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Abstract

The medial temporal lobe may play a critical role in binding successive events into memory while encoding contextual information in implicit

and explicit memory tasks. Information theory provides a quantitative basis to model contextual information engendered by conditional

dependence between, or conditional uncertainty about, consecutive events in a sequence. We show that information theoretic indices

characterizing contextual dependence within a sequential reaction time task (SRTT) predict regional responses, measured by fMRI, in areas

associated with sequence learning and navigation. Specifically, activity of a distributed paralimbic system, centered on the left hippocampus,

correlated selectively with predictability as measured with mutual information. This is clear evidence that the brain is sensitive to the probabilistic

context in which events are encountered. This is potentially important for theories about how the brain represents uncertainty and makes

perceptual inferences, particularly those based on predictive coding and hierarchical Bayes.

q 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Causal structure within the physical world induces regu-

larities in the timing and order of events. Such regularities

enable an organism to predict outcomes given current

information and thereby learn from, and adapt to, the changing

world within which it has to survive. A memory system that

supports this form of learning is therefore useful. It has been

suggested that the medial temporal lobe (MTL) plays a crucial

role in generating flexible representations of novel contextual

relationships among distinct stimulus features (Chun & Phelps,

1999; Poldrack & Rodriguez, 2003; Rose, Haider, Weiller, &

Buchel, 2002; Schendan, Searl, Melrose, & Stern, 2003).

According to this relational account of memory, the MTL is

engaged in associative processes that bind multiple aspects of

stimulus events into a memory (Cohen & Eichenbaum, 1993;

Wallenstein, Eichenbaum, & Hasselmo, 1998) whether the

content ofwhat has been learned is available to awareness or not.

The aim of this study was to establish a quantitative
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relationship between neurophysiological responses evoked in

the hippocampus, during the presentation of stimulus

sequences, and the predictability of those sequences as

measured using information theory. Samples were taken from

a discrete conditional probability distribution to generate a 1st

order Markov sequence (Cox & Miller, 1965) of varying

predictability. Information theory measures of conditional

uncertainty were then used to model behavioral and functional

imaging data acquired during a sequential reaction time task

(SRTT) using these sequences. This task is typically used in

cognitive psychology to dissociate learning from awareness

(Willingham, 1980). We hoped to show that conditional

uncertainty and predictability are encoded within the MTL and

connected structures.

There are two levels at which hippocampal and related

paralimbic structures could be involved in representing the

probabilistic structure of sequences. There is considerable

evidence that the hippocampus is sensitive to novel events that

are, by definition, unpredictable. Here the predictability

pertains to the probability of a particular stimulus or event.

However, there is a probabilistic context in which events occur

that could also be usefully encoded by systems like the

hippocampus. This level of representation is the predictability

of, or uncertainty about, events before they occur.
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1 Schendan et al. used second order sequences, i.e. where contingencies exist

among more than two successive trials (see Section 4).
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This uncertainty is not stimulus bound, but reflects the

temporal regularity of successive events in a given experimen-

tal or environmental context.

The probabilistic context is potentially important from the

point of view of perception and representational learning.

Theoretical accounts of perceptual inference, based on

generative models and predictive coding, emphasize the

conjoint influence of bottom-up evidence from sensory inputs

and top-down effects that mediate prior expectations. To attain

the optimum balance, the relative uncertainty associated with

the bottom-up and top-down information must be known, or

estimated. This uncertainty clearly changes with the predict-

ability associated with the sensory context. We hypothesized

that the neurophysiologic correlate of predictability would be

observed with functional neuroimaging, possibly in the

hippocampus that has a special role in sequential processing.

There is current interest in the neuronal mechanisms that might

encode predictability or uncertainty that make these

physiological correlates particularly interesting (see for

example Yu & Dayan, 2002). The theoretical analysis

presented in Yu and Dayan is relevant because it implicates

cholinergic neurotransmission, that has a key role in regulating

hippocampal dynamics (Hasselmo, 1999). Our focus was on

encoding uncertainty in stimulus–stimulus relationships.

However, it is interesting to note that in stimulus-response

learning that the dopamine system, which targets dorsal and

ventral striatal, orbital and frontal regions, may encode the

discrepancy between predicted and actual reward (prediction

error) and uncertainty (Aron et al., 2004; Fiorillo, Tobler, &

Schultz, 2003).

In this work, we were interested in region-specific

responses to changes in probabilistic context, as reflected by

the conditional uncertainty about sequential events. A

sequence that has a simple structure is one where the current

event (Et) is conditionally dependent on the previous (EtK1).

The probability of transition between consecutive events is

given by a conditional probability p(EtjEtK1), also known as a

transition matrix (TM). Serial events that conform to this

model are 1st order Markov sequences. By presenting

different 1st order Markov sequences to subjects we were

able to vary the uncertainty and quantify it using information

theory. We calculated four indices for each sequence: the

surprise of each stimulus ðĥÞ, the entropy of each sequence

ðĤÞ, the reduction in surprise afforded by the previous

stimulus ðîÞ and mutual information between consecutive

stimuli within a sequence ðÎÞ. Surprise and its reduction are

stimulus-specific, whereas entropy and mutual information are

measures of uncertainty that pertain to the context established

by each sequence. Critically, the mutual information provides

a natural measure of conditional uncertainty (conditioned on

previous stimuli).

We used the SRTT to engage the hippocampal system in a

relational task and to model the effect of conditional

uncertainty on both behavioral and fMRI responses. Clearly,

from the point of view of the subject, the conditional

uncertainty had to be learned for each new sequence. As

each sequence progressed, conditional uncertainty about
the next stimulus falls as the probabilistic structure is disclosed.

We modeled this assuming that the subject was an ideal

Bayesian observer, who started with flat priors at the beginning

of each sequence. In addition to this within-sequence, learning-

related change in uncertainty we introduced between-sequence

differences by using different probability transition matrices.

This increased the statistical efficiency of our experimental

design

In brief, we demonstrated a dependence of reaction times on

the information theoretic measures above and, critically,

showed that BOLD activity increased with mutual information

in the left hippocampus, bilateral parieto-occipital sulcus, left

retrosplenial cortex and right anterior cingulate. Measuring the

correlates of conditional uncertainty in this way represents a

quantitative approach to the brain’s response to hidden

structure within sequences and the encoding of uncertainty.1

To assess the frequency with which subjects become explicitly

aware of the contingencies, we performed an auxiliary

behavioral study (without scanning), involving twelve different

subjects using the identical paradigm.
2. Methods

2.1. Experimental design

The design comprised 12 blocks, each containing a

sequence of 40 trials. A trial involved presenting one of

four possible colored shapes (displayed at the bottom of the

screen; stimulus duration 500 ms; stimulus onset asyn-

chrony: 2.2 s). Subjects were required to respond by

identifying the target and their reaction times were recorded.

In all trials two colors and shapes were combined to form

four possible events. An example of a trial is shown at the

top of Fig. 1a. At the beginning of a block subjects were

cued for 5 s with the four objects in a row at the bottom of

the screen, which remained there throughout the block.

Following the initial 5 s a series of 40 trails were sampled

from a transition matrix, p(EtjEt-1) and presented to subjects

as a SRTT. See Fig. 1b for an example of a transition

matrix, where the top right figure shows its gray-scale

representation.

Dependence between consecutive trials is encoded in the

transition matrix, which remained constant within a block and

varied over blocks. Subjects were asked to respond to each trial

by pressing a key to indicate the position of the target in the

display at the bottom of the screen as rapidly as possible, but

not at the expense of accuracy. A schematic of a block is shown

in Fig. 1a. No indication as to an underlying pattern within the

sequence was given. Thirteen subjects were scanned whilst

performing the task and debriefed afterwards to assess their

awareness of patterns within the sequence.



Fig. 1. (a) The four alternative choice reaction time paradigm.Subjectswere required to press the key indicating the position of the target in the rowbeneath (indicated in the

topfigureby ‘1’ in bold type).Below isa schematic of samples displayedoveroneblock.A rowofpossible targetswas shown for 5 s before trials began.Eachblockconsisted

of 40 trials (first two and last one shown) with 12 blocks over the experiment. (b) An example of a transition matrix quantifying dependence among consecutive trials. The

sequenceof eventsproducedby sampling from this distribution isanexample of a1st orderMarkov sequence.Gray-scaleplot (top right) represents conditionalprobabilities.
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2.2. Sample-based estimation of uncertainty

Given the sampling nature of experience an observer can

only infer probabilistic structure from events. We used the

notion of an ‘ideal’ observer to estimate the conditional

probability, p(EtjEtK1) using a simple Bayesian update

scheme. We assumed that, at the beginning of each block,

the observer started with a prior that all current events are

equally likely and consecutive events are independent. This is

not a trivial assumption and is the topic of current research into

intelligent priors given small data sets (see Section 4).

The marginal distribution, p(Et), was estimated from the

number of occurrences of event i up to sample t (written as nti,

where i indexes the event type and t the trial number). The

estimate at sample t (tO0 and tZ0, respectively) is given by

Eq. (1), from which entropy is calculated.

ftðEt Z iÞZ
ðnti C1ÞP
iðn

t
i C1Þ

; f0ðE0 Z iÞZ
1

4

� �
(1)

Fig. 2 shows the estimate (dashed line) of one sequence,

where entropy is initially maximal and decreases towards the

true value (solid line) with increased sampling. Similarly an

estimate of the joint probability distribution can be estimated

from a count of event pairs up to sample t (written as ntij, where

i and j index the current and previous event type) and is
. 2. Estimating the marginal probability distribution. Top figure: grayscale representa

(Et) of the marginal distribution. Lower figure: the estimated entropy (dashed line)
given by

ftðEt Z i;EtK1 Z jÞZ
ðntij C1ÞP
i;jðn

t
ij C1Þ

;

f0ðE0 Z i;EK1 Z jÞZ
1

16
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Initially, the observer is ignorant of all contingencies (f0 in

parentheses). An estimate of the transition matrix, ft(EtjEt-1), is

easily calculated from ft(Et,EtK1), which approaches the true

transition matrix with more samples (shown for one block in

Fig. 3). The initial estimate of mutual information is zero. As

sampling begins, a tally of consecutive event pairs (Et,Et-1) is

used to update ft(EtjEtK1) with each sample. The final estimate

of the true transition matrix is shown in the middle figure after

40 trials. This can be compared to the true distribution,

p(EtjEtK1). A plot of mutual information is shown in the lower

figure, where the true value (solid line) is constant over the

block, while the estimate (dashed line) rises towards the true

value.

The relationship between entropy, conditional entropy and

mutual information is illustrated in Fig. 4 with a Venn

diagram (Cover, 1991) and Fig. 5 with time series of estimates

over 1 block. The reduction in uncertainty in the current trial,

afforded by the previous, is apparent on comparing H(Et) and

H(EtjEt-1)ZH(Et)KI(Et;EtK1) in the top graph, Fig. 5.
tion of the distribution to be estimated, p(Et). Middle figure: the last estimate

decreasing towards the true value (solid line) as sampling increases.
,



Fig. 3. Estimating p(EtjEt-1). Top figure: the conditional distribution to be estimated. Middle figure: the final estimate, f40(EtjEtK1) of this distribution given 40 trials.

Lower figure: the mutual information of the estimated transition matrix (dashed line) rising towards the true value (solid line) as sampling increases.

Fig. 4. Relationship between entropy, conditional entropy and mutual

information illustrated using a Venn diagram. The degree to which ‘surprise’

is reduced in Et conditional on Et-1 is measured by the mutual information.
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The difference is the mutual information and is shown at the

bottom of the figure.

Once entropy and mutual information are estimated the

trial-by-trial surprise and reduction in surprise can be

calculated. The expressions used to estimate the surprise ðĥÞ,

entropy ðĤÞ, surprise reduction ðîÞ and mutual information ðÎÞ,

are

ĥðEt Z iÞZKlogðftðEt Z iÞÞ

ĤðEtÞZ KlogðftðEtÞÞh iftðEtÞ

îðEt Z i;EtK1 Z jÞZ log
ftðEt Z ijEtK1 Z jÞ

ftðEt Z iÞ

0
@

1
A

ÎðEt;EtK1ÞZ log
ftðEtjEtK1Þ

ftðEtÞ

* +
ftðEt ;EtK1Þ

(3)

Examples of all four quantities over the duration of an

experiment, for one subject, are shown in Fig. 6. Initially all

events are equally uninformative, but as contingencies are

learned, some events become more predictive than others.

Similarly for surprise, initially all events are equally surprising,

but eventually some events are more surprising than others.

This explains the increased variability in both trial-by-trial
surprise and reduction in surprise with increasing sample

number.

We were interested in regional responses that correlated

with conditional entropy H(EtjEt-1), i.e. conditional uncer-

tainty. However, entropy and conditional entropy are

themselves highly correlated, which could confound our

interpretation. However, the expression H(EtjEtK1)ZH(Et)K
I(Et;Et-1), allows us to decompose conditional entropy into an

instantaneous component (entropy), and one that models the

temporal relationship (mutual information) among consecutive



Fig. 5. Example of entropy, conditional entropy and mutual information calculated over a single block. Dependence between consecutive trials, embedded within the

transition matrix, is evidenced in the top graph by the reduction in conditional entropy (dashed line) compared to the entropy (solid line). The difference is the mutual

information, which is a measure of the average contingency among consecutive events (bottom graph).
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trials. This decomposition disambiguates the interpretation of

cortical correlates. Heuristically, this says that conditional

uncertainty about the next stimulus, given the current stimulus,

can be partitioned into two components. The first is simply the

uncertainty about the next stimulus irrespective of the

preceding stimulus. The second component is the reduction

in this uncertainty afforded by its precedent. This second

component is specifically related to the probabilistic structure

of the temporal contingencies and was the focus of our

analysis.

2.3. Assessing explicit learning

In the behavioral experiment, after each block subjects were

given a free generation task used by Honda et al (Honda et al.,

1998) to assess awareness of a deterministic sequence. Subjects

were asked: ‘Did you notice anything about the task?’ If they

answered yes, they were asked ‘What did you notice?’ and if

they answered ‘a sequence’ or ‘pattern’ they were asked to

‘report the sequence, as far as you noticed, verbally’.

Subjects were then given a cued generation task to assess

their ability to generate the contingencies they had encountered

during a block. The test involved presenting subjects with a test

sequence of four trials, generated from the same transition
matrix, after which they were asked which object was most

likely to occur next. The last in the test sequence varied through

the four possible targets (i.e. target numbers 1–4) to test

contingencies associated with each target. Twelve blocks in

total generated 48 responses per subject. Given that we knew

the conditional and marginal distributions used in each block,

we were able to ask whether there was any evidence, within

subjects’ responses, in favor of explicit learning of the

conditional probabilities. We assessed this using the likelihood

ratio of their responses based on the conditional distribution

p(EtjEtK1), relative to the marginal distribution p(Et). This

odds-ratio provided a principled test of whether the subjects’

responses were informed explicitly by the contingencies to

which they had been exposed.

2.4. Subjects

Informed consent was obtained from 13 right-handed

subjects (8 males; age range 22–35 years; mean age 27).

Ethics approval was obtained from the joint ethics committee

of the Institute of Neurology, University College London and

National Hospital of Neurology and Neurosurgery, London.

A behavioral study on 12 different subjects (7 male; age range



Fig. 6. Plots of surprise, entropy, reduction in surprise and mutual information over 12 blocks during one experiment. These time series were calculated for each

subject and used as regressors in a general linear model (SPM2 software) of the BOLD time series.
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23–34; mean age 26) was performed to assess awareness of

patterns within blocks of trials.
2.5. Imaging

A 2T Siemens VISION system was used to acquire T1-

weighted anatomical images and gradient-echo echo-planar

T2*-weighted MRI image volumes with blood oxygenation

level dependent (BOLD) contrast. A total of 552 volumes were

acquired per subject plus 6 initial ‘dummy’ volumes to allow

for T1 equilibration effects. Volumes were acquired continu-

ously every 2506 ms. Each volume comprised thirty-three

3.3 mm axial slices, with an in-plane resolution of 3!3 mm,

positioned to cover the entire cerebrum. The imaging time

series were realigned, slice-time corrected, normalized into the

standard anatomical space defined by Montreal Neurological

Institute (MNI) and smoothed with a Gaussian kernel of 6 mm

full width half maximum.

The data were analyzed using the software Statistical

Parametric Mapping (SPM2, http:\\www.fil.ion.ucl.ac.uk/

spm), employing an event-related model (Josephs, Turner, &

Friston, 1997) and a two-stage random effects procedure.

A model of the BOLD response to trials (explanatory variables)

was constructed by convolving a series of modulated delta-

functions (one for each trial) with a canonical hemodynamic

response function (HRF). The delta functions were modulated

by the estimates of trial-by-trial surprise ðĥÞ, entropy ðĤÞ trial-

by-trial reduction in surprise ðîÞ and mutual information ðÎÞ.
This meant that the effect of each information theoretic

measure was modeled at the neuronal level and whose

consequences on the BOLD response could be predicted.

This predicted BOLD response for each information theoretic

index was used in a general linear model to investigate the

measured BOLD response. Maximum correlation among the

regressors was K0.1728 (between mutual information and

entropy). Nuisance variables included an exponentially decay-

ing covariate (half life of three blocks) to model non-specific

adaptation, response errors, low frequency drifts in signal (cut

off 64 s) and movement parameters, calculated during

realignment. The 5-s cue periods before each block were

modeled using delta functions at the beginning of each block.

Parameter estimates for each subject and regressors were

calculated for each voxel (Friston, 1995). For the second stage

of the random-effects analysis, subject-specific parameters for

each of the four information theoretic measures were entered

into four one-sample t-tests.
3. Results

3.1. Behavioral

3.1.1. Reaction times

All incorrect responses were removed and the average

reaction times, over all blocks and subjects calculated. These

are shown in Fig. 7 and demonstrate a large initial reduction

followed by a gradual decrease in reaction times with trial

http://http:\\www.fil.ion.ucl.ac.uk/spm
http://http:\\www.fil.ion.ucl.ac.uk/spm


Fig. 7. Temporal dynamics of learning. Average reaction times (msG SD) for all subjects (25 in total) are shown. Reaction times decrease, on average, as sampling

increases.
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number within a block. This indicates implicit or explicit

learning. In addition an AnCova of the reaction times was

performed using the four information theoretic indices as

explanatory variables. These results are shown in Fig. 8, which

demonstrates a significant reduction in reaction times (ms/bit)

for both mutual information (66 ms/bit; p!0.001) and

reduction in surprise (21 ms/bit; p!0.001). There was a

significant increase with entropy (169 ms/bit; p!0.001) and

surprise (63 ms/bit; p!0.001). In short, subjects took less time

to respond when the sequence was predictable and longer to

less frequent (more surprising) events, irrespective of the

sequences predictability.

It is important to appreciate that the reductions in reaction

time predicted by changes in any one of the four measures

cannot be explained by changes in the others. This is the

nature of inference with the general linear model (in this

instance, analysis of covariance); in which one regressor

‘explains away’ any effect that could be explained by another.

This means that not only do surprising events incur a longer

reaction time but also, in the context of sequences that are

inherently unpredictable, there is a further increase above and

beyond the average of the trial-bound increases. In other

words, the reaction time appears to be sensitive, both to the

probabilistic attributes of specific events and to the

probabilistic context in which these events occur. This was

in contra-distinction to the neurophysiologic responses (see

functional imaging results) that seemed to be much more
sensitive to the probabilistic context, as indexed by mutual

information.
3.1.2. Free generation task

In the behavioral study subjects reported positively in 46%

of blocks to the first question, ‘did you notice anything about

the stimulus?’. These subjects were then questioned further.

In 24% of blocks subjects were unable to describe what they

noticed. In 22% of blocks they were able to give examples of

what they had noticed, however, most of these were incorrect.

Subjects were able to correctly identify simple repetitions of a

single object (3–10 trials) or alternations between two objects

lasting for 2–4 cycles in 10% of blocks.
3.1.3. Cued generation task

We were interested in assessing whether responses were

based on an explicit knowledge of the conditional distribution

or just the marginal distribution. Logarithms of the odds-ratio

for each subject are shown in Fig. 9. For all subjects (except

one) the evidence is in favor of the marginal distribution and

significantly so for ten out of twelve of the subjects. This means

that, despite faster reaction times, they were not able to use

what they had learnt explicitly. We conclude from this that

subjects did not have explicit access to the conditional

probabilities acquired implicitly. The distinction between

implicit and explicit learning is not central to our basic

hypothesis that the brain represents sequential predictability.



Fig. 9. Cued generation task. Bar plot of the logarithm of relative likelihood (RL) for each subject. The RL compares the likelihoods of two models (conditional and

marginal) of subject responses. The upper and lower bounds correspond to 20 and 0.05 (i.e. Glog(20)zG3). This corresponds to 20:1 ‘odds’ in favor of the

conditional and marginal model, respectively.

Fig. 8. AnCova of reaction times (ms/bitGSD). Less time is required to respond correctly to contingent events and response time increases with surprise.
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Table 1

List of regions (including coordinates, Z-scores and corrected p-values)

sensitive to mutual information

Brain region x, y, z maxima Z score p-values

(corrected)

Left hippocampus K30, K18, K24 4.36 0.004

Right parieto-occipital sulcus 22, K60, 12 4.49 0.000

Left parieto-occipital sulcus K12, K62, 16 3.9 0.000

Left retrosplenial cortex K6, K48, 22 4.11 0.000

Right anterior cingulated 4, 32, 16 3.87 0.001

Fig. 11. Parameter estimates (GSE), from a random effects analysis, of all

indices at local maxima within left (a) and right (b) parieto-occipital sulcus

[K12,K62, 16] and [22,K60, 12], (c) left retrosplenial cortex [K6,K48, 22]

and (d) right anterior cingulate [4, 32, 16].
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Indeed, our statistical model was based upon an ideal Bayesian

observer that is indifferent to the cognitive mechanisms that

mediate learning. However, from a cognitive neuroscience

perspective, our results can be interpreted within the domain of

implicit learning.

In what follows, we only discuss results that survived a

correction for multiple comparisons, using the corrected

p-value based on spatial extent (see Table 1). A height

threshold of p!0.001 uncorrected defined the spatial extent.

3.2. Functional imaging results

Activity in left hippocampus, bilateral parieto-occipital

sulcus, left retrosplenial cortex and right anterior cingulate was

positively correlated with mutual information. No significant

effects were seen for the remaining information theoretic

indices at this threshold. See Table 1 for coordinates and

Z-scores of significant regions. Fig. 10 shows orthogonal

sections of a Statistical Parametric Map (SPM) centered on the

local maxima (voxel coordinate [K30, K18, K24]) of the left

hippocampus. This demonstrates the response of the left

hippocampus to mutual information. The bottom right panel
Fig. 10. Random effects analysis of left hippocampal [K30, K18, K24]

response to mutual information. The SPM (corrected at the cluster level to

retain clusters at p!0.05; height threshold p!0.001) is overlaid on sections of

a subject mean echo planar image. Parameter estimates (GSE) from all four

indices (Î, î, Ĥ and ĥ) are shown in the bottom right panel. A significant effect

was detected for mutual information only.
of this figure shows parameter estimates at the same local

maxima to all information theoretic indices (taken from a one-

sample t-test at the second level) and demonstrates the

selective response to mutual information. Parameter estimates

measured in parieto-occipital sulcus, retrosplenial cortex and

anterior cingulate are shown similarly in Fig. 11 (voxel

coordinates of local maxima given in Table 1). All regional

responses correlate selectively with mutual information, except

in anterior cingulate, which also showed significant negative

correlation with entropy.
4. Discussion

This study was designed to engage the hippocampal system

using a 1st order Markov sequence in a sequential reaction time

task (SRTT). Recent reports (Rose et al., 2002; Schendan et al.,

2003) have presented evidence for a relational memory account

of learning. This calls on the hippocampal system to represent

temporally distinct and novel relationships, regardless of

whether the task is learned implicitly or explicitly. The MTL

encodes context and its activity may reflect relationships

among events. In particular the hippocampus may mediate

expectancies and inferences (Eichenbaum, Dudchenko, Wood,

Shapiro, & Tanila, 1999) based on the probabilistic structure of

past events, particularly the conditional uncertainty about what

will happen next. We chose a 1st order Markov sequence as it

contains contingencies (between consecutive trials) and has a

precise mathematical structure from which information

theoretic indices are easily calculated. The notion of an

‘ideal’ observer was introduced to estimate these measures,

which were updated with each new sample. These quantities
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were then used to predict behavior and brain responses while

subjects performed the task.

Reaction times decreased with both mutual information

measures (reduction in surprise and its expectation). The

stronger the dependence between consecutive events (i.e. high

predictability) the lower the reaction time. As noted above, this

is an extremely interesting result that suggests a behavioral

facilitation, not only for frequently encountered events, but

also conferred by the probabilistic context in which events

occur. This might be explained by an increased reliance on

prior expectations that speeds up reaction times irrespective of

a particular event’s probability.

It is apparent from these reaction time results that subjects

were able to represent the contingencies between consecutive

trials. We had hypothesized that the activity of those brain

regions involved in this representation would vary with an

information theoretic measure of temporal association. Indeed

our neuroimaging results demonstrate responses, within an

interconnected network involving the left hippocampus,

bilateral parieto-occipital sulcus, left retrosplenial cortex and

right anterior cingulate, that correlates with the mutual

information between consecutive trials. Responses in these

regions increased when events became more predictable

(reduction in uncertainty or relative increase in certainty), i.e.

measured as an increase in mutual information, irrespective of

how surprising the actual event was. This result supports the

notion that specific brain regions, critically including the

hippocampal system and its connected structures, may be

sensitive to uncertainty within Markov sequences.

Subjects were unable to use explicit knowledge to reproduce

contingencies. However, reaction times were sensitive to

dependencies within a block. This indicates that implicit

learning had occurred. However, establishing that learning is

truly implicit is difficult (Shanks & St. John, 1994). Within the

implicit SRTT learning literature, evidence implicating the

hippocampal system, striatum and cortical components of

fronto-striatal pathways has been reported (Berns, Cohen, &

Mintun, 1997; Rose et al., 2002; Schendan, Searl, Melrose, &

Stern, 2003). In particular, Schendan et al. measured MTL

responses during implicit and explicit learning of second order

sequences (i.e. contingencies exist among more than two

events). This was motivated by a study (Curran, 1997) that

demonstrated impaired implicit learning of higher order

associations compared to first order (or pairwise association)

in patients with anterograde amnesia.

Results from navigation research are relevant as navigation

involves processing sequential information, with many reports

in the literature of activity within the network connecting

parieto-occipital sulcus through retrosplenial cortex to MTL

(Burgess, Maguire, Spiers, & Mintun, 2001). Maguire

(Maguire, 2001) reports functional imaging and patient studies

implicating the retrosplenial cortex in navigation. Evidence

from patient studies suggests that only the right hippocampus is

necessary for navigation, while the left may have a more

general function in episodic memory. The parieto-occipital

sulcus and retrosplenial cortex provide input to the hippocam-

pal system, consistent with its involvement in encoding
predictability. Lateralisation of hippocampal function has

been reported in context-dependent episodic memory invol-

ving the left hippocampus, whilst the right is associated with

spatial navigation (Burgess et al., 2001). Given the contextual

nature of Markov sequences, it is interesting to note that we

found left hippocampal activity was correlated with mutual

information. Several studies have reported activations in the

anterior cingulate, e.g. Berns et al. (1997). This is reasonable as

a loop of reciprocal connections exists between the frontal

lobes and basal ganglia (Seger, 1994) and patients with striatal

damage are typically impaired on implicit SRTT tasks.

No significant effects (corrected for multiple comparisons)

were detected for the remaining indices. Strange et al

(Strange, 2005) reported left hippocampal activity correlated

with an estimate of the entropy of an independently sampled

sequence in a SRTT. In addition, they detected an extensive

bilateral cortico-thalamic network correlated with stimulus-

bound surprise. There are several factors that would explain

the superficial discrepancy between the results of Strange et al

and those presented above. First, the fact we failed to

demonstrate a significant effect of entropy does not mean that

this effect was absent (we used a very conservative correction

procedure for our imaging analysis). A second and more

compelling reason relates to the motivation for the current

study. If the hippocampus is specifically interested in the

relational or temporal structure of sequences, it might respond

selectively to the conditional entropy of the current stimulus

given the preceding one. As indicated in Fig. 5, the

conditional entropy has two components; the entropy per se

and the mutual information. In the Strange et al study, the

sequence was random and the conditional entropy was exactly

the same as the entropy. In our study, we deliberately

introduced variations in mutual information that represented

the pre-dominant changes in conditional entropy. In short a

parsimonious explanation for the positive results of the two

studies is that the hippocampus shows selective responses to

changes in conditional entropy. This speaks to a specific role

in temporal sequencing and the encoding of conditional

uncertainty.

Our model of implicit learning was based upon a Bayesian

update scheme and touches on an active area of current

research, the learning of probability distributions. Recent work

has shown that there are intelligent Bayesian priors that

dramatically reduce the bias in the calculation of entropy from

small data-sets (Nemenman & Bialek, 2002; Paninski, 2003).

It is possible that one could use fMRI responses to

disambiguate among different models of density learning that

would be expressed primarily in the dynamics or temporal

evolution of reaction times and event-related responses. This

report limits itself to a simple model based upon the

assumption of an ideal observer. Clearly, this may not be the

best model, but was sufficient to disclose predictability-related

responses in the hippocampus. Our model is sufficient in the

sense that had it not predicted the observed physiological

responses sufficiently accurately, we would not have obtained

significant results. However, it should be noted that other

observer models might also have been significant.
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There is a growing interest in the role of predictability in

reward processing. Indeed, basic models of reinforcement

learning are predicated on temporal difference models that

encode the predicted future reward (Sutton & Barto, 1981).

These models have been refined and examined from a cognitive

neuroscience perspective, placing predictability in a central

position, not only for reinforcement and emotional learning but

also for perception itself. Indeed, our own work on hierarchical

processing, of a Bayesian sort, provides an algorithmic

perspective on the central role of parameters encoding

uncertainty about the causes of sensory input and uncertainty

about the input itself (Friston, 2003). The main neurobiological

insight that obtains from this study is that the hippocampus

may not only be involved in sequence learning (Schendan

et al., 2003) but may also be involved in the representation of

how learnable sequences are. In machine learning, this

learnability or predictability is critical for estimation and

inference: It balances the relative weight assigned to prior

expectations and the likelihood of obtaining subsequent data or

sensory input. It is therefore possible that the hippocampus and

related structures encode uncertainty to finesse representational

learning and perceptual inference.

In summary, this study provides a quantitative functional

anatomic basis for learning contextual relationships engen-

dered by conditional dependence among consecutive events.

The notion of an ‘ideal’ observer was used to calculate the

mutual information as a measure of conditional uncertainty.

Regions whose activity correlated with this index were the

hippocampal system, parieto-occipital sulcus, retrosplenial

cortex and anterior cingulate. These regions have been

implicated in many sequence-learning and navigation studies,

suggesting that they may be involved in encoding the expected

uncertainty of temporal events as they unfold.
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