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Abstract This work addresses the complexity of neuronal interactions, the nature of this complexity and 
how it can be characterised in real neurophysiological processes. A measure of complexity has been 
introduced recently (Tononi et al. [1994]: Proc Natl Acad Sci USA 91:5033-5037) that is sensitive to the joint 
constraints imposed by two principles of brain organisation: functional segregation and functional 
integration. Functional segregation implies that the dynamics of a cortical area should reflect the 
multidimensional attributes for which that area is specialised (in other words, regional dynamics should 
show a relatively high entropy). Conversely, functional integration implies a distributed and divergent 
influence of every cortical area on the remaining areas (i.e., the overall dynamics should show a low 
entropy). Our measure is based on the profile of entropies of different sized regions of the brain. 
Complexity is high when smaller regions have (on average) a relatively high entropy with respect to the 
entropy of the whole system. This measure is equivalent to the (average) mutual information between all 
small regions and the rest of the system in question. 

We have applied this measure to nonlinear simulations and to neurophysiological data obtained with 
fMRl during photic stimulation. Because patterns of activity in the brain are intermediate between a state 
of incoherence, with regionally specific dynamics and a state of global coherence, we predicted that 
simulated nonlinear processes with similar characteristics would have a high complexity. In the language 
of nonlinear dynamics we hypothesised that the greatest complexity would be found somewhere 
between high-dimensional, chaotic behaviour and low-dimensional, orderly behaviour. Equivalently, 
using the metaphor of loosely coupled oscillators, we predicted that complexity would be highest in the 
domain between asynchronous oscillations and global synchrony. This hypothesis was confirmed using 
nonlinear neuronal simulations. In addition, we demonstrate that the complexity of neurophysiological 
data is easily measured and can show a significant complexity when compared to suitable control 
processes. o 1996 Wiley-Liss, Inc. 
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INTRODUCTION 

The notion that biological systems are found at the 
interface between chaos and order is a recurrent 
theme in the sciences of complexity and has some 
validity when applied to neuronal dynamics [e.g., 
Fuches et al., 1992; Gallez and Babloyantz, 19911. A 
balance between chaos and order is implicit in the 
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brain’s tendency to diversity, wherein cortical areas 
preserve their unique and regionally specific dynam- 
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ics, and in an opposing tendency to integrate regional 
dynamics into globally coherent patterns of activity. 
This dialectic is reflected in two aspects of cortical 
organisation: functional specialisation [ e g ,  Phillips et 
al., 19841 and functional integration [e.g., Tononi et al., 
19921. Functional specialisation or segregation is a 
principle of brain organization that has been best 
formulated in visual neuroscience [ e g ,  Zelu, 19901 
and identifies cortical areas with a particular function. 
Specialisation is inferred on the basis of neuro- 
anatomy, connectivity, lesion-deficit studies and, most 
importantly from the current perspective, selective 
electrophysiological responses to specific attributes in 
the visual field. These selective responses distinguish 
one area from another and suggest that each area 
expresses its own distinct and separable dynamics. On 
the other hand, the integration of various perceptual 
attributes requires functionally segregated areas to 
influence each other or interact in some way. These 
reentrant [Edelman, 19931 interactions are mediated 
by functional or effective connectivity [e.g., Gerstein 
and Perkel, 1969; Friston et al., 19931 and subserve 
functional integration. We have proposed a measure 
of complexity [Tononi et al., 19941 that captures the 
interplay between functional specialisation and inte- 
gration. This measure is based on statistical entropies, 
estimated at different scales or sizes of subsets which 
comprise a system. In this article we hope to show that 
this measure can be meaningfully applied to simu- 
lated nonlinear systems and to real neurophysiologi- 
cal data. 

There are many measures that can be used to assess 
different aspects of complicated behaviour. Some of 
these measures are based on the length of a minimal 
description of the system that is capable of reproduc- 
ing a set of observations (e.g., Kolmogorov-Chaitin 
complexity). Measures of this sort reflect some aspect 
of algorithmic or computational complexity. These 
measures have a limited role in characterising the 
nonlinear behaviour of biological systems like the 
brain. Other complexity measures are derived from 
information theory (e.g., covariance complexity [Morg- 
era, 19851) and nonlinear dynamics (e.g., Lyapunov 
exponents, the correlation dimension or dimensional 
complexity and metric entropy [Grassberger and Pro- 
accia, 19831). For example, as the human brain moves 
between different states of arousal (alert and attentive 
through to slow wave sleep) the EEG shows character- 
istic changes, from moderately chaotic (a correlation 
dimension of six or more) to low-dimensional orderly 
behaviour (a correlation dimension of about four 
[Gallez and Babloyantz, 19911). These measures all 

reflect certain aspects of unpredictable or chaotic 
behaviour, either stochastic or deterministic in nature. 

None of the measures above are specifically sensi- 
tive to the sort of complexity that characterises neuro- 
nal interactions in the brain, namely, a balance be- 
tween rich chaotic behaviour and coherent orderly 
behaviour. We focus here on a measure of complexity 
[Tononi et al., 19941 that is sensitive to both regionally 
specific dynamics, as suggested by local functional 
specialisation, and global coherent dynamics, required 
by functional integration. Only when both of these 
characteristics are jointly expressed is the system 
regarded as complex. This measure of complexity was 
developed in the context of linear systems and is 
based on the patterns of correlations or covariances 
among different components of the system in ques- 
tion. This is a useful feature, in that it can be applied to 
biological data in a practical way that eschews many of 
the difficulties associated with nonlinear characterisa- 
tions. 

The aim of this paper is to relate our (linear) 
complexity to nonlinear systems that show complex 
behaviour. In essence we predicted that as a system is 
brought from coherent low-dimensional behaviour 
(where the system is completely integrated but shows 
no locally specific dynamics) to chaotic high-dimen- 
sional behaviour (where the dynamics of each compo- 
nent of the system are easily differentiated, but integra- 
tion is lost), there would be an intermediate domain of 
high complexity. In other words, along the continuum 
of chaos or ’strangeness’ of a dynamical system, 
complexity would show an inverted ‘ U  type of behav- 
iour. The idea that complexity is high at the interface 
between non-chaotic and chaotic regimes relates in a 
clear, if heuristic, way to the notion that (complex) 
biological systems are typically found at ’the edge of 
chaos’ [e.g., Kauffman, 19921. 

At present there are no analytical results pertaining 
to the relationship between our linear measure and 
nonlinear measures of chaos (or ’strangeness’). We 
therefore tested the hypothesis that the greatest com- 
plexity, of a simulated nonlinear system, would be 
found in the region between orderly, low-dimensional 
behaviour and chaotic, high-dimensional behaviour. 
Equivalently, in the language of loosely coupled (neu- 
ronal-like) oscillators, we predicted that complexity 
would be highest in the domain of phase transitions 
between asynchronous behaviour and global syn- 
chrony. Phase transitions are abrupt changes in the 
nature of the attractor manifold as some parameter of 
the system is changed. In what follows we confirm this 
hypothesis empirically using nonlinear neuronal simu- 
lations. In addition, we show that neurophysiological 
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data evidence a significant degree of complexity when 
compared to suitable control processes. 

The paper is divided in three sections. The first 
section describes the complexity measure and its 
various interpretations. The second section addresses 
the hypothesis that as a system is moved from chaotic 
to orderly behaviour, complexity increases, reaches a 
maximum and then decreases again. This hypothesis 
was tested by varying the amount of connectivity 
between simulated neuronal groups. The final section 
demonstrates that the complexity of real, short and 
noisy neurophysiological time-series (obtained with 
fMRI during photic stimulation) can be measured and 
that the data show a significant complexity. 

THEORY 

In this section we review our definition of complex- 
ity [Tononi et al., 19941 and its significance for charac- 
terising interactions within the brain. The basic idea is 
that a small functionally specialised area in the brain 
should have dynamics that contain a lot of informa- 
tion, and that this information is unique to the area in 
question. On the other hand this specialisation should 
occur in the context of functional integration, so that 
information in the area should be available to the rest 
of the brain. This means that the influence of a small 
specialised region should be seen elsewhere in the 
brain. Clearly these two requirements are in conflict; if 
every small brain region had unique dynamics there 
would be no integration. If the influence of each area 
were completely distributed to every other area there 
would be no specialisation. We propose that a truly 
complex system is one that manages to resolve this 
dialectic. A scalar measure that reflects a conjoint 
expression of functional specialisation and integration 
is reviewed below. In order to develop the argument 
in a formal way some technical terms are introduced 
and explained. 

In multidimensional systems entropy and mutual 
information play the same role as variance and covari- 
ance do in univariate processes. Entropy can be 
usefully pictured as a measure of the volume of the 
probability density function (p.d.f.) describing the 
system. (For example, m scans comprising n voxels can 
be plotted as m points in an n-dimensional space. The 
scatter of points will fall mostly in this volume.) A high 
entropy reflects a large volume where the variables 
are largely uncorrelated. A low entropy corresponds 
to a deviation from independence due to substantial 
correlations between the variables. These correlations 
(or more generally covariances) distort and reduce the 
volume of the p.d.f., causing it to collapse along its 

principal axes. This reduction in volume can be consid- 
ered as a measure of the integration of a system 
[Tononi et al., 19941. If two multidimensional systems 
have a high mutual information this means they share 
a lot of variance or are correlated over a number of 
dimensions. Even more simply, knowing about one 
tells us a lot about the other. The entropies (H) and 
mutual information (MI) of two systems (5 and cp) are 
directly related: the mutual information is the differ- 
ence between the sum of entropies of the separate 
systems and the joint entropy of the systems. 

where the joint entropy is the sum of the entropy of 
the first system and the conditional entropy of the 
second, given the first: 

The conditional entropy [H(cp I t;)] is usually thought of 
as the uncertainty about system cp that remains after 5 
is known [Jones, 19791. A subset of a system is simply a 
set of some of its constituent variables or components. 
For example, in a time-series of neurophysiological 
measurements from n pixels (functional neuroimag- 
ing), n channels (multichannel EEG recording) or n 
separable spike trains (multiunit-electrode record- 
ings), a subset of size i would represent the times- 
series from i pixels, channels or spike trains. We 
denote the kth subset of size i by k;. In what follows we 
make the simplifying assumption of stationariness, 
over the time intervals considered. 

Complexity 

The key idea behind the concept of complexity 
considered here is that spatially extended complex 
systems, such as the brain, show a characteristic profile 
of entropies over subsets of increasing size: If a system 
is complex its subsets will have relatively higher 
entropies than would have been predicted on the 
basis of the entropy of the whole system. The rationale 
for this is based on a common sense analysis of 
functional segregation and integration. Consider a 
functionally specialised cortical area such as V4. Among 
other things V4 is specialised for colour. Because 
colour is a multidimensional attribute (colour cannot 
be specified using just one dimension or number) the 
dynamics of any region in a retinotopic map of colour 
will be multidimensional. In a spatially extended map 
the dimensionality of the dynamics of all the map’s 
constituent units (e.g., neuronal groups) will increase 
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in proportion to the resolution and size of the map. 
This means the neuronal dynamics intrinsic to V4 
must span many dimensions (however it is measured) 
and therefore the entropy of neuronal activity within 
V4 will be reasonably high. Consider now the implica- 
tion of integrating many functionally specialised areas 
like V4. The effect of reentrant interactions between 
local maps [Edelman, 1978, 19931 will be to distribute 
the influences of V4 throughout the cortex. The 
uncertainty (conditional entropy) about dynamics in 
the remaining cortex will therefore be reduced by 
measuring the state of V4. Let 5 repraent a subset 
corresponding to a functionally specialised area (say 
V4) and let cp denote the rest of the brain. Functional 
specialisation implies that H(5) is reasonably large and 
integration requires that H(cp 1 5 )  be small. The entropy 
of the whole brain (p) is given by Equation (2): 

From Equation (3)  it can be concluded that, subject to 
the constraint of a high H({), integration will be best 
served by a relatively low entropy on considering the 
brain as a whole (as low as it can be given that H(5) is 
high). Equivalently, under this constraint of a low 
global entropy, functional specialisation suggests that 
regional entropies (the entropy of spatially contiguous 
subsets) will be relatively high. 

This characteristic profile of entropies over differ- 
ence spatial scales is measured in an expedient way by 
the average entropy for all subsets of size i[(H(&))] 
minus that which would be expected if the n compo- 
nents of the system were all independent = i.H(p)/n 
(the latter equality follows from the fact the entropies 
behave additively for independent systems [Jones, 
19791). The sum of these differences is defined as 
complexity (C): 

n 

C = ((H(G)) - i.H(S")/n) (4) 
i = l  

where are subsets of size i and (.) denotes expecta- 
tion (over k). Note that there is only one subset of size 

Complexity is therefore simply the area between the 
two curves of the actual entropy of a subset (H(,$)) and 
that predicted on the basis of the global entropy 
i .H([")/n as functions of region size (i). An example of 
these curves is seen in the upper part of Figure 1 and 
the shaded area corresponds to complexity. The upper 
curve represents the average regional entropies 
(H(&)) as a function of their size (k) and the lower 

n(S"). 

curve (the straight line) is that which would be 
expected if all the elements of the system were 
independent i.H(p)/n. It is seen that, given just the 
entropy of the entire system, the average entropy of 
smaller regions is much larger than would have been 
predicted on the basis of independence (i.e., the 
curved line is higher than the straight line for small 
subsets). Conversely, given the average regional en- 
tropy for a small region, the global entropy is smaller 
than would have been predicted. This is exactly what 
would be expected under the joint constraints of 
functional specialisation and functional integration. 
Under the constraint of integration (a low global 
entropy) functional specialisation requires a high re- 
gional entropy or conversely, under the constraint of 
specialisation (high regional entropies) functional inte- 
gration requires a low global entropy. In Figure 1 the 
(H(.$)) were calculated using a Gaussian autocovari- 
ance matrix with width 1.6 and by assuming multivar- 
iate normal distributions where: 

(5) 

1 . 1  denotes the determinant and y; is the subset of the 
covariance matrix corresponding to I;t. This is a stan- 
dard result [see Jones, 19791. 

Complexity and intrinsic mutual information 

In this section we consider another interpretation of 
complexity in terms of mutual information. Whatever 
the nature of reentrant dynamics, integration suggests 
that there is necessarily a high mutual information 
between the dynamics intrinsic to any small cortical 
region and the rest of the brain. It is easy to show that 
complexity is the sum of these intrinsic mutual infor- 
mations. For any subset of size i there is a complemen- 
tary subset of size n - i. The mutual information 
between these two subsets is given by Equation (1). 
Let the average mutual information between subsets 
of size i(SL) and their complements ( [ : - I )  be denoted by 
MI', then: 

MI' = (H(Fi) + H(S:-') - H(Y)) 

+ ((H(S:-')) - (n  - i).H(S")/n) 

= c  (6) 

Figure 1 tries to make this relationship clear by 
showing that the area defining complexity can be split 
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Figure I. 
Graphical illustration of complexity and the relationship between 
the entropy of regional subsets and the average mutual information 
between subsets and the rest of the system. Upper box: The 
average entropy of all contiguous subsets of a 64-dimensional 
process expressed as a function of regional size ( I ) .  This process 
was characterised by a stationary Gaussian autocovariance matrix 
of parameter (width) I .6. The entropies were calculated according 
to Equation (5)-upper curve. The straight line is the average 
entropy of different sized regions that would have been seen if all 
the 64 components were independent. Complexity is given by the 
area between these two lines (dark and light shaded areas). Lower 
box: As above but depicting the average mutual information 
between subsets of a given size (i) and the rest of the system. The 
area under this curve is the same as that defining complexity (dark 
and light shaded areas). In other words, for all regions of a given 
size, say 16, the average mutual information between all subsets of 
size I6 and all subsets of size 64 - I 6  = 48 is the same as the 
contributions to complexity from all subsets of size 16 and 48 
(broken lines in the upper panel). See main text for a fuller 
explanation. 

into two and added together to give MI‘ (for i = 1 . . . 
n/2).  Consider subsets of size 16 (the left line in the top 
panel of Figure 1). The mutual information between a 
subset of size 16 and its complement (of size 
64 - 16 = 48-the right line in Figure 1) is simply 
H(5;) + H((ipl) - H([”) for i = 16 and n = 64. This is the 
sum of H(6;) + i.H(<”) and H(i$-‘) - ( n  - i).H(tn). If we 
take the expectation over all k subsets, then this is the 
same as the sum of the contribution to complexity by 
subsets of size 16 and of size 48. These contributions 
are represented by the light and dark shaded regions 
in Figure 1 which, when added together (lower panel 

in Figure l), give the average mutual information 
between subsets of a particular size and their comple- 
ments. The sum of these mutual informations is again 
complexity. This equivalence means that a complex 
system is characterised by a high (average) mutual 
information between any small (less than n/2) subset 
and the remainder of the system. 

A high complexity is consistent with the suggestion 
that each small cortical area should have a high 
mutual information with respect to its inputs [see 
Linsker, 1988; Friston et al., 19921. More specifically it 
has been proposed that the entropy of divergent 
efferent activity from a small cortical region should be 
high and that the entropy of convergent afferent 
activity from the rest of the brain should be low. This 
anti-symmetric arrangement ensures the mutual infor- 
mation between any small region and the rest of the 
brain is high [Friston et al., 19921 and, from the current 
perspective, ensures that the interactions are complex. 

Like mutual information, complexity is invariant 
under changes of variables (or units of measure- 
ments). For example, the complexity computed on the 
basis of the covariance matrix is the same as that using 
the correlation matrix. It should be noted that the 
subsets implied by ’cortical regions’ are anatomically 
contiguous. In this paper we only consider subsets 
that are spatially contiguous because of their special 
relevance to the real brain and functional mapping. It 
is, of course, possible to compute a whole family of 
complexities using Equation (4) by selecting the sub- 
sets (&) in a variety of ways. In Tononi et al. [1994] the 
sampling was unconstrained and in that paper no 
reference was made to the spatial contiguity relation- 
ships of the elements of the system. 

NONLINEAR SIMULATIONS 

In this section simulations of neural-like processes 
are analysed using complexity as described above and 
conventional nonlinear methods. The aim of these 
analyses was to demonstrate that complexity is high- 
est at some intermediate point, between chaotic behav- 
iour and highly ordered behaviour. Two nonlinear 
measures were employed to characterise the pro- 
cesses: (1) the correlation dimension (Dz), which can 
be regarded as a measure of the degree of chaos (or 
strangeness of the attractor [Grassberger and Proaccia, 
19831) and (2) the size of the largest phase-locked 
cohort [Sporns et al., 1989; Tononi et al., 1992; Lumer 
and Huberman, 19921. The former is a standard way of 
measuring the degree of chaos in a system and can be 
estimated from the Lyapunov exponents that charac- 
terise the system’s strange attractor (see Appendix for 
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further details). The latter measure is meaningful in 
the context of phasic or oscillatory interactions be- 
tween neuronal groups and reflects the degree of 
synchrony within the system. 

Simulations 

The simulations were designed to explore a range of 
behaviours by manipulating just one parameter-f. 
This parameter changed the relative amounts of two 
sorts of connections: (1) connections intrinsic to eight 
groups (of eight units) responsible for coherent intra- 
group dynamics of reasonably high entropy and (2) 
sparse extrinsic connections between the groups. The 
latter connections allowed for intergroup interactions 
that mediated integrated and synchronous behaviour. 
By varying the relative amount of intrinsic and extrin- 
sic connectivity the system was brought from com- 
plete asynchrony (between groups), wherein each 
group was uniquely identified by its own dynamics, to 
near global synchrony, where the eight groups be- 
haved, effectively, as one large group. Figure 2 shows 
an example of these connections. The mathematical 
details of these simulations and nonlinear measures 
will be found in the Appendix. 

To illustrate the range of behaviours, elicited by 
changing f, three simulations are presented. The 
simulations were over 2,000 iterations (following 512 
iterations to allow for transients) at three values of 
f = 0,0.17 and 0.25. The resulting processes are shown 
in Figures 3, 4 and 5. The first simulation was in the 
absence of any extrinsic or intergroup interactions 
(f = 0) and shows markedly chaotic behaviour. Figure 
3 shows the mean activity over all units as a function 
of time (top left) and the corresponding phase portrait 
(top right). The phase portrait depicts the activity of 
the three largest modes defined by singular value 
decomposition [Golub and Van Loan, 19911. The 
singular value spectrum is seen on the bottom left. 
This spectrum indicates the number of non-trivial 
modes (distributed patterns of activity [Friston et al., 
19931) that characterise the system. There were about 
16, suggesting each group was contributing about two 
(topological) dimensions. The profile of MIi is shown 
on the lower right and should be compared with the 
equivalent profiles from the next two simulations (the 
area under this profile is complexity). The intrinsic 
mutual informations were calculated using Equation 
(5). Figure 4 shows a simulation with substantial, but 
not an overwhelming amount of extrinsic connectivity 
(f = 0.17). In this case the process is less chaotic and 
has fewer singular values. The complexity is, however, 
much greater than in the previous simulation. Al- 
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Figure 2. 
The connection matrices: Each simulation used a single connection 
matrix that was obtained by combining intrinsic and extrinsic 
connectivity matrices in varying amounts. Top left: Functions 
describing the modulation of connection strengths (selected at 
random between 0 and I )  for the intrinsic (solid line) and extrinsic 
(broken line) connections. These functions are sine waves and 
simulate local inhibitory and long range excitatory interactions 
(both within and between simulated groups of units). Top right: 
The combined sparsity structure of both matrices (a dot represents 
a non-zero connection). Only the extrinsic connections are sparse 
(5% of all possible connections). Bottom left Intrinsic connection 
matrix showing the eight groups of eight units. The image 
brightness reflects the value of the elements of the matrix. The 
image has been scaled to  its maximum. Bottom right: Equivalent 
image of the extrinsic connection matrix. 

though the phase portrait in the previous simulation 
(Fig. 3) may look more 'complicated' it is not. This is 
because the dynamics are not integrated (i.e., the 
activity of one simulated group predicts nothing 
about another). Note that processes which appear 
chaotic or random are not necessarily complex. The 
third simulation is shown in Figure 5 and shows 
orderly low-dimensional dynamics due to substantial 
extrinsic connections (f = 0.25). Although the phase 
portrait suggests that this process is quasiperiodic it is 
in fact still chaotic. The important thing here is that 
complexity has fallen. 

These three simulations provide anecdotal evidence 
in support of the hypothesis that complexity is highest 
somewhere between marked chaos and relative order. 
To examine this issue systematically f was increased 
from 0 to 0.4 in steps of 0.01. For each value of f the 
following measures were obtained: (1) the correlation 
dimension, (2) the size of the largest phase-locked 
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Figure 3. 
First in a series of three figures characterising simulated processes 
ranging from chaotic asynchronous behaviour to relatively ordered 
synchrony. This, the first, was obtained as described in the text 
using only intrinsic connections. Top left: Mean activity ( (x , ) ) ,  over 
all 64 units, expressed as a function of time (iterations). Irregular 
chaotic behaviour is apparent. Top right: A phase portrait, in 
terms of the activity of the three largest 'modes' identified as the 
singular vectors with the largest singular values. The space-filling, 
high dimensional nature of this process is evident. Bottom left: 
The spectrum of singular values following a singular value decompo- 
sition. The number of non-trivial singular values reflects the number 
of 'modes' or distributed patterns of orthogonal activity that 
characterise the data [Friston et al., 19931. Bottom right: Complex- 
ity, shown as the profile of MI' over sizes (MI' is the average mutual 
information between all subsets of size i and the remaining 
components). Complexity is the area under this curve. 

cohort and (3) complexity. The correlation dimension 
was estimated as described in the Appendix. The size 
of the largest phase-locked cohort was calculated 
according to Lumer and Huberman [1992] using the 
largest Fourier component of each unit. The size of the 
largest cohort was estimated as the proportion of units 
in some suitably small frequency range [1/(2T), where 
T is the number of iterations]. Given that the dynamics 
of units within a group were coherent, the smallest 
proportion one would expect to see is about 12.5%. 

The results of 16 analyses of this sort (averaged) are 
presented in Figure 6. As the balance of intrinsic and 
extrinsic connectivity is shifted in favour of extrinsic 
connections, the correlation dimension falls from very 
high values (D2 = 15) to values just above two (a 
chaotic process or strange attractor has a correlation 
dimension of greater than two). Conversely the size of 
the largest phase-locked cohort increases in an irregu- 

I 
500 1000 1500 2000 

-0.21 

time (iterations) 

singular vector or mode 
40 I 
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-50 -50 

profile of mutual informations 

5 5  foH 
5 10 15 20 25 
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Figure 4. 
The same as for Figure 3 but using a balanced admixture of intrinsic 
and extrinsic connectivities. It can be seen that the process is more 
orderly but shows distinct chaotic features. The important thing to 
note is that complexity for this process is higher than in the previous 
figure. Complexity is the area under the curve on the lower right. 

lar fashion through many phase transitions to reach 
70%. Complexity is depicted as the profile of intrinsic 
MI' as a function of f .  The lowest dotted line corre- 
sponds to MI' and the top line to MI32. It is clear that 

time-dependent activity 
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singular value 
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Figure 5. 
As for the previous two figures but in this instance the extrinsic 
connectivity dominates. The process is nearly quasiperiodic (the 
phase portrait shows the attractor manifold to be almost one 
dimensional) with a smaller number of large singular values. Here 
the complexity has fallen with respect to the simulation in Figure 4. 
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complexity is maximal in a limited domain midway 
between a high and low correlation dimension and 
during the phase transitions in which the size of the 
largest cohort is increasing towards maximal levels. 
We had not anticipated such a 'peaked profile for the 
intrinsic mutual informations but this seems to be a 
robust feature in our simulations. It is interesting to 
note that the range of correlation dimensions during 
which complexity is high (vertical dotted lines) agrees 
very well with the correlation dimensions estimated 
using EEG in humans [Gallez and Babloyantz, 19911. 
However, that the Kaplan-Yorke conjecture used in 
the estimation procedure (see Appendix) gives only 
an upper bound on the correlation dimension and this 
congruence may be only fortuitous. 

THE COMPLEXITY OF fMRl DATA 

This section addresses the hypothesis that brain 
physiology has demonstrable and significant complex- 
ity. In general we anticipate that changes in complex- 
ity with brain state will constitute most testable hypoth- 
eses using complexity. Here, however, the aim is to 
show complexity is practicably measurable and signifi- 
cantly higher than in a suitable control system. The 
choice of controls is important because complexity is 
affected by the nature of the measurements used (e.g., 
artefactual autocovariances due to poor spatial resolu- 
tion, noise and low degrees of freedom). In this paper 
we present two comparisons: (1) between fMRI mea- 
surements from within the brain (intracranial) and 
from the same data but sampled outside the brain 
(extracranial) and (2) between the intracranial measure- 
ments and a simulated fMRI time-series with the same 
spatiotemporal spectral density (and, implicitly, auto- 
covariance). 

The hemodynamic response to sensory stimulation 
is usually attributed to a physiological uncoupling of 
regional cerebral perfusion and oxygen metabolism 
[Fox et al., 19881. The result is a time-dependent (but 
uncharacterised) change in the relative amounts of 
venous oxy- and deoxyhemoglobin. Due to the differ- 
ential magnetic susceptibility of oxy- and deoxyhemo- 
globin, a transient change in intra-voxel dephasing is 
observed. This change subtends the measured fMRI 
signal [Kwong et al., 1992; Ogawa et al., 19921. The 
physiological mechanisms which mediate between 
neuronal activity and physiology are not, at this time, 
fully understood; however, the time course of the 
signal is similar to activity-dependent changes mea- 
sured with in vivo optical imaging, of microcirculatory 
events, in the visual cortex of monkeys [Frostig et al., 
19901. 
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Figure 6. 
Results of systematically varying the relative amount of intrinsic and 
extrinsic connectivities to bring the processes from a chaotic to 
near-synchronous behaviour. Top box: Correlation dimension 
(D*-solid line) and size of the largest phase-locked cohort (broken 
line) as functions of the parameter f. f determines the relative 
amounts of intrinsic and extrinsic connections and was increased 
from 0 to 0.4 in steps of 0.0 I. Lower box: Complexity depicted as 
MI' over the range of f. The top broken line corresponds to 
The key thing to note here is that complexity (or MI') is highest in 
the domain of phase transitions from chaos to order, or from 
asynchrony to synchrony. The highest values of Complexity were 
obtained between f = 0.1 and 0.2 (dotted vertical lines). The 
correlation dimension over this range was about 74, a range of 
values found in EEG recordings from the human brain [Gallez and 
Babloyantz, 19911. In this domain the largest cohort rose from 
about 30% to 50% of all the units. 

The data 

The data were a time-series of 64 gradient-echo EPI 
single coronal slices (5 mm thick, 64 x 64 pixels) 
through the calcarine sulcus and extrastriate areas. 
Images were obtained every 3 seconds from a single 
male subject using a 4.OT whole body system, fitted 
with a small (27 cm diameter) z-gradient coil (TE 25 
ms, acquisition time 41 ms). Photic stimulation (at 16 
Hz) was provided by goggles fitted with an array of 
light emitting diodes. The stimulation was off for the 
first 10 scans (30 seconds), on for the second 10, off for 
the third, and so on. The data were interpolated from 
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64 x 64 pixels to 128 x 128 pixels [Keys, 19811. Each 
pixel thus represented 1.25 x 1.25 x 5 mm of cerebral 
tissue. The first four scans were discarded to eschew 
magnetic saturation effects. Image manipulations and 
data analysis was performed in Matlab (Mathworks 
Inc., Sherborn, MD). 

Analysis 

Eight horizontal lines, with a spacing of four pixels 
(5 mm), were selected (see Fig. 7). Each line segment 
consisted of 58 pixels. The reason for using these small 
subsets of the data lies in the limited time-series (64 
scans) available. Covariance matrices based on 64 or 
more pixels would be singular. The control fMRI data 
were obtained in an identical fashion but using an 
array of lines outside the brain. The simulated data 
were created by randomising the phases of the intra- 
cranial time-series, following two-dimensional Fourier 
transform. The results of this manipulation are a 
stationary time-series with the spectral and autocovari- 
ance properties of the original data. Any complexity 
due to, and only to, poor spatiotemporal resolution 
will be expressed in these simulated data. 

For each of the eight sets of data (real and two 
control) the complexity was assessed with the profile 
of MIi from one to 28 pixels using Equation (5) and 
Equation (6). The results of this analysis are shown in 
Figure 8. It can be seen that the complexity of the 
intracranial data is significantly higher than both the 
extracranial and simulated data (t = 12.76 and 12.65; 
df = 7; P < 0.001). It is interesting to note that the 
extracranial data had higher MIi for smaller subsets 
than the simulated data. Indeed the extracranial data 
were statistically more complex than the simulated 
data (t  = 3.28; df = 7; P < 0.05). One explanation for 
this is that during the image reconstruction process 
neurophysiological vsriance becomes distributed 
throughout the image (including extracranial parts). 
This was confirmed post hoc using singular value 
decomposition which revealed a substantial extracranial 
mode time-locked to the periods of photic stimulation. 

CONCLUSION 

The dual constraints imposed by functional speciali- 
sation and functional integration in the brain suggest 
that reentrant dynamics should exhibit complexity of 
a specific nature. A measure of this complexity is now 
available [Tononi et al., 19941. One powerful interpre- 
tation of this measure is in terms of a high (average) 
mutual information between local regional dynamics 
and activity in the rest of the brain. We predicted that 
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Figure 7. 
The functional MRI data used in subsequent analyses. Top left: MRI 
scan showing total field of view and the part of the image that 
corresponds to the map of physiological variance on the top right. 
Top right: An image of the variance in hemodynamic signal over 
the 64 scans. The image has been scaled to its maximum. The 
horizontal lines represent the (eight) rows of (58) pixels selected 
for further analysis. Bottom left: The covariance matrix of the 
time-series from the last row of 58 pixels. Dark means a higher 
covariance. This section is just above V I  according to the atlas of 
Talairach and Tournoux [1988]. Bottom right: Spectrum of 
eigenvalues of the covariance matrix shown on the bottom left. 
This spectrum should be compared with the singular value spectra 
from the simulated processes (Figures 3,4 and 5). 

(1) complexity of this sort would be greatest in simu- 
lated nonlinear processes that were similar to the 
brain (in terms of the balance between high-dimen- 
sional chaotic behaviour and low-dimensional orderly 
behaviour) and (2) complexity would be measurably 
high in real neurophysiological data. We were able to 
confirm both predictions. 

In this paper complexity reflects a particular form of 
scaling behaviour, of the entropies measured at differ- 
ent scales of the system in question. Entropy always 
changes monotonically with the scale or size of the 
subsystem considered, but in a complex system the 
rate of change of entropy (with scale) is greater at 
smaller scales than at larger scales. This allows re- 
gional dynamics with relatively rich information (high 
entropy) to exist in the context of integration at a 
global scale (low entropy). This scaling behaviour has 
been framed in terms of functional specialisation and 
integration of cortical areas; however, we propose that 
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Figure 8. 
The Complexity in terms of the profile of MI' (the mutual 
information between contiguous subsets of voxels and the remain- 
ing voxels) for the eight fMRl time-series depicted in Figure 
7-intracranial (solid lines); eight equivalent time-series but ex- 
tracted from parts of the image outside the brain-extracranial 
(broken line); and simulated stationary processes with the same 
spectral and autocovariance properties as the intracranial data 
(dotted line). As predicted, the intracranial fMRl data show 
significantly more complexity than the two control data. 

this is a general phenomenon that applies at any 
anatomical scale and to any neurobiological time- 
series, whether they relate to cortical areas (eg., 
cytoarchitectonic regions of interest in fMRI) or not 
(e.g., multichannel EEG data). 

One focus of this paper was to establish a link 
between information theoretic and nonlinear dynami- 
cal characterisations of complexity. This is not as easy 
as it may seem, given that these two classes of measure 
pertain to very different aspects of the system or 
indeed different sorts of system (e.g., stochastic vs. 
deterministic). Most nonlinear characterisations (e.g., 
correlation dimension, metric entropy, etc.) can be 
related to the Lyapunov exponents of the process. The 
Lyapunov exponents reflect the (average) degree of 
exponential divergence and convergence of trajecto- 
ries on the attractor manifold. In this sense they 
provide a local characterisation of the relationships 
among the system's variables. Conversely, informa- 
tion theoretic measures (based on the theory of stochas- 
tic processes and probability theory) use the global or 
overall shape of the p.d.f. that ensues when the system 
is looked at from a stochastic perspective. A determin- 
istic but chaotic process measured with finite and 
stochastic error would generate a p.d.f. that could be 

thought of as a 'blurred version of the attractor. 
Therefore, information theoretic measures are com- 
ments about the shape of the attractor manifold and 
regional variations in its density. Of course these two 
(local and global) characterisations are not indepen- 
dent. For example, the fractal dimension of the attrac- 
tor manifold will have profound effects on the total 
amount of space filled by the p.d.f. The first section in 
this paper provides anecdotal evidence that complex- 
ity, based on statistical entropies, can be used to 
characterise nonlinear systems in a meaningful way. 
More specifically we demonstrated that there is a 
systematic and predicted (inverted 'U') relationship 
between complexity, defined in terms of mutual infor- 
mation, and the degree of chaos, as measured with the 
correlation dimension. 

One interesting link between complexity and the 
nonlinear dynamics of spatially extended systems is 
the coexistence of many correlation lengths (distances 
over which correlations extend) in the vicinity of 
phase transitions. A heuristic argument could be made 
that complexity necessarily requires this admixture of 
correlation lengths: If all the correlation lengths were 
small this might ensure a high local entropy but would 
not permit integration. Conversely, if all the correla- 
tion lengths were large, integration would be assured 
(with a low global entropy) but no local specialisation 
could ensue. Complexity therefore requires a mixture 
of long and short correlation lengths. We are indebted 
to Eric Lumer for this observation. In support of this 
argument our results suggest that, in the regon of phase- 
transitions (see Fig. 6), complexity was the highest. 

One important difference between nonlinear mea- 
sures and complexity is a practical one. To reliably 
measure the Lyapunov exponents (or correlation di- 
mension) one needs considerable amounts of reason- 
ably noise-free, stationary data (some EEG and MEG 
setups provide data of sufficient quality and quantity 
to support nonlinear analysis [e.g., Gallez and Babloy- 
antz, 19921). On the other hand, complexity can be 
measured with relatively noisy and short time-series, 
especially if they conform to multivariate Gaussian 
assumptions. This is important from the point of view 
of measuring complexity in neurophysiological data 
from functional imaging and non-stationary electro- 
physiological time series. The final part of this paper 
was a simple illustration of how to measure complex- 
ity using fMRI. As predicted the complexity of fMRI 
signals was significantly higher than could be ac- 
counted for by spatiotemporal autocovariance or the 
small number of time points. 

The estimation of complexity can be confounded by 
the nature of the data used. It is easy to show that, 



+ Friston et al. + 

under Gaussian assumptions, convolving the data 
(with, say, the point spread function of an imaging 
device) will generally increase the apparent complex- 
ity. This follows from the fact that complexity attribut- 
able to a convolution is additive and is the complexity 
of the autocovariances due to the convolution. This 
complexity is positive for Gaussian convolution ker- 
nels. If the point spread function is known it is easy to 
correct the complexity measure by simply subtracting 
the complexity due to the resulting autocorrelations. 
Noise reduces measured complexity. This is simple to 
see in that noisy data will emulate a system which is 
more ’independent’. It should also be born in mind 
that the number of time points can affect the assess- 
ment of Complexity. This follows from changes in the 
reliability of the estimated covariances. This phenom- 
enon is encountered when assessing the significance 
of correlations. The distribution of the correlation 
coefficient will change with the degrees of freedom 
associated with the estimate. 

These limitations on measuring complexity may 
seem to challenge its usefulness as a measure. How- 
ever, as with the correlation dimension, many impor- 
tant neurobiological questions can be formulated in 
terms of changes in complexity. In these cases the 
confounding effects of resolution, noise and degrees 
of freedom can be controlled for by experimental 
design. In other words, if the resolution of the data, 
the signal to noise and degrees of freedom of the 
measured covariances are the same, then the complex- 
ity of two systems should be comparable. 

A few qualifications deserve mention. First, the 
results presented in this work are far from exhaustive. 
We have looked at one very constrained nonlinear 
simulation and have made no attempt to explore the 
universe of nonlinear systems either mathematically 
or empirically. The measure of complexity of the 
simulations use Gaussian assumptions [Eq. (5)], which 
are not strictly valid, particularly for low dimensional 
systems, and therefore the complexity estimates should 
be regarded as, at best, rough. The empirical determi- 
nation of entropy, or mutual information, from high- 
dimensional systems is extremely difficult and at least 
the methods used here are easily reproduced. 

We conclude with a few comments relating to the 
use of complexity in the analysis of reentrant interac- 
tions in the brain. A clear prediction, derived from the 
relationship between the correlation dimension and 
complexity in our simulations, is that the complexity 
of multichannel EEG recording should be maximal in 
some limited range (probably associated with alert 
and attentive sensory states). The most powerful 
prediction here is that the complexity of EEG signals 

will show an inverted ’ U  behaviour as a function of 
the correlation dimension. The relationship between 
the size of the largest cohort and complexity provides 
an interesting link to the understanding of synchro- 
nous neuronal interactions [Eckhorn et al., 1988; Gray 
and Singer, 1989; Sporns et al., 1989; Tononi et al., 
19921. Simulations exploring phasic interactions in the 
context of integrating various attributes of visual 
stimuli have demonstrated a role for distributed phase- 
locked cohorts of neuronal groups [Sporns et al., 1989; 
Tononi et al., 19921. In particular, phase-locked co- 
horts have been implicated in mediating adaptive 
responses to conjunctions of disparate visual features. 
The observation that a high complexity was associated 
with the formation of large phase-locked cohorts (but 
not global synchrony) suggests that tasks involving 
distributed attention may be associated with a higher 
complexity than equivalent tasks using directed atten- 
tion. A nice example of this sort of task (performed 
during functional imaging) can be found in Corbetta 
et al. [1991], where the ‘correct’ response depended 
either on the conjunction of colour, form and motion 
of target stimuli or on the presence of just one 
attribute. The degree of integration required by the 
former task would possibly require a greater degree of 
phasic reentrant interactions and therefore subtend a 
greater complexity. With the advent of new functional 
imaging technologies, these sorts of hypotheses are 
now testable. 
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APPENDIX 

This appendix presents the details of the nonlinear 
simulations used in this work and how the correlation 
dimensions were estimated. Eight groups of eight 
units each were simulated. The within group or 
intrinsic connectivities (I) were sampled randomly 
from a uniform distribution in the range (0,l). They 
were then modulated by a sine wave envelope, which 
rendered short range connections negative and longer 
connections positive (see Fig. 2, upper left). The period 
of the sinusoidal envelope was equal to the size of the 
groups (eight units). Matrices of intrinsic connectivity 
were selected if, and only if, they supported chaotic 
behaviour. This ensured that each group had its own 
unique and chaotic dynamics. An identical procedure 
was used to create the between group or extrinsic 
connectivity matrix, only in this case the period of the 
envelope was 64 units. In addition the extrinsic connec- 
tions were sparse, the sparsity structure being random 
(5% non-zero elements). The intrinsic (I) and extrinsic 
(E) connectivity matrices are shown in the lower part 
of Figure 2. The intrinsic and extrinsic connectivities 
were designed to be self-similar so that the any 
conclusions based on the simulations might ’scale’. 
The two matrices were combined according to a 
control parameter f: 

Q = J(1 - f).I + J(f).E 

This ensured that the Frobenius norm of Q(\jZ,,,Qt) 
was constant (=1.5) (both I and E were scaled such 
that their Frobenius norms were 1.5). This constraint is 
fairly arbitrary but ensures that the total amount of 
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connectivity was constant for each of the simulations. 
The simulations were obtained by integrating: 

where x, represents the activity of unit i (i = 1 . . .64). + 
is the error function (a monotonic increasing nonlin- 
ear function). The terms inside the summation repre- 
sent: (1) a direct influence of unit j on unit i and (2) a 
modulatory, or 'voltage-dependent' effect (scaled by 
p = 0.05) which depends on an interaction between 
afferent input (Qljxl) and target activity (x,). The final 
term is simply decay and was sufficiently large to 
ensure the system was dissipative (X = 0.15). Equation 
(9) was chosen because it is a plausible model of 
neuronal interactions and at the same time is analyti- 
cally tractable. The elements of the system's Jacobian 
are given by: 

and 

Knowing the Jacobian is important because it allows 
one to compute the Lyapunov exponents and, from 
them, the correlation dimension. The Lyapunov expo- 
nents were taken to be the expectations of the eigen- 
values of the Jacobian [Eq. (lo)] evaluated over 256 
iterations of the system's trajectory. The Lyapunov 
exponents reflect the average exponential divergence 
(and convergence) of nearby trajectories as they course 
over the local attractor manifold. For the attractor to be 
strange at least one Lyapunov exponent must be 
positive (implying divergence in at least one dimen- 
sion). The correlation dimension of each simulated 
process was calculated according to the Kaplan-Yorke 
conjecture using these estimates of the Lyapunov 
exponents (see Kaplan and Yorke [1979] for further 
details). 
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