i s  related to the full  width at half- maximum 
(FWHM) of the reconstruction filter, which is typ­
ically set at 1 5-20 mm (this value is set higher than 
the intrinsic scanner resolution of 5-1 0  mm to over­
come the residual anatomical variability among sub­
jects persisting after stereotaxic transformation) . 
Thus , the appropriate sampling element for such 
datasets is the "resolution element" (reseI) , which 
can be regarded as a block of voxels with dimen­
sions equal to the effective FWHM of the recon­
structed image in each dimension . This elemental 
volume is a physical entity and the number of resels 
in a complete dataset is fixed, unlike the number of 
voxels ,  which is  set arbitrarily by choice of voxel 
dimensions . However, since a resel volume can be 
centered at any voxel , the search must proceed 
voxel by voxel . Hence , the analysis of such large 
datasets for the occurrence of significant CBF 
changes requires statistical methods that recognize 
the inherent spatial correlation among adjacent vox­
els and allow a means of estimating the number of 
truly independent samples present within the sam­
pled volume . This article addresses the question of 
identifying significant changes in spatially corre­
lated data using the concept of 3D Gaussian random 
fields .  The theory is presented and tested both by 
simulation and by analysis of real PET data taken 
from a study of cerebral activation in response to a 
painful heat stimulus and a cognitive study of sin­
gle-word recognition . 

THEORY 

t statistic image 
Suppose that an activation study consisted of n 

subjects , each scanned under two conditions de­
noted by A and B. We are interested in detecting 
activation due to the task condition B by subtracting 
the image under the rest condition A. 

Let A;Cx,y,z) and B;Cx,y,z) be the CBF of subject 
i, i = 1 ,  . . .  , n, at voxels with coordinates (x,y,z), 
under the two conditions A and B. These were stan­
dardized to have the same mean and then sub­
tracted to give normalized differences 4l;Cx ,y, z), i. e .  , 
.:lCBF at (x,y,z): 

4li(x,y,z) = [B;Cx,y,z)IBi - A ;Cx,y,z)IAi] x 100 

where Bi and Ai are the average CBF over all in­
tracerebral voxels in conditions B and A, respec­
tively . The average subtracted image and its vari­
ance were calculated as 

n 

M(x,y ,z) = � 4li(x,y ,z)ln(x ,y , Z) 
i=1 

n 

S2(x ,y , Z) = � [.:li(X,y , Z) - M(x,y ,z)fl 
i= 1 
[n(x,y ,z) - 1)] 

where n(x,y,z) is the number of subjects with a 
blood flow value at (x,y,z), 0 � n(x,y,Z) � n. The 
first summation was carried out over all voxels with 
n(x,y,z) > 0, and the second over all voxels with 
n(x,y,Z) > 1 .  In our studies ,  inspection of S(x,y,z) 
revealed no obvious spatial trends ,  such as higher 
values in the center of the brain , nor was it mark­
edly dependent on the average baseline CBF value 
or 4lCBF (see Methods) , so it was pooled over all 
intracranial voxels with n(x,y,z) > 1 to obtain the 
average variance 

52 = � [n(x ,y ,z) - l ]S2(x ,y ,z)l� [n(x ,y ,z) - 1] 
X,Y,Z X,Y,Z 

The t statistic image , based on the pooled standard 
deviation, was then calculated as 

T(x,y,z) = M(x,y,z)/{S/[n(x,y,z)] lIz} 

Note that the standard deviation S is pooled over a 
very large number of voxels so the effective degrees 
of freedom of T(x,y,z) is very large . The effective 
degrees of freedom will depend on the correlation 
structure of the voxels . If we can find N voxels 
sufficiently separated so that they are independent, 
then the effective degrees of freedom is at least (n 
- 1)N. Typically N = 300 (see later) and n = 10 ,  so 
the effective degrees of freedom is certainly large 
enough to approximate the distribution of T(x,y,z) 
by a standard Gaussian rather than a t distribution .  

An alternative approach is  to  divide by the voxel 
standard deviation rather than the pooled standard 
deviation to obtain a t statistic image with n(x,y,z) 
- 1 degrees of freedom: 

Tn(x,y,z) = M(x,y ,z)/{S(x,y ,z)/[n(x,y ,Z)] lh} 

The advantage of dividing by the pooled standard 
deviation rather than the voxel standard deviation is 
that T(x,y,z) is proportional to the mean M(x,y,z), 
and so regions with high T(x,y,z) correspond to re­
gions of high mean activation .  Second, the larger 
degrees of freedom of the pooled standard deviation 
decreases the variability of T(x,y,z), which results 
in increased power at detecting activation (see 
Methods) . A compromise between the two t statis­
tics is to divide by a smoothed standard deviation ; 
in this sense S is the smoothest possible standard 
deviation and S(x,y,z) is unsmoothed . This appears 
to present more theoretical difficulties than either of 
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the two extremes and so it will not be pursued in 
this report . 

Maximum t statistic T max and its p value 

The statistical significance of regions of activa­
tion in the subtracted image volume was assessed 
by comparing the t statistic image T(x,y,z) to a level 
a (a = 0. 05, say) critical or threshold value ta' If the 
t statistic was larger than ta, then activation at the 
point (x,y,z) was declared statistically significant at 
level a. The critical value ta was calculated so that 
if no activation was present , then the maximum t 
statistic Tmax, searched over a given brain region of 
volume V, would exceed ta with a probability of 
�a. Thus , if no activation is present, this procedure 
will produce a false-positive with a probability of a. 

The key quantity is the probability that Tmax > t 
for some fixed threshold t. The p values based on 
the standard normal distribution are obviously far 
too small since no correction is made for the large 
number of voxels searched to obtain the maximum . 
On the other hand , a Bonferroni correction is much 
too conservative since adjacent voxels are so highly 
correlated. A corrected p value was calculated us­
ing results from the theory of Gaussian random 
fields (Adler, 1981; for a nontechnical review of the 
major results , see Hasofer, 1978). It was assumed 
that the t statistic image T(x,y,z), when no activa­
tion was present , could be modeled by a smooth 
homogeneous Gaussian random field with zero ex­
pectation and unit variance . One of the conditions is 
that the distribution of T(x,y,z) must be Gaussian at 
each voxel . The central limit theorem will ensure 
that the distribution of the numerator M(x,y,z) is 
close to Gaussian since it is  the average of n images .  
Because the standard deviation S i s  pooled over a 
very large number of voxels ,  its effective degrees of 
freedom is very large . Hence , the null distribution 
of T(x,y,z) is well approximated by a standard Gaus­
sian distribution. A condition for homogeneity is 
that the point response function,  in particular the 
FWHM , should be the same at every voxel.  

The main result , originally due to Adler and Ha­
sofer (1976), is that if t is large , then the probability 
that the maximum of such a random field exceeds t 
is approximately 

var(��) 
A = Cov --(aT aT) ax' ay 

Cov --(aT aT) ax' az 

(01' 01') Cov ax' ay 

varG�) 
Cov - -(01' aT) oy' oz 

(aT 01') Cov ax' az 

Cov --(aT 01') oy' az 

var(��) 
Thus ,  as the search volume increases or the image 
becomes rougher, then the p value , and hence the 
critical values based on it , must increase .  Note that 
Eq. 1 is not a probability for all values of t, since it 
can exceed 1 or even take negative values .  In prac­
tice (see Methods) , it appears to be a satisfactory 
approximation if the p value given by Eq . 1 is <0. 1  
and the number of resels R is >30 (see Eq.  5). 

Some caution should be exercised in using the 
result 1 since it is sensitive to the assumption of a 
Gaussian distribution in the extreme tails of the dis­
tribution .  Even though the central limit theorem 
may ensure an adequate approximate Gaussian dis­
tribution over the bulk of the range , this may not be 
the case in the tails ,  unless the individual images are 
already close to a Gaussian distribution . 

Relationship of IAI to FWHMs and number of resels 

The main computational task is to estimate A. 
This can be done by taking numerical derivatives 
(details are given in Methods) . However, we can 
derive a simple expression for A if we make the 
assumption that the image under no activation can 
be generated by convolving a white noise Gaussian 
random field with a kernel or point response func­
tion k(x), where x denotes the vector (X,y,Z)T, and 
superscript T denotes transpose . Then it can be 
shown (Adler,  1981) that the variance matrix of the 
vector of partial derivatives is 

ak(x) ok(x) 
A = J - - dxJ J 12(x)dx ax oxT 

Applying this to a Gaussian kernel of the form k(x) 
ex exp[ - x TI -lxJ2] gives A = I-I 12. If the principal 
axes of I coincide with the x, y, and z directions ,  
then the off-diagonal elements o f  A are O. If 
FWHMx' FWHMy, and FWHMz are the full widths 
at half-maximum in the x, y, and z directions ,  then 

P(Tmax> t) = VIAllh(2'TT)-2(t2 - 1)e-l/zt 2 (1) A = 

provided that the search volume V is large relative 
to the smoothness of the image . The matrix A is the 
3 x 3 variance matrix of the partial derivatives of 
the random field in each of the three variables x, y, 
and z and measures the roughness of the image 
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o 
I/FWHM; 

o 
(4 loge 2) 

(2) 
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INh = (FWHMXFWHMyFWHMz)-1 (4 loge 2)3f2 
(3) 

In practice, it was found (see Methods) that the 
accuracy of Eqs. 2 and 3 could be greatly improved 
by taking into account the increased smoothness of 
the image in the z direction caused by linear inter­
polation and resampling of the 15 planes of the PET 
camera to produce the 80 planes of the image. The 
result is as follows. Suppose that the separation of 
the PET planes is d. The image is then resampled at 
smaller voxels of size de � d by linear interpolation. 
If the point response function of the original image 
is Gaussian, then the effective FWHM of the 
resampled image increases to 

FWHMzc = d(4 loge 2)'12[1 - (1 - p)/3]'/2[2(1 - p) 
- (dc/d)(3 - 4p + p4)/3r 1/2 (4) 

where p = exp[ - (2 loge 2)d2/FWHM;J is the cor­
relation between planes separated by a distance d 
(see Fig. 1 and Appendix for a proof). In our exam­
ple FWHMz = 6 mm, the plane separation is d = 

6.5 mm, and the size of the resampled voxels is de 
= 1.5 mm, which gives an effective FWHM in the 
Z direction of FWHMzc = 7.6 mm. No such correc­
tion was necessary to the FWHMs in the x and y 
directions since the FWHMs were large relative to 
the voxel sizes. 

Let R = V/(FWHMx x FWHMv x FWHMzJ, 
the search volume divided by the product of the full 
widths at half-maximum, be a measure of the num-

FIG. 1. The corrected full width 
at half-maximum (FWHM) in the 
z direction FWHMzc due to l in­
ear interpolat i on and resam­
piing between planes of the 
positron emission tomography 
(PET) camera. The graph plots 
FWHMzeld agai nst FWHMzld, 
where FWHMz is the nominal 
FWHM of the PET camera in the 
z direction and d is the separa­
tion between planes of the PET 
camera, for fixed values of dc/d, 
where de is the voxel size of the 
resampled image. The values of 
dJd are 1 .0, 0.5, 0.25, and 0.0 
(solid l ines, from top to bottom, 
respectively). For comparison, a 
diagonal l ine has been added 
(dashed l ine). Note that FWHMzc 
> FWHMz, so that the interpo­
lated image is smoother than 
the original image, particularly 
if FWHMjd is small and dJd is  
close to 1 .  

voxel size/plane separation 
-c 
� 1.0· ____ � 

� 
a o.�=======:::::::: o - 2g= 0.0 

o 

a 

ber of resels in the search volume. Combining Eqs. 
1 and 3, the approximate p value can be simply 
stated as 

Based on Eq. 5, a table of approximate critical val­
ues ta of T max' chosen so that P(T max> ta) = a, is 
given in Table 1. For example, if the number of 
resels is 500, then the level a = 0.05 critical value of 
the maximum t statistic is �4.47. 

Number of isolated regions of activation 

Our main result (Eq. 1) on the p value of T max was 
first derived rigorously by Adler and Hasofer (1976) 
using the concept of the Euler characteristic Xt of 
the excursion set of T(x,y,z) above a threshold t. 
The excursion set is simply the set of voxels for 
which T(x,y,z) > t, that is, the region of activation 
greater than t. The precise definition of the Euler 
characteristic involves the curvature of the bound­
ary of the excursion set at tangent planes (see 
Adler, 1981, p. 89). Essentially it counts the number 
of isolated parts of the excursion set, irrespective of 
their shape, minus the number of "holes." For ex­
ample, the Euler characteristic of a solid ball is 1, of 
a doughnut O. If no holes are present, then it counts 
the number of isolated regions of activation in an 
image above the threshold t. An illustration of the 
Euler characteristic of the excursion set of a two-

2 

FWHM/plane separation 
3 4 
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TABLE 1. Values of threshold tfor controlling p value ofTmax• a = P(Tmax > t), from Eq. 5 and expected number 
of false-positive isolated regions of activation E(xJ from Eq. 6 for values of R, number of resolution elements in 

search volume 

p value of T max 

R IX = 0.01 IX = 0.05 IX = 0. 1 0  

1 00 4.47 4.05 3.84 
200 4.64 4.24 4.05 
300 4.74 4.34 4. 1 6  
400 4.8 1  4.42 4.24 
500 4.86 4.47 4.30 

1 ,000 5.0 1 4.64 4.47 
2 ,000 5. 1 6  4.8 1 4.64 

dimensional image is shown in Fig. 2(a and b). As 
the threshold level t increases, Adler shows that the 
holes tend to disappear and we are left with isolated 
regions, each of which contains just one local max­
imum (Fig. 2c). Thus, for large t, the presence of 
holes is a rare occurrence and the Euler character­
istic approaches the number of local maxima. For 
even larger t near the global maximum T max' the 
Euler characteristic takes the value 0 if T max < t and 
1 if T max > t (Fig. 2d). Since P(T max> t) = P(Xt � 
1) = E(Xt) as P(Xt > 1) � 0 for t � 00 (Hasofer, 
1978), then the expected Euler characteristic ap­
proximates the p value of T max' 

The importance of the Euler characteristic, as op­
posed to the number of local maxima, is that it is 
more amenable to statistical analysis. There is no 
known simple result for the expected number of 
local maxima greater than t. On the other hand, 
Adler (1981, p. 111) shows that for any threshold t, 
the expected Euler characteristic of the excursion 
set of a zero expectation, unit variance stationary 
Gaussian random field is exactly 

E(Xt) = VIAI1h(21T)-2(t2 - l)e-112t 2 
2 = R(4 10ge 2fI2(21T)-2(t2 - l)e-1ht (6) 

which leads directly to the approximate p value of 
Tmax (Eq. 1). Moreover, Adler (1981, p. 162) shows 
that for large It I , Xl has a Poisson distribution and so 
its standard deviation is approximately [E(XIWh. Ta­
ble 1 also gives some values of t chosen so that the 
expected Euler characteristic (Eq. 6) takes values 1, 
2, and 5 for several values of the number of resels 
R. For example, if the number of resels is 500, then 
we expect approximately two false-positive isolated 
regions of activation above the t = 3.38 threshold. 

Our proposed estimator of the number of isolated 
regions of activation is the Euler characteristic of 
the t statistic image thresholded at a level u critical 
value tex for a suitably small value of u, say, 0.05. 
This should pick out the isolated peaks of activation 
in the signal, while protecting us against finding any 
false-positive regions in the unactivated (noise only) 

J Cereb Blood Flow Metab, Vol. 12, No.6, 1992 

Regions of activation 

E(X,) 
= I E(X,) = 2 E(X,) = 5 

3.02 2.68 1 .9 1  
3.30 3.02 2.55 
3.45 3. 1 9  2.78 
3.55 3.30 2.92 
3.62 3.38 3.02 
3.84 3.62 3.30 
4.05 3.84 3.55 

parts of the image. It is similar to the sequentially 
rejective multiple test procedure proposed by Holm 
(1979). A more complete picture can be obtained 
from a plot of the observed Xl and E(Xt) against t 
(see Results). 

Evaluation of Euler characteristic 

For a random field evaluated over a lattice of 
voxels, Adler (1981, p. 121) shows how the Euler 
characteristic can be approximated using only the 
local properties of the excursion set over adjacent 
voxels. Unfortunately, if the excursion set touches 
the boundary of the search volume, the definition 
depends on the direction in which the voxels are 
scanned, so we have modified the definition to av­
erage over all the eight directions in which adjacent 
voxels can be scanned. This does not effect its ex­
pectation (Eq. 6). 

Our definition is as follows: Let us represent all 
voxels by points at their centers. Consider a 2 x 2 
x 2 "cube" of eight adjacent voxels centered at 
(x, y, z) , (x + 8x, y, z) , (x, y + 8y, z) , (x + 8x, y + 
8y, z) , . . .  , (x + 8x, y + 8y, z + 8z) , all of which are 
inside the search volume (Fig. 2f). Let P be the 
number of vertices of the cube inside the excursion 
set, that is, with T(x, y, z) > t (0 :,,; P :,,; 8). Let E be 
the number of edges joining adjacent vertices, both 
of which are in the excursion set (0 :,,; E :,,; 12). Let 
F be the number of faces all of whose vertices are in 
the excursion set (0 :,,; F :,,; 6). Let C be the number 
of cubes all of whose vertices are in the excursion 
set, that is, C = 1 if all vertices are in the excursion 
set and 0 otherwise. The contribution of this cube to 
the Euler characteristic is e = PI8 - EI4 + FI2 -
C. The Euler characteristic Xt is then the sum of e 
over all such cubes in the search volume. On a his­
torical note, this definition is related to the famous 
formula discovered by Euler in 1752: If P, E, and F 
are the number of vertices, edges, and faces of any 
polyhedron on a sphere, then P - E + F = 2, 
which turns out to be the Euler characteristic of a 
hollow sphere. 
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(a) 0 = local max; x = global max (b) t = 3.2, euler characteristic = 2 (c) t = 4.0, euler characteristic = 4 

(d) t = 5.6, euler characteristic = 1 (e) Plot of euler characteristic (f) Calculation of euler characteristic 

.!.l Ui 
C\I 

• T(x,Y,z)<t 0 T(x,Y,z»t 

'1 : h--..-'-4.l--��*-��1...-1 ..c:: <.> 
.9!� 

:::> Q) 

'f e=P/8-E/4+F/2-C=-1/8 
�-��-�-�-��� 

o 2 3 4 5 6 
threshold, t 

FIG. 2. The Euler characteristic of an artif icial image in two dimensions. a: The image, with color bar in (e). Local maxima are 
indicated by (0) and the global maximum is indicated by (x). b: Excursion set (white areas) above a threshold t = 3.2. Since the 
excursion set does not touch the boundary, the Euler characteristic counts the number of isolated regions minus the number of 
"holes," giving Xt = 2. c: As the threshold is increased to t = 4.0, the holes disappear and the Euler characteristic counts the 
number of local maxima, giving Xt = 4. d: At even higher levels t = 5,6, the Euler characteristic takes the value 1 if the global 
maximum exceeds t and 0 otherwise, giving Xt = 1 .  e: A plot of Euler characteristic against t. Note that for t < 2.7, the excursion 
set touches the boundary and the Euler characteristic can take noninteger values. f: A 2 x 2 x 2 "cube" of eight adjacent voxels 
in the search volume of a three-dimensional image, to illustrate the calculation of the Euler characteristic. Voxels below the 
threshold t are shaded and those above are white. The contribution of this cube to the Euler characteristic is e = - Va. 

It can be shown that provided the excursion set 
contains no holes and does not touch the boundary 
of the search volume, then Xl defined in this way 
counts the number of isolated regions. Note that for 
the purpose of this definition, two voxels are con­
nected if they are joined by an edge of the lattice of 
voxels, such as (x,y,z) and (x + &x,y,z), but voxels 
separated by a diagonal such as (x,y,z) and (x + 
8x,y + &y,z) are not connected. However, if an iso­
lated region of the excursion set with no holes 
touches the boundary (Fig. 2e; t < 2. 7) , then its 
contribution to Xl decreases below 1. Its value de­
pends on the shape of the boundary where the ex­
cursion set touches. If the boundary is flat, then XI 
is 1/2; if it is convex, then XI lies between 0 and 1/2; if 
it is concave, then XI lies between 1/2 and 1. Thus, 

regions in the outer cortex, which lie near the 
boundary of the search volume, may have lower 
than expected XI if the threshold is low. 

Even when no activation is present, the probabil­
ity that the excursion set touches the boundary of 
the search volume is quite high. A rough idea can be 
worked out using the theory of two-dimensional 
Gaussian fields (see next section). If the correlation 
structure is isotropic (all FWHMs equal) and a 
spherical search volume contains R = 500 resels, 
the expected number of isolated regions greater 
than t = 3. 62 is 1 (from Table 1), whereas the prob­
ability that any of these regions touches the bound­
ary is �0.28. This decreases to 0.011 at the 5% crit­
ical value t = 4 . 47. To overcome this, we suggest 
using a generous search volume to make sure that 
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potential regions of activation do not touch the 
boundary. 

Finally, it should be noted that for threshold val­
ues near zero, the Euler characteristic usually takes 
negative values because the holes outnumber the 
isolated regions. In fact, from Eq. 6 it can be seen 
that the expected Euler characteristic is always neg­
ative if It I < 1. The interpretation of the Euler char­
acteristic at these thresholds seems difficult, but it 
is useful for verifying the agreement between the 
observed and expected Euler characteristic from 
Eq. 6. 

Maxima in a slice 
Adler and Hasofer (1976) and Adler (1981, p. 111) 

give a more general result for the p value of the 
maximum of a Gaussian random field in any number 
of dimensions. Their two-dimensional result can be 
used to find the p value of the slice maximum l!ax, 
say, 

P(l!ax> t) = RS(4 10ge 2)(21T)-3hte-li2t 2 

where RS is the number of resels in the search area, 
defined as the search area divided by the product of 
the two FWHMs in the slice. Friston et al. (1991) 
used heuristic arguments to derive a slightly differ­
ent result (formula 2) for the p value of a slice max­
imum, which in our notation is 

P �l!ax > t) = RS(8 loge 2)/[321Ter p (t)] 

where p (t) is the probability that a standard normal 
variate exceeds t. Using the approximation p(t) = 

(21T)- lhexp( - V2t2)lt for large t, we obtain 

P�l!ax > t) = (1T/4)RS(4 loge 2)(21T)-3/2te-lht2 

= (1T/4)P(l!ax > t) 

Although the p value of Friston et al. (1991) in for­
mula 2 is technically incorrect, since it differs from 
the result of Adler and Hasofer (1976) by a factor of 
�1T/4 = 0.79, it seems to be satisfactorily accurate 
in practice, as confirmed by the simulation results 
reported in Friston et al. (1991). 

t statistic image Tn(x,y,z) based on voxel 

standard deviation 
The above theory may be used to find approxi­

mate expressions for the p value of the maximum 
Tn max of a non-Gaussian random field such as 
Tn(x,y,z)  by transforming it to a Gaussian random 
v a r i a b l e  a t  e a c h  p o i n t .  L e t  G ( x  , y , z )  = 

P -l{pn[Tix,y,z)]} where Pn(t) is the probability that 
a t random variable with (n - 1) degrees of freedom 
exceeds t and p(g) is the probability that a standard 
Gaussian random variable exceeds g. We can jus­
tify p values like Eqs. 1 and 5 by appealing to the 
results of Vanmarcke (1983) for non-Gaussian ran-
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dom fields, provided that we correct for changes in 
the roughness A of the field. The appropriate cor­
rection factor A.n is derived in Appendix. The result­
ing approximate p value of the maximum Gmax = 

P - l [Pn(Tn max)] searched over a volume V contain­
ing R resels is 

P(Gmax> g) = A.�2VIAI3h(21T)-2(g - 1)e-
2
1/2g2 

= A.�2R( 4 loge 2)3h(21T) -2(g2 - 1)e -lhg (7) 

This result holds for only n � 4 subjects. Some 
values of A.n for n = 4, 5, . . .  , 20 are 1.757, 1.434, 
1.304 , 1.233, 1.189, 1.159, 1.137, 1.121, 1.108, 
1.097, 1.089, 1.082, 1.075, 1.070, 1.066, 1.061, and 
1.058. Note that A.n decreases to 1 as n increases, so 
that the image G(x ,y ,z) is slightly rougher than 
T(x,y,z). There are no theoretical results for the ex­
pected Euler characteristic of excursion sets of 
Tn(x,y,z) or G(x,y,z). 

Eq. 7 should be used with much more caution 
than 1 or 5 because it is based on far more assump­
tions about the distribution of the images. These 
assumptions are that each subject's subtracted im­
age a;{x,y,z) is a stationary Gaussian random field 
with the same standard deviation IT. In particular, 
Eq. 7 is highly sensitive to the assumption of a 
Gaussian distribution for each subject's subtracted 
image. Eqs. 1 and 5 are more robust since the cen­
tral limit theorem implies that T(x,y,z) will be ap­
proximately Gaussian even if the subject's sub­
tracted images are not, and the Eqs. 1 and 5 will 
remain valid (though perhaps less sensitive) even if 
the subject's standard deviations differ between 
subjects. Exact theoretical results that supercede 
Eq. 7 found for the voxel-based t statistic image 
(see addendum). 

METHODS 

Data acquisition 
PET scans were obtained using the Scanditronix PC-

2048 system, which produces 15 image slices 6.5 mm 
apart with a transverse image resolution of 4.�.4 mm 
and an axial resolution of 5.4-7.1 mm (Evans et al., 1991). 
Using the bolus H2150 methodology without blood sam­
pling (Herscovitch et al., 1983; Raichle et al., 1983; Fox 
and Raichle, 1984), the relative distribution of CBF was 
measured in baseline and activation conditions. For the 
pain study (Talbot et al., 1991), eight subjects underwent 
a procedure wherein a thermistor was applied to the fore­
arm at both warm (42°C) and hot (48°C) states, each con­
dition being studied twice in each subject. For the present 
work, we analyzed the difference images of the two warm 
conditions as a dataset that should have an expectation of 
zero throughout. We also analyzed the difference be­
tween the average of the two hot conditions and the av­
erage of the two warm conditions to search for activation 
due to the painful heat stimulus. One subject was scanned 
only once in the hot condition so this subject was 
dropped, leaving seven subjects for this dataset. For the 
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word recognition study (D. Bub et ai., in preparation), 
PET image data were collected from 10 normal volun­
teers. Visual stimuli were presented for 1 s with an inter­
stimulus interval of 1 s on a monochrome monitor sus­
pended in front of the subject and covered by a light-tight 
curtain. The baseline condition was a black plus sign on a 
white background, and for the activation condition, single 
words were presented on the monitor for 1 s with an 
interstimulus interval of 1 s. Each subject in both studies 
also had a magnetic resonance imaging (MRI) scan con­
taining 64 2-mm-thick T,-weighted multi slice spin echo 
images (repetition time TR = 550 ms; echo time TE = 30 
ms) for later use in the 3D analysis. 

Data analysis 
To overcome residual anatomical variability in subse­

quently transformed stereotaxic images, a 20-mm FWHM 
Hanning reconstruction filter was used. This has the ef­
fect of increasing signal-to-noise ratio in the averaged im­
age at the expense of resolution. In the experimental data­
sets studied here, no axial filtering was used. With use of 
a volumetric image registration procedure described pre­
viously (Evans et ai., 1989, 1991), the MRI volume from 
each subject was aligned with the corresponding PET vol­
ume. An orthogonal coordinate frame was then estab­
lished based on the anterior commissural-posterior com­
missural (AC-PC) line as identified in the MRI image vol­
ume (Evans et aI., 1992). These anatomical frame 
coordinates were used to apply a trilinear resampling of 
each matched pair of MRI and PET datasets into a stan­
dardized stereotaxic coordinate system (Fox et ai., 1985; 
Talairach and Tournoux, 1988) with no axial filtering. 
PET images were then normalized by dividing each voxel 
by the mean value for all intracerebral voxels. The intra­
cerebral voxels were defined as all voxels with a value 
>150% of the mean value of the entire volume. The mean 
state-dependent change (�CBF) image volume was ob­
tained by averaging the subtracted images across sub­
jects. The �CBF volume was converted to a t statistic 
volume by dividing each voxel by the mean standard de­
viation in normalized �CBF for all intracerebral voxels. 
Individual MR images were subjected to the same aver­
aging procedure, such that composite stereotaxic image 
volumes, 128 x 128 x 80 voxels in extent and sampled at 
-1.4 x 1.7 x 1.5 mm along the x, y, and z axes, respec­
tively, were obtained for both t statistic and MRI. 

Validation of pooled standard deviation 
We shall first examine the assumption of a stationary 

standard deviation, which allows us to pool the standard 
deviation over the search volume. A formal test of equal 
standard deviations is complicated by the correlation of 
adjacent voxels; the standard Bartlett test is not valid, for 
example. Instead we shall assess the equality of the stan­
dard deviation by plotting it against possible explanatory 
variables. For the pain study, a search volume of 3 x 105 
voxels or V = 1,090 cm3 was chosen that covered the top 
portion of the brain. For the "warm-warm" dataset the 
standard deviation image S(x.y.z), with n - 1 = 7 de­
grees of freedom was plotted against average baseline 
CBF normalized to 100 (Fig. 3a). It can be seen that the 
standard deviation was approximately constant. The 
standard deviation was also plotted against the average 
subtracted activation M(x,y.z) (Fig. 3b). There is some 
evidence of increased standard deviation in areas of high 
activation. perhaps attributable to misalignment of areas 

of activation or differing strengths of subject activation. 
However, over the bulk of the search volume where little 
activation has occurred, the standard deviation is roughly 
constant. Finally, the standard deviation was plotted 
against the distance from the slice center, defined as the 
vertical line through the midpoint of the AC-PC line (Fig. 
3c). Again, there is evidence of a slight decrease in stan­
dard deviation beyond 8 cm, but otherwise it appears to 
be roughly constant over the bulk of the search volume. 
Accordingly, the standard deviation was pooled over the 
search volume to give S = 6.0%. 

For the "hot-warm" dataset, the standard deviation 
image S(x.y,z), with n - 1 = 6 degrees of freedom, was 
plotted against average baseline CBF, average subtract­
ed activation M(x.y,z), and distance from the brain cen­
ter. Similar conclusions were obtained as above, and the 
standard deviation pooled over the same search volume 
was S = 4.4%. This reduction in standard deviation can 
be explained by the standard repeated measures model of 
equal correlations between observations taken on the 
same subject. Since the hot-warm dataset is an average of 
two differences, this model predicts a standard deviation 
of 6.0/(2)1/2 = 4.2%, which is very close to :5' = 4.4% for 
the hot-warm dataset. 

For the word recognition study, a search volume of 3.9 
x 105 voxels or V = 1,390 cm3 was chosen that covered 
nearly all the gray matter but left out most of the white 
matter and ventricles. The standard deviation image 
S(x.y.z), with n - 1 = 9 degrees of freedom, was also 
plotted against average baseline CBF, average subtracted 
activation M(x.y.z), and distance from the brain center. 
Again, it appeared to be roughly constant over the bulk of 
the search volume and the pooled standard deviation was 
S = 5.4%. 

Validation of relationship between IAII/2 
and FWHMs 

The image of partial derivatives was evaluated on the 
residual images Zi(X,y,Z) obtained by subtracting the 
�CBF image for subject i from the average �CBF image 
M(x.y.z) and standardizing by the pooled standard devi­
ation: 

Z;(x.y.z) = [�i(X.Y,Z) - M(x,y,z)]/S 

These images were assumed to have the same variance 
structure as T(x.y,z) but with the signal component re­
moved. Derivatives in each direction were estimated by 

Z�i(X,y,Z) = [Zi(X + Bx,y,z) - Zi(x,y,z)]/Bx 
Z�;(x,y,z) = [Zi(X,y + Sy,z) - Z;(x,y,z)]/By 
Z�i(X,y,Z) = [Z;(x,y,z + Bz) - Z,{x,y,z)]/Bz 

where Bx = 1.4 mm, By = 1.7 mm, and Bz = 1.5 mm are 
the voxel sizes in directions x. y. and z, respectively. To 
avoid discontinuities caused by changes in n(x,y,z), these 
calculations and all succeeding ones were done only for 
voxels with n(x.y.z) = n, that is, where all subjects con­
tribute a value. Let N be the number of such voxels. Then 
the variances and covariances of these images, pooled 
over all voxels, were estimated by the following: 

Vxx = L Z�i(x,y,dIN(n - 1) 
i,x,y,z 
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FIG. 3. Validation of the standard deviation: 
scatter plots of the standard dev iat ion 
S(x,Y,z) of the warm-warm dataset from the 
pain study data for all voxels in the search 
volume. S(x,y,z) is plotted against average 
baseline CBF (a), average t.CBF M(x,Y,z) (b), 
and distance from the slice center (cm) (c). 
Darker areas indicate greater voxel density. 
Medians (middle l ine) and upper and lower 
quartiles (upper and lower lines) have been 
added. S(x,Y,z) appears to be roughly con­
stant, allowing us to pool the standard devi­
ation over the search volume. 
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Vyy = 'L Z�i(x,y,dIN(n - 1) 
i,x,y,z 

Vzz = 'L Z�,{x,y,z)2IN(n - 1) 
i,x,y,z 

VXy = 'L [Z�,{X,y,Z) + Z�i(X,y + ()y,z)] 
i,x,y,z 
[Z�i(X,y,Z) + Z�,{X + ()x,y,z)]/4N(n - 1) 

Vxz = 'L [Z�;(x,y,z) + Z�i(X,y,Z + ()z)] 
i,x,y,z 
[Z�;(X,y,z) + Z�i(X + ()x,y,z)]/4N(n - 1) 

VyZ = 'L [Z�i(X,y,Z) + Z�i(X,y,Z + ()z)] 
i,x,y,z 
[Z�,{X,y,Z) + Z�i(X,y + ()y,z)]/4N(n - 1) 

Note that the variances are estimated at the centers of the 
edges joining adjacent voxels, and the covariances are 
estimated at the centers of the faces joining adjacent vox­
els. This is necessary to avoid biased covariance esti­
mates. The matrix A is then estimated by 

Values of A and IAIII2 for the three datasets are shown in 
Table 2. They are all in good agreement, and, as ex­
pected, the off-diagonal covariance terms are close to 
zero, showing that there has been no slippage or consis­
tent mismatch in adjacent voxels. 

The nominal resolutions of the image were FWHMx = 
20 mm, FWHMy = 20 mm, and FWHMz = 6 mm. Sub­
stituting these values into Eq. 2, assuming a Gaussian 
point response function, gives reasonable agreement with 
the empirical values of A except that Vzz is too large 
(Table 2). To further validate the relationship 2, we can 
find the effective FWHMs that would produce the same 

diagonal elements as the observed A, namely, FWHM: 
= (4 loge 2IVx .. yl2, FWHM; = (4 loge 2IVyy) 112, and 
FWHMi = (4 loge 2IVzz)I/2. FWHM: and FWHM; are in 
good agreement with the nominal values of 20 mm, but 
FWHMi is -7.5 mm, larger than the nominal value of 6 
mm (Table 2). However, the corrected FWHMzc = 7.6 
mm from Eq. 4 is in excellent agreement with FWHMi 
and provides a much closer estimate of IAIII2 than the 
uncorrected FWHMs (Table 2). More accurate results 
should be obtained using FWHMzc in place of FWHMz in 
the calculation of the number of resels R. 

Validation of p value for T max 
Specificity. The n = 8 subjects in the warm-warm data­

set of the pain study were divided into all possible groups 
of 4 subjects each. In one group of four subjects, the 
subtracted �CBF images �i(X,y,Z) were replaced by their 
negative, - �i(X,y,Z). The t statistic image T*(x,y,z) was 
then calculated in the usual way, using the pooled stan­
dard deviation S = 6.0%. If any activation is present in 
the subtracted images and if it is the same for all subjects, 
then T*(x,y,z) should have zero expectation. Thus, 
T*(x,y,z) can be used as a pure noise image for validating 
the p value of T max' The set of all 8!1( 4!4!) = 70 such 
images was created and T max and its p values using Eq. 1 
were calculated over the same search volume of V = 
1,090 cm3• The proportions of false-positives at each of 
the a = 0.10, 0.05, and 0.01 levels are shown in Table 3. 
The proportions are all close to the nominal levels, which 
suggests that the critical values given by our methods are 
satisfactory. The number of resolution elements in the 
search volume was R = 360 resels, and almost exactly 
the same values and conclusions were obtained using 
Eq. 5. 

Sensitivity. A phantom activation signal fL(X,y,Z) was 
created by centering a Gaussian function at a location Xo 
= (xo,yo,zol in the anterior cingulate close to where ac­
tivation was in fact detected in the hot-warm dataset (Tal­
bot et aI., 1991). The peak height was chosen to represent 
a percentage increase of fLo in CBF for the seven subjects, 
and the shape was chosen to be the convolution of the 

TABLE 2. Validation of Eqs. 2 and 3 between variance matrix A of derivatives of the image and FWHMs of 
the image 

Dataset Direction A (cm-2) IAI'/2 (cm -3) FWHM (mm) 
------_. 

Pain study, warm-warm x 0.754 -0.0 14  -0.008 19 .2  
Y -0.0 14  0.7 1 1  -0.088 1.64 19 .8  
z -0.008 -0.088 5 .033 7.4 

Pain study, hot-warm x 0.753 -0.01 1  -0.007 1 9.2 
Y -0.01 1 0.636 0.005 1 . 52 20.9 
z -0.007 0.005 4.840 7.6 

Word recognition study x 0.766 0.007 0 .003 1 9 . 1 
Y 0.007 0.785 0 .280 1 .6 1  1 8.8 
z 0.003 0.280 4.400 8 .0  

From Eq. 2,  using uncorrected FWHMz x 0.693 0 0 20 
Y 0 0 .693 0 1.92 20 
z 0 0 7 . 702 6 

From Eq. 2, using corrected FWHMzc x 0.693 0 0 20 
Y 0 0 .693 0 1.5 1 20 
z 0 0 4.762 7 . 6  

Values of A from three datasets are given ,  together with their effective (FWHMs) determined by inverting Eq . 2 .  Also given are values 
of A determined from Eq. 2 using the nominal FWHMs of the image , both uncorrected and corrected for interpolation and resampling 
in the z direction .  Note that the agreement between values of IAI'i2 from the three datasets is in good agreement with that determined 
by Eq. 3, provided that the corrected FWHMzc is used . 
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TABLE 3. Specificity and sensitivity ofT max 

Signal added a = 0 .01  a = 0.05 a = 0. 10 

None 0 .014 0 .057 0 . 100 
One 5% peak 0 .271  0 .343 0 .414 
Three 5% peaks 0 . 186 0 .414 0 .557 
One 10% peak 0 . 829 0 . 857 0 .900 
Three 10% peaks 1 . 000 1 . 000 1 .000 
Broad 5% region 0 . 543 0. 800 0. 886 
Broad 10% region 1 .000 1 . 000 1 . 000 

Proportion of simulated datasets significant at level a, based 
on the theoretical p values of Eqs. 1 and 5 .  The number of res­
olution elements in the search volume of V = 1,090 em3 was R 
= 360 and the number of simulations was 70 . 

point response function with itself. For the case of a 
Gaussian point response function, this is 

fL(X,y,Z) = fLOexP[ -� (x - Xof A(x - Xo) ]/(SlnIl2) 

where n = 7 and S = 4.4%. This was added to each 
simulated image T*(x,y,z) from the warm-warm dataset 
and the maximum T max was found over the search vol­
ume. Two different peak signal strengths of fLo = 5% and 
fLo = 10% were tried, where 100% is the mean intracere­
bral CBF. Another phantom was created with three peaks 
centered in the anterior cingulate, primary somatosenso­
ry cortex (SI), and secondary somatosensory cortex (SII) 
regions, close to where activation was detected in the 
hot-warm dataset (Talbot et al., 1991). Finally, a third 
phantom was created by convolving a 20 x 40 x 20 voxel 
(57 cm3) region of uniform height with the Gaussian point 
spread function to create a broader region of activation as 
opposed to a sharp peak. The maximum height of this 
region was chosen to be the same as the peak heights 

o '" 

-4 -2 
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Threshold level 

above. The region was located in the right hemisphere in 
roughly the same place where activation was detected in 
the hot-warm dataset. The proportions of true-positives 
or power of the test are shown in Table 3. It appears that 
the test has moderate power at detecting a 5% signal, but 
a 10% signal is almost always detected. The test is more 
powerful at detecting activation when three peaks are 
present rather than one, and more powerful at detecting a 
broad region than a sharp peak. 

Validation of expected Euler characteristic 
Specificity. The Euler characteristic Xt over the search 

volume was evaluated for excursion sets of 7 orthogonal 
statistically independent t statistic images chosen from 
the 70 simulated images obtained from the warm-warm 
dataset above, for - 5  < t < 5 at intervals of 0.1. The 
average of these is plotted against t in Fig. 4, together 
with the expected Euler characteristic E(Xt) from Eq. 6 
calculated using the empirical roughness measure IAI'/2 = 
1.64 and V = 1,090 cm3• The agreement is very good. 
Approximate 95% confidence bands of ±2 SD, obtained 
by smoothing the sample standard deviation, have been 
added. It was noted that the smoothed sample standard 
deviation was close to the approximate theoretical stan­
dard deviation, [E(XI)]'12, for It I > 3. 

Sensitivity. The Euler characteristic X, was also evalu­
ated for each of the same seven simulated t statistic im­
ages used above, but with an added 10% peak activation 
in the anterior cingulate, as previously described. The 
average of these Euler characteristics, together with its 
expectation when no signal is present (Eq. 6), is plotted 
against t in Fig. 5a. Also shown is the Euler characteristic 
of the signal fL(X,y,Z) with no noise added; note that it 
takes the value 1 when t is less than the peak signal value 
fLJ[Sln'12] = 6.01. At the fi = 0.05 critical level t = to.05 
= 4.39, the average was 0.9 ± 0.1, giving an estimate of 
approximately one isolated region of activation, which 
agrees with the single peak of activation in the phantom. 

V observed 

. +1- 2 S.d. 

FIG. 4. Val idation of the ex­
pected Euler characteristic (Eq. 
6) using simulated data from the 
warm-warm dataset of the pain 
study. The average Euler char­
acteristic Xt (jagged l ine) and 
the expected Euler characteris­
tic E(Xt) from Eq. 6 (smooth line) 
plotted agai nst the threshold 
level t at intervals of 0.1 , for 
seven orthogonal statistically 
independent simulated images 
r*(x,y,z) formed by changi ng 
the sign of four of the eight sub­
jects' subtracted images. An ap­
prox i mate 9 5 %  conf i dence 
band of width ±2 smoothed SO 
has been added (dotted lines). 
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FIG. 5. Specificity of the Euler characteristic, 
assessed by adding phantom signals to the 
simulated data from the warm-warm dataset 
used in Fig. 4. The average Euler character­
istic x, (jagged line), the expected Euler char­
acteristic E(X,) from Eq. 6 (smooth line) plot­
ted against the threshold level t, t > 2.5 at 
intervals of 0. 1 , for the seven orthogonal sim­
ulated images T*(x,Y,z) formed by changing 
the sign of four of the eight subjects' sub­
tracted images. Also shown is the average 
number of local maxima greater than t (dot­
ted line) and the Euler characteristic of the 
signal alone (dash-dot line). In (a) a phantom 
signal of peak �CBF = 1 0% in the anterior 
cingulate was added to each simulated im­
age; in (b) a phantom signal of three peaks of 
�CBF = 1 0% in the anterior cingulate, SI, 
and SII regions was added to each simulated 
image; and in (c) a broad region of uniform 
activation of �CBF = 1 0% in the upper right 
hemisphere was added. The level ex = 0.05 
critical value to.os = 4.39 is marked on the 
horizontal axis. 
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Figure 5a also plots the average number of local maxima 
greater than t. As expected, it is larger than the Euler 
characteristic but very close for large t. The number of 
local maxima greater than t = 4.39 was also 0.9 ± O. l .  

In addition, Xl was evaluated for the seven simulated t 
statistic images with three added 10% peaks in the ante­
rior cingulate, SI, and SII regions (Fig. 5b). At t = 4.39 
the average Xl was 3.0 ± 0.0, in agreement with the three 
peaks of activation in the phantom. The number of local 
maxima greater than t = 4.39 was also 3.0 ± 0.0. 

Finally, Xl was evaluated for the seven simulated t sta­
tistic images with the 10% broad region added in the up­
per right hemisphere (Fig. 5c). At t = 4.39 the average XI 
was 0.9 ± 0.1, in agreement with the one broad region of 
activation in the phantom. However, the number of local 
maxima greater than t = 4.39 was 4.7 ± 0.5, much greater 
than the single local maximum in the added signal. The 
conclusion is that a broad region will appear as many 
local maxima. As the threshold level decreases, these lo­
cal maxima will at first increase the Euler characteristic 
above 1 (t = 8 down to 6.5); then as t decreases further (t 
= 6.5 down to 5), they will coalesce to form one con­

nected region of activation and an Euler characteristic of 
1. In our experience, holes in the excursion set are rare 
for these values of t and decreases in the Euler charac­
teristic as t decreases are caused by the coalescing of 
isolated regions rather than the formation of holes. Thus, 
the Euler characteristic more accurately estimates the 
number of regions of activation, whether they are sharp 
peaks or broad regions. 

Note that the plot of the average Euler characteristic is 
relatively flat for 4 < t < 5, so that our estimation pro­
cedure is robust against slight changes in the threshold 
value of t. However, if we set the threshold for the t 
statistic at the uncorrected critical value taken from the t 
distribution, we get far more apparent regions of activa­
tion than are really present. Even if we set the threshold 
at t = 3, the number of estimated regions of activation is 
4.2 when one 10% peak is present and 6.2 when three 
peaks are present. 

Validation of p value for voxel-based t statistic 

image TnCx,y,z) 
Specificity. The t statistic image Tn(x,y ,z) was calcu­

lated for the same 70 sets of simulated images that were 
used to validate the p value of T max ' The proportions of 
false-positives using the theoretical p value (Eq. 7) at 
nominal false-positive rates of ex = 0.01, 0.05, and 0.10 
were 0.029, 0.143, and 0.286, respectively. Thus, Eq. 7 
appears to be too liberal and so we suggest using a smaller 
nominal false-positive rate of, say, ex = 0.01 instead of ex 
= 0.05. A possible explanation for the discrepancy be­
tween simulations and theory has already been discussed; 
the theoretical result (Eq. 7) is highly sensitive to the 
assumption of a Gaussian distribution for each subject's 
subtracted image (see addendum). 

Sensitivity. Since the theoretical p value (Eq. 7) was 
inaccurate, empirical critical values of Tn max were found 
by smoothing the distribution of the 70 simulated values. 
The same phantom activation signals as used previously 
were added to the simulated images, and the proportion 
of true-positives, or sensitivity, was estimated. For all 
signals, Tn max was less sensitive than Tmax ; Tn max had 
about the same sensitivity to a 7-8% signal as T max had to 
a 5% signal, which implies that about twice as many sub-
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jects would be needed to detect the same signal with 
Tn max as with T max ' 

RESULTS 

Application to warm-warm dataset of pain study 

The standard deviation pooled over the search 
volume of V = 1 , 090 cm3 was S = 6. 0%, and the 
maximum t statistic inside the search volume was 
T max = 4. 16. The nominal resolutions of the image 
were FWHMx = 20 mm, FWHMy = 20 mm, and 
FWHMz = 6 mm. The corrected resolution in the z 
direction was FWHMzc = 7.6 mm (Eq. 4), which 
gives R = 360 resels. From Table 1 we can see that 
the value of T max was not significant at the a = 0. 1 
level; the p value is 0. 120 calculated according to 
Eq. 5 and 0. 129 calculated according to Eq. 1 using 
the empirical value IA j Ii2 = 1 .  64 cm - 3. The mini­
mum t statistic was - 3.47 , which was also not sig­
nificant, indicating no evidence of deactivation. 
Figure 6a gives the observed Euler characteristic Xt 
and its expected value E(Xt) from Eq. 6 under no 
activation plotted against t for - 5 < t < 5 at inter­
vals of 0. 01. The agreement seems reasonable over 
most values of t, confirming that no activation has 
taken place. 

Application to hot-warm dataset of pain study 

The standard deviation pooled over the search 
volume of V = 1, 090 cm3 was S = 4. 4%, and the 
maximum t statistic inside the search volume was 
T max = 4. 99. From Table 1 we can see that the 
value of T max was significant at the a = 0. 01 level; 
the p value is 0. 00393 calculated according to Eq. 5 
and 0. 00392 calculated according to Eq. 1 using the 
empirical value IA l li2 = 1. 52 cm - 3. 

Figure 6b gives the observed Euler characteristic 
Xt and its expected value E(Xt) from Eq. 6 under no 
activation plotted against t for - 5 < t < 5 at inter­
vals of 0. 01 . An enlargement of the upper tail also 
shows the number of local maxima above t for com­
parison with the Euler characteristic (Fig. 6d). The 
agreement is close for t > 3, which suggests that the 
regions of activation are sharp peaks as in Fig. 5b. 

To determine the regions of activation, the level a 
= 0. 05 critical value to.05 was found by solving Eq. 
5, which for R = 360 gives to.05 = 4. 40. Using Eq. 
1 and IA j Ii2 = 1 . 52 cm - 3  gives to.05 = 4 .39. The 
Euler characteristic at either threshold level is 1, 
indicating one isolated region of activation. At the a 
= 0. 1 level, to. 1 = 4 . 21, the Euler characteristic 
increases to 3, indicating three isolated regions of 
activation. These are in the anterior cingulate and 
SI regions (Talbot et aI. , 1 991) .  

The Euler characteristic starts to take on nonin­
teger values for t < 4 as the excursion set starts to 
intersect the boundary of the search volume. How-
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ever, it is still much larger than its expected value 
for t > 3.5, indicating substantial evidence of acti­
vation. The Euler characteristic for - 2 < t < 2 is 
hard to interpret, but the fact that Fig. 6b shows 
such a large discrepancy between Xt and E(X ) in this 
range indicates that some low-level activation may 
also be present. At the other extreme, the minimum 
t statistic was - 4.32, which was not quite signifi­
�ant at the ex = 0.05 level, indicating no strong ev­
Idence of deactivation. 

Application to word recognition study 

The standard deviation pooled over the search 
volume of V = 1,390 cm3 (R = 457 resels) was S = 
5.4%, and the maximum t statistic inside the search 
volume was Tmax = 5.58. From Table 1 we can see 
that the value of T max was significant at the ex = 0.01 
level. Its approximate p value is 0.00028 calculated 
according to Eq. 5 and 0.00030 calculated according 
to Eq. 1 using the empirical value IAI1/z = 1.61 
cm - 3. Figure 6c gives the observed Euler charac­
teristic Xt and its expected value E(Xt) from Eq. 6 
under no activation plotted against t for - 6 < I < 6 
at intervals of 0.01. An enlargement of the upper tail 
also shows the number of local maxima above I for 
comparison with the Euler characteristic (Fig. 6e). 
The agreement is close for I > 5, but for I < 5 the 
number of local maxima is much larger. 

To determine the regions of activation, the level ex 
= 0.05 critical value 10.05 was found by solving Eq. 
5, which for R = 457 gives 10.05 = 4.45. Using Eq. 
1 and IA I 1/z = 1.61 cm - 3, we get 10.05 = 4 . 47. The 
Euler characteristic at either threshold level is 3 
:-vith no holes in the excursion set, indicating three 
Isolated regions of activation. These were identified 
i� the occipital region, the left inferior temporal re­
gIOn, and the left frontal region. Note that the num­
ber of local maxima greater than t = 4. 47 is 6 in­
dicating six centers of activation. Four of thes� lo­
cal maxima coalesce in the occipital region to form 
only one isolated region of activation, which ex­
plains why the Euler characteristic at t = 4 . 47  is 
only 3 .  This behavior is reminiscent of the broad 
phantom signal in Fig. 5c. For values of I closer to 
zero, the Euler characteristic looks very similar to 
t�at of the hot-warm dataset of the pain study (cf. 
FIg. 5b and d). At the other extreme, the minimum 
value. of T(x,y,z) was - 4.98 at a point near the right 
antenor temporal lobe. Its p value was 0.005 and its 
Euler characteristic at t = - 10.05 = - 4. 47 was 1 
indicating one possible region of deactivation. 

' 

CONCLUSIONS 

This article has described a method that provides 
for the direct determination in three dimensions of 

the significance of focal physiological response in a 
P�T activation study. From a practical point of 
VIew, there are two principal results. The first, and 
most directly useful, result is Table 1, which gives 
some critical values for the global maximum T of 
the I statistic image based only on the numb;; of 
resels R in the search volume (Eq. 5). This number 
is defined simply as the search volume divided by 
the product of the three FWHMs of the image re­
construction process. More accurate results are ob­
tainable if the FWHM in the z direction is corrected 
for interpolation and resampling (Eq. 4) .  These crit­
ical values increase as the search volume increases, 
so that the search volume should be chosen a priori 
�o be as small as possible. If activation is suspected 
In the left hemisphere, for example, the search vol­
ume should be restricted to the left hemisphere. The 
search volume could also be confined to gray matter 
regions identified by MRI. An alternative but more 
time-consuming method of obtaining p values of 
T max is to evaluate the measure of roughness IA I I/2 
from the data directly using empirical numerical 
derivatives, as outlined in Methods, and use Eq. 1. 
In practice, this seems to give very similar results 
to the p values obtained by using the number of 
resels R and Eq. 5, which requires very little com­
putation. 

We have suggested using a I statistic image based 
on a pooled standard deviation rather than a voxel­
based standard deviation, provided that the stan­
dard deviation image appears to be flat. Theoretical 
results (Eq. 7) are available for the voxel-based 
standard deviation, but they must be treated with 
caution (see addendum). Our simulations show that 
the sensitivity of the voxel-based standard devia­
tion I statistic appears to be less than the pooled 
standard deviation-based I statistic. The arguments 
that have been advanced in this article have as­
sumed a constant underlying standard deviation. 
Figure 3 indicates no significant change in standard 
deviation against three different variables. There­
fore, pooling the standard deviation gives greater 
sensitivity to activation. In the event that there is 
some evidence of nonconstant standard deviation 
then it might be appropriate to use a local standard 
deviation in the t statistic image, but this would 
have to be demonstrated on the data to justify the 
loss in sensitivity. 

Recent work by Friston et al. (1991) for the two­
dimensional situation is very close in spirit to our 
3D approach. Working independently , these au­
thors have derived an expression for the p value of 
the maximum I statistic searched over a two­
dimensional slice of the data. The form of their p 
value is similar to our Eqs. 1 and 5, and it depends 
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FIG. 6. Application of the Euler characteris­
tic to the three datasets_ The observed Euler 
characteristic Xt for the t statistic image 
T(x,Y,z) (jagged line) plotted against the 
threshold level t at intervals of 0.01 for the 
warm-warm dataset (8), the hot-warm data­
set (b), and the word recognition study (c). 
The smooth line is the expected Euler char­
acteristic E(Xt) from Eq. 6 . 
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FIG. 6. (continued) (d) and (e) are enlarge­
ments of the upper tails (c > 2.S) of Fig. Sb 
and c, respectively. Also shown is the cumu­
lative number of local maxi ma above t 
(stepped dotted line). Approximate 9S% con­
fidence bands of ±2 [E(Xt)] ' /2 have been 
added about E(Xt) (smooth dotted l ines). The 
levels a = 0 . 1 , O.OS, and 0.01  crit ical values 
are marked on the horizontal axes. 

on a measure of the smoothness  of the image in an 
analogous way . It is interesting to note that the crit­
ical values that they obtain for the maximum over a 
slice are in the range of 3-4 , whereas the critical 
values we have obtained for the maximum over a 
volume are higher, in the range of 4-5 . The impli­
cation for this difference is that setting the threshold 
at a typical value of, say , 4 . 5  for Ci = 0 .05 would 
provide an expectation of one false-positive per 20 
volumes ;  setting it at , say , 3 . 5  might provide an 
expectation of one false-positive per 20 slices ,  but 
one per volume in a 20-slice volume . 

The final choice of threshold will depend upon 
how conservative one wishes to be when interpret­
ing physiological activation datasets .  It may be ac-

Threshold level 

Threshold level 

�-��---, (0) 

� observed 

� expected 

+/- 2 S d. 

local maxima 

J 
� observed 
_______________ expec ted 

"1- 2 S.d. 
toc al maxima 

ceptable if one observes 10 peaks above t = 3 .5 to 
know that 1 peak is on average false . To choose a 
threshold of t = 4 . 5  would virtually guarantee that 
any peak quoted was real at the expense of rejecting 
data that were consistent with physiological evi­
dence from other studies .  For either choice , Table 1 
and Fig. 7 show the statistical price to be paid . 

The second principal result is that the number of 
isolated regions of activation appears to be well es­
timated by the Euler characteristic of the region 
above the critical value of T max ' whereas the num­
ber of local maxima appears to be an overestimate , 
particularly when the region is broad . Although 
change distribution analysis (Fox et al . ,  1988) has 
proven to be extremely useful in the statistical anal-
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of activation, as measured by 
the Euler characteristic (Eq, 6), 
plotted against the th reshold 
value of the t statistic t. Four val­
ues of the number of resolution 
elements, or resels, are plotted: 
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z scores for local maxima from 
change d istributi on analys is  
(Fox et  aI. , 1 988) on datasets in 
our laboratory. Thus, th reshold­
ing an image at a z score value 
of 2 .0 will y ield on average -5.2 
false-positive regions of activa­
t ion in a volume of 500 resels; 
th res h old i ng at a t stat i st ic  
value of  3 .5 ,  the approximate 
crit ical value for local maxima 
in a slice (Friston et aI. , 1 991 ), 
will y ield on average - 1 .4 false­
positives per volume. Note that 
t h resholdi ng at a t stat ist ic  
value of  4.47 from Table 2 will 
y ield on average -0.05 false­
positive per volume. 

ysis of subtractive PET activation studies ,  it does 
have some limitations in both theory and practice . 
The g2 omnibus statistic provides a sensitive and 
specific test for determining if a significant change 
in state exists , but it does not identify which peaks 
are significant . Post hoc z scores do not explicitly 
deal with the issue of multiple comparisons . In­
stead , we have suggested determining the number 
of regions of activation by thresholding the t statis­
tic image at the level a critical value for T max ' which 
for a = 0 .05 corresponds to a z score of � 3 . 0  on 
typical datasets in our laboratory (Fig . 7) .  

This procedure protects us against finding some 
regions of activation whe n ,  in fact ,  none are 
present . In this respect our approach is no different 
from using an omnibus test such as g2 followed by 
thresholding the t statistic image at the uncorrected 
critical value of the t distribution,  or indeed any 
critical value ; both methods still protect against 
finding some activation when none is present .  How­
ever, if, say , two large peaks are present , large 
enough to push an omnibus test statistic such as g2 
over its critical value , then activation will be de­
tected . Following this by thresholding the t statistic 
at an uncorrected value will yield not only the two 
large peaks , but also a large number of spurious 
peaks from the unactivated part of the image . In 
other words ,  such a procedure does not protect us 
against declaring that there are , say , 20 regions of 
activation when,  in fact ,  there are only 2. In the 
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same situation, our approach of thresholding at the 
critical values of T max should still protect us against 
finding too many regions of activation ,  even when 
large peaks are present , because we are still pro­
tected in the unactivated part of the image . Al­
though this is outside the scope of current theoret­
ical results , it is supported by our simulations ,  
which show that the Euler characteristic , thresh­
olded at the critical values of T max ' does appear to 
correctly predict the number of isolated regions of 
activation , whether they are broad regions or sharp 
peaks .  

APPENDIX 

Proof of Eq. 4 
The result is derived by finding the mean variance 

of the derivative of the interpolated proces s ,  divid­
ing by its mean variance ,  and equating this to the 
corrected FWHM using Eq. 2. Consider a voxel of 
the resampled image at distances ad and (1 - a)d, 
o � a � 1 ,  from two voxels in two adjacent planes 
of the PET camera with values Xl and X2 , respec­
tively . Then by linear interpolation the value of the 
resampled voxel is  T = (1 - a)XI + aX2• Without 
loss of generality , we can assume that Xl and X2 
have zero mean, unit variance , and correlation co­
efficient p. The variance of T is Var(11a) = 1 - 2aO 
- a)( 1  - p) . Averaged over all values of a ,  0 � a � 
1 ,  the mean variance is Var(]) = 1 - ( 1  - p)/3 . 
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To determine the numerical derivative D of the 
resampled image, two situations can arise: The pair 
of adjacent resampled voxels either lie between the 
same pair of adjacent planes of the PET camera 
(event EI) or are separated by a plane of the PET 
camera (event E2). In the former situation, D equals 
the derivative of the voxels in the PET planes, and 
so Var(DIEI) = Var[(XI - X2)/d] = 2(1 - p)/d2. In 
the latter situation, suppose that XI ' X2, and X3 are 
the values of voxels in three adjacent PET planes 
and that the middle plane is at distances bdc and (1 
- b)dc' 0 :;;;; b :;;;; 1, from the two adjacent voxels of 
the resampled image. Then it can be shown that D 

= [bXl + (1 - 2b)X2 + (b - I )X3]/d. Since the 
correlations between Xl and X2, X2 and X3 , and Xl 
and X3 are p, p, and p4, respectively, then 
Var(DIE2,b) = [2(1 - p) - 2b(1 - b)(3 - 4p + 
p4)]1d2 • Averaged over all values of b, 0 :;;;; b :;;;; 1, the 
mean variance is Var(DIE2) = [2(1 - p) - (3 - 4p 
+ p4)/3]/d2 • Since the proportions of resampled 
voxels are (1 - dJ/d from the first situation and 
dc/d from the second, the overall mean variance of 
the derivative, found by the weighted averaged of 
Var(DIEl) and Var(DIE2), is Var(D) = [2(1 - p) -
(dc/d)(3 - 4p + p4)/3]/d2 • Equating the mean mea­
sure of roughness Var(D)lVar(T) to (4 loge 2)/ 
(FWHMzc)2 from Eq. 2 gives the corrected FWHM 
of the resampled image, FWHMzc ' 
Proof of Eq. 7 

Let x = (x, y ,z) ' . Assume that Ai = Alx) is a 
Gaussian random field with expectation zero and 
standard deviation a and that Var(aA/ax) = Aa2 . 
Now since A I ' . . .  , An and their partial derivatives 
are all independent Gaussian random variables with 
zero expectations (Adler, 1981, p. 31), then by con­
ditioning on A I ' . . .  , An> we have 

aG aG aTn aAi ( ( n ) 
Var ax) = Var aTn � aAi a-;: 

� E[ (:�)' � (:�;) ' vare�') ] 
[ ( aG) 2 n (aT ) 2] 

= E aTn � aA� Aa2 

From the definition of Tn' we have 

aTn a M n 1l2M(Ai - M) 
aAi = 

aAi S/n1 l2 = 

n1l2S - (n - 1)S3 

and so 

n (a Tn) 2 1 nM2 L aA · = S2 + (n - 1)S4 i= 1 I 

Hence, the correction factor to the variance matrix 
of the partial derivatives of G is 

where p�(t) is the probability density function of a t 
random variable with n - 1 degrees of freedom and 
p ' (g) is the probability density of a standard normal 
random variable. This can be simplified further us­
ing the fact that U = [nM2 + (n - l)S2]1a2 has a X2 
distribution with n degrees of freedom, independent 
of Tn' and that E(1/U2) = l I(n - 2), to give 

{ [p�(Tn)] 2 (T� + n - I f } 
A.n = E p ' (G) (n - l )(n - 2) 

Integrating over the density of Tn gives 

where g = p � l [Pn(t)] . The integral is finite only if 
n � 4. 

ADDENDUM 

This article describes exact results for a gaussian 
random field and an approximation to the nongaus­
sian case for the voxel-based t statistic image 
Tn(x,y , z) .  Since the submission of this article, Wors­
ley (1992) has extended the results of Adler (1981) 
to find an approximate p value for Tn max and an 
exact expression for the expected Euler character­
istic for the t field Tn(x,y ,z) , as well as the X2 field 
S2(X,y , Z). These results supercede Eq. 7 and will be 
the subject of a forthcoming article. 

Acknowledgment: We would like to thank the staff of 
the Positron Imaging Laboratories and the Medical Cy­
clotron Unit for their help. Special thanks to Sylvain Mi­
lot for technical assistance. We are grateful to Drs. Cathy 
Bushnell and Gary Duncan as well as to Drs. Daniel Bub 
and Howard Chertkow for allowing us to use data col­
lected in their experiments. Funding for this work was 
provided by the McDonnell-Pew Program in Cognitive 
Neurosciences, the Medical Research Council of Canada, 
the Natural Sciences and Engineering Research Council 
of Canada, and the Fonds pour la Formation de Cher­
cheurs et l 'Aide a la Recherche de Quebec. 

REFERENCES 

Adler RJ ( 198 1 ) The Geometry of Random Fields . New York, 
Wiley 

J Cereb Blood Flow Metab, Vol. 12, No. 6, 1992 



918 K. 1. WORSLEY ET AL. 

Adler RJ , Hasofer AM ( 1 976) Level crossings for random fields. 
Ann Probabil 4: 1-12 

Evans AC, Marrett S ,  Peters TM ( 1989) Anatomical-functional 
correlative analysis of the human brain using three­
dimensional imaging systems. Proceedings of the Interna­
tional Society of Optical Engineering ,  Medical Imaging III, 
pp 264-274 

Evans AC , Thompson CJ , Marrett S ,  Meyer E ,  Mazza M ( I 99 1 a) 
Performance characteristics of the PC-2048 : a new 1 5-slice 
encoded-crystal PET scanner for neurological studies. IEEE 
Trans Med Imag 1 0 : 9{}-98 

Evans AC , Marrett S ,  Torrescorzo J ,  Ku S ,  Collins L ( 1 99 I b) 
MRI-PET correlative analysis using a volume of interest 
(VOl) atlas. J Cereb Blood Flow Metab 1 I : A69-A78 

Evans AC , Marrett S ,  Neelin P ,  Gum T ,  Dai W, Milot S ,  Meyer 
E ,  Bub D ( 1992) Anatomical mapping of functional activa­
tion in stereotactic coordinate space . Neuroimage 1 :43-53 

Fox PT , Mintun ME ( 1989) Non-invasive functional brain map­
ping by change-distribution analysis of averaged PET images 
of H2 150 tissue activity .  J Nucl Med 30: 14 1-149 

Fox PT , Raichle ME ( 1984) Stimulus rate dependence of regional 
cerebral blood flow in human striate cortex ,  demonstrated 
with positron emission tomography. J Neurophysiol 5 1 :  
1 109-1 1 2 1  

Fox PT , Perlmutter J S ,  Raichle M E  ( 1985) A stereotactic method 
of anatomical localization for positron emission tomogra­
phy .  J Comput Assist Tomogr 9: 1 4 1-153 

Fox PT , Mintun MA, Reiman EM, Raichle ME ( 1988) Enhanced 
detection of focal brain responses using intersubject averag-

J Cereb Blood Flow Metab, Vol. 12, No. 6, 1992 

ing and distribution analysis of subtracted PET images. J 
Cereb Blood Flow Metab 8 :642-653 

Friston KJ , Frith CD,  Liddle PF,  Frackowiak RSJ ( 1 991)  Com­
paring functional (PET) images : the assessment of signifi­
cant change. J Cereb Blood Flow Metab 1 1 : 690-699 

Hasofer AM ( 1 978) Upcrossings of random fields. Adv Appl 
Probabil [Suppn 10 :  1 4-2 1  

Herscovitch P ,  Markham J ,  Raichle M E  ( 1 983) Brain blood flow 
measured with intravenous H2150 I. Theory and error anal­
ysis. J Nucl Med 24: 782-789 

Holm S ( 1979) A simple sequentially rejective multiple test pro­
cedure . Scand J Stat 6 :65-70 

Raichle M E ,  Martin WRW , Herscovitch P ,  Mintun M A ,  
Markham J ( 1 983) Brain blood flow measured with intrave­
nous H21 50 II. Implementation and validation. J Nucl Med 
24: 79{}-798 

Talairach J, Tournoux P ( 1988) Co-Planar Stereotactic Atlas of 
the Human Brain : 3-Dimensional Proportional System: An 
Approach to Cerebral Imaging. Stuttgart , Georg Thieme 
Verlag 

Talbot JD, Marrett S ,  Evans AC , Meyer E ,  Bushnell MC , Dun­
can GH ( 1 991 )  Multiple representations of pain in human 
cerebral cortex. Science 25 1 :  1 355-1 358 

Vanmarcke E ( 1983) Random Fields, Analysis and Synthesis . 
Cambridge , MIT Press 

Worsley K ( 1 992) Local maxima and the expected Euler charac­
teristic of excursion sets of x2 , t and F fields. J Appl Prob (in 
press) 


