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Opinion
Glossary

Active inference: an extension of PC (and part of the free energy principle),

which says that agents can suppress prediction errors by performing actions to

bring about sensory states in line with predictions.

Augmented reality: a technique in which virtual images can be combined with

real-world real-time visual input to create hybrid perceptual scenes that are

usually presented to a subject via a head-mounted display.

Appraisal theories of emotion: a long-standing tradition, dating back to James

(but not Lange), according to which emotions depend on cognitive interpreta-

tions of physiological changes.

Emotion: an affective state with psychological, experiential, behavioral, and

visceral components. Emotional awareness refers to conscious awareness of an

emotional state.

Experience of body ownership (EBO): the experience of certain parts of the

world as belonging to one’s body. EBO can be distinguished into that related to

body parts (e.g., a hand) and a global sense of identification with a whole body.

Free energy principle: a generalization of PC according to which organisms

minimize an upper bound on the entropy of sensory signals (the free energy).

Under specific assumptions, free energy translates to prediction error.

Generative model: a probabilistic model that links (hidden) causes and data,

usually specified in terms of likelihoods (of observing some data given their

causes) and priors (on these causes). Generative models can be used to

generate inputs in the absence of external stimulation.

Interoception: the sense of the internal physiological condition of the body.

Interoceptive sensitivity: a characterological trait that reflects individual sensi-

tivity to interoceptive signals, usually operationalized via heartbeat detection

tasks.

Predictive coding (PC): a data processing strategy whereby signals are repre-

sented by generative models. PC is typically implemented by functional archi-

tectures in which top-down signals convey predictions and bottom-up signals

convey prediction errors.

Rubber hand illusion (RHI): a classic experiment in which the experience of
The concept of the brain as a prediction machine has
enjoyed a resurgence in the context of the Bayesian brain
and predictive coding approaches within cognitive sci-
ence. To date, this perspective has been applied primari-
ly to exteroceptive perception (e.g., vision, audition), and
action. Here, I describe a predictive, inferential perspec-
tive on interoception: ‘interoceptive inference’ conceives
of subjective feeling states (emotions) as arising from
actively-inferred generative (predictive) models of the
causes of interoceptive afferents. The model generalizes
‘appraisal’ theories that view emotions as emerging
from cognitive evaluations of physiological changes,
and it sheds new light on the neurocognitive mecha-
nisms that underlie the experience of body ownership
and conscious selfhood in health and in neuropsychiatric
illness.

The predictive brain, body, and self
The view that prediction and error correction provide
fundamental principles for understanding brain operation
is gaining increasing traction within the cognitive and
brain sciences. In the renascent guise of ‘predictive coding’
(PC – see Glossary) or ‘predictive processing’, perceptual
content is seen as resulting from probabilistic, knowledge-
driven inference on the external causes of sensory signals
[1–4]. Here, this framework is applied to interoception, the
sense of the internal physiological condition of the body [5],
in order to elaborate a model of emotion as ‘interoceptive
inference’ [6–9]. Interoceptive predictive coding – equiva-
lently here, interoceptive inference – is hypothesised to
engage an extended autonomic neural substrate with em-
phasis on the anterior insular cortex (AIC) as a compara-
tor. This view extends alternative frameworks for
understanding emotion [10–14] by proposing that emotion-
al content is generated by active ‘top-down’ inference of the
causes of interoceptive signals in a predictive coding con-
text. It also extends previous models of insular cortex as
supporting error-based learning of feeling states and un-
certainty [15] and as responding to interoceptive mis-
matches that underlie anxiety [16].
1364-6613/$ – see front matter

� 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tics.2013.09.007

Corresponding author: Seth, A.K. (a.k.seth@sussex.ac.uk).
Keywords: interoception; predictive coding; emotion; experience of body ownership;
rubber hand illusion; active inference.
Representations of physiological conditions have fre-
quently been associated with basic pre-reflective forms
of selfhood [11], with the AIC occupying a central role on
some views [13]. Selfhood is a constellation concept that
involves not only representation and control of physiologi-
cal homeostasis, but also the experience of owning and
identifying with a particular body, the emergence of a first-
person perspective, intention and agency, and metacogni-
tive aspects that relate to the subjective ‘I’ and the narra-
tive linking of episodic memories over time [17,18]. Here, I
apply the framework of interoceptive inference to the
experience of body ownership (EBO) as a central aspect
of selfhood, proposing on the basis of recent data [19,20]
that EBO is shaped by predictive multisensory integration
body ownership is manipulated via perceptual correlations such that a fake

(i.e., rubber) hand is experienced as part of a subject’s body.

Selfhood: the experience of being a distinct, holistic entity, capable of global

self-control and attention, possessing a body and a location in space and time

[64]. Selfhood operates on multiple levels – from basic physiological represen-

tations to metacognitive and narrative aspects.

Subjective feeling states: consciously experienced emotional states that under-

lie emotional awareness.

Von Economo neurons (VENs): long-range projection neurons found selectively

in hominid primates and certain other species. VENs are found preferentially in

the AIC and ACC.
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Figure 1. Functional architecture of predictive coding. (A) A schematic of hierarchical predictive coding across three cortical regions; the ‘lowest’ on the left (R1) and the

‘highest’ on the right (R3). Bottom-up projections (red) originate from ‘error units’ (light orange) in superficial cortical layers and terminate on ‘state units’ (light blue) in the

deep (infragranular) layers of their targets, whereas top-down projections (dark blue) that convey predictions originate in deep layers and project to superficial layers of

their targets. Prediction errors are associated with precisions (inverse variances), which determine the relative influence of bottom-up and top-down signal flow. Top-down

precision weighting (dashed lines) regulates the post-synaptic gain of prediction-error projection neurons possibly by neuromodulation. Triangles represent pyramidal

(projection) neurons; circles represent inhibitory interneurons. Solid black lines depict local circuit interactions wherein descending predictions are resolved with ascending

prediction errors. (B) The influence of precisions on Bayesian inference and predictive coding. The curves represent probability distributions over the value of a sensory

signal (x-axis). On the left, high precision-weighting of sensory signals (red) enhances their influence on the posterior (green) and expectation (dotted line) as compared to

the prior (blue). On the right, low precision-weighting of sensory signals has the opposite effect on posteriors and expectations. Adapted from [6].
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of self-related signals across interoceptive and exterocep-
tive domains.

Overall, the model described here provides a unified
view of self-related processing relevant to emotional
awareness and EBO, and carries implications for under-
standing specific neuropsychiatric disorders.

Predictive inference and perception
The concept of PC overturns classical notions of perception
as a largely ‘bottom-up’ process of evidence accumulation
or feature detection, proposing instead that perceptual
content is specified by top-down predictive signals that
emerge from hierarchically organized generative models of
Box 1. PC, free energy, and active inference

PC has a long history, originating with the insights of von Helmholtz

and reaching recent prominence in the ‘Bayesian brain’ hypothesis

[1,4]. The idea is that, in order to support adaptive responses, the

brain must discover information about the likely causes of sensory

signals (i.e., perception) without direct access to these causes, using

only information in the flux of sensory signals themselves [2].

According to PC, this is accomplished via probabilistic inference on

the causes of sensory signals, computed according to Bayesian

principles. This means estimating the probable causes of data (the

posterior) given observed conditional probabilities (likelihoods)

and prior ‘beliefs’ about probable causes. This, in turn, means

inducing a predictive or ‘generative’ model of the sensory data.

Although exact Bayesian inference is computationally challenging

and often intractable, a variety of approximate methods exist. Within

neuroscience, these approximations have been elaborated in Fris-

ton’s ‘free energy principle’ [2,65], which, following seminal work by

Hinton and colleagues [66,67], shows how generative models can be

induced from data by assuming that the brain minimizes a bound on

the evidence for this data (the ‘free energy’, which under simplifying

(Gaussian) assumptions is equivalent to prediction error). The

generalization of Bayes theorem to a hierarchical context implies that
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the causes of sensory signals. According to PC, the brain is
continuously attempting to minimize the discrepancy or
‘prediction error’ between its inputs and its emerging
models of the causes of these inputs via neural computa-
tions approximating Bayesian inference (Figure 1 and
Box 1). Importantly, prediction errors can be minimized
either by updating generative models (perceptual infer-
ence and learning; changing the model to fit the world) or
by performing actions to bring about sensory states in line
with predictions (active inference; changing the world to
fit the model). In most incarnations these processes are
assumed to unfold continuously and simultaneously,
underlining a deep continuity between perception and
posteriors at one level form the priors at one level lower, thus

enabling priors to be induced from the data stream itself (‘empirical’

Bayes). Applied to cortical networks, PC interprets bottom-up signals

as conveying prediction errors and top-down signals as conveying

predictions (Figure 1). Although unequivocal neural evidence for PC is

still lacking, a growing body of supportive data details how perceptual

content – and underlying neural responses – can be shaped by pre-

stimulus expectations [1,4,42].

Key to PC is the minimization of prediction error across hierarchical

levels. This can be accomplished either by updating generative

models to accommodate unexpected sensory signals or by perform-

ing actions to confirm sensory predictions (active inference, [21]). This

duality underlines a strong continuity between perception, action,

and imagination [68]. Also important is that prediction errors are

associated with precisions (Figure 1), so that dynamic precision-

weighting (for example by attention) can modulate the balance

between top-down and bottom-up signal flow (e.g., low precision on

error signals corresponds to high confidence in top-down prior

beliefs). The present framework generalizes PC to interoception,

proposing that affective states depend on active inference of

interoceptive responses.
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action. Prediction errors are associated with ‘precisions’,
which determine their influence on subsequent hierarchi-
cal processing. For example, precision weighting
(possibly implemented by post-synaptic gain modulation
of prediction error units) can modulate the extent to
which prediction errors are resolved by updating genera-
tive models or by performing actions [21]. This leads to an
interpretation of attention as the optimization of precision
weighting, balancing the relative influence of prediction
errors and prior expectations on perceptual inference [2].

PC has been elaborated principally in the context of
exteroception; that is, to predictive modelling of external
states of the world. However, one of the most relevant
features of the world for a particular organism is the
organism itself [11,22]. This reflects a long-standing notion
that mental representations of selfhood are ultimately
grounded in representations of the body, with the internal
physiological milieu providing a primary reference – a
‘material me’ [13] – that supports adaptive interaction
with the environment. From a PC perspective, this implies
that an organism should maintain well-adapted predictive
models of its own physical body (its position, morphology,
etc.) and of its internal physiological condition. This entails
inducing generative models of the causes of those signals
‘most likely to be me’ [22] across interoceptive and extero-
ceptive domains, a framework that views emotion as
‘interoceptive inference’ and provides a unifying mecha-
nism for self-representation at multiple levels, including
perhaps especially those related to EBO.

Interoceptive inference and emotion
Interoceptive concepts of emotion were crystallized by
James and Lange [10], who argued that emotions arise
from perceptions of changes in the body. This approach
evolved into ‘appraisal’ theories, which recognise that
explicit cognitions and beliefs about the causes of physio-
logical changes influence subjective feeling states and
emotional behaviour [23]. Schachter and Singer [24] fa-
mously demonstrated that injections of adrenaline, proxi-
mally causing a state of physiological arousal, would give
rise to either anger or elation depending on the context
(an irritated or elated confederate). This observation was
formalized in their ‘two factor’ theory, in which emotional
experience is determined by the combination of physiologi-
cal change and cognitive appraisal, that is, emotion as
interpreted bodily arousal (see [25] for a precursor). More
than a century after James and Lange, there is now a
consensus that emotions are psychological states that
encompass behavioural, experiential, and visceral changes
[23,26–28]. This attitude underpins several contemporary
frameworks for understanding emotion and its relation to
cognition and self [11–13], discussed further below.

Despite the above insights, interoception has remained
generally understood along feed-forward lines, similar to
classical evidence accumulation theories of exteroception
[23,28]. This assumption is however challenged by evi-
dence of substantial cross-talk between levels of viscero-
sensory representation, including top-down cortical and
behavioural influences to brainstem and spinal centres
[26]. Informed by this emerging picture, I suggest that
the role of interoception in shaping emotion and selfhood
can be productively understood through the lens of PC. In
this view, interoceptive inference involves hierarchically
cascading top-down interoceptive predictions that counter-
flow with bottom-up interoceptive prediction errors. Sub-
jective feeling states – experienced emotions – are
hypothesized to depend on the integrated content of these
predictive representations across multiple levels [6].

Following PC principles, interoceptive prediction errors
can be suppressed both by modifying predictions and by
transcribing these predictions into reference points for
autonomic reflexes that regulate physiological homeosta-
sis, as recently suggested by Gu and colleagues [9]. This
role for active inference, which extends previous presenta-
tions of this model [6–8], directly parallels PC formulations
for motor control (e.g. [29]) which highlight descending
corticospinal signals as instantiating proprioceptive pre-
dictions that engage classical motor reflexes. Precisions
play a key role here: descending predictions can engage
motor or autonomic reflexes only if the corresponding error
signals have diminished impact on hierarchical processing
via transiently low precision weighting, which corresponds
to decreased attention to these error signals. Without this
transient modulation, precise prediction errors would lead
to revision of predictions rather than to action [29]. This
implies that active interoceptive inference depends on the
selective attenuation of attention to interoceptive predic-
tion errors.

Interoceptive predictions arise from multiple hierarchi-
cal levels, with higher levels integrating interoceptive,
proprioceptive and exteroceptive cues in formulating des-
cending predictions. These multimodal predictions under-
write emotional responses to exteroceptive cues (which
may include socially salient signals, see later). In short,
interoceptive predictive coding (inference) proposes that
emotional content is determined by active inference on the
likely internal and external causes of changes in the phys-
iological condition of the body (Figure 2).

Evidence for interoceptive inference
Although there is not yet any direct confirmatory evidence
for interoceptive inference (as for PC generally, see [1]),
supportive data are steadily accumulating. Much of these
data rest on assuming a central role for the anterior insular
cortex (AIC), operating within a rich functional network
[30], both as a comparator that registers top-down predic-
tions against bottom-up prediction errors and as a source of
anticipatory visceromotor control [6–9,15,16]. Structural-
ly, the AIC is ideally placed both to detect and to cause
changes in physiological condition, and to integrate inter-
oceptive and exteroceptive signals; functionally, it
instantiates interoceptive representations accessible to
conscious awareness and is associated with processes that
involve visceral representation, interoception, and emo-
tional awareness relevant to selfhood (Box 2).

Several functional MRI (fMRI) studies have shown
anticipatory and prediction error responses within the
AIC. For example, the AIC is activated by anticipation
of painful [31] and affect-laden touch [32], and AIC
responses encode both predicted pain and pain prediction
error within a single task [33]. Similarly, in a gambling
task, the AIC has been shown to encode both predicted risk
567
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Figure 2. A model of interoceptive inference. In the model, emotional responses depend on continually-updated predictions of the causes of interoceptive input. Starting

with a desired or inferred physiological state (which is itself subject to update based on higher-level motivational and goal-directed factors), generative models are engaged

which predict interoceptive (and exteroceptive) signals via corollary discharge. Applying active inference, prediction errors (PEs) are transcribed into actions via

engagement of classical reflex arcs (motor control) and autonomic reflexes (autonomic control). The resulting prediction error signals are used to update the (functionally

coupled) generative models and the inferred/desired state of the organism. (At high hierarchical levels these generative models merge into a single multimodal model.)

Interoceptive predictions are proposed to be generated, compared, and updated within a salience network (orange shading) anchored on the anterior insular and anterior

cingulate cortices (AIC, ACC) that engage brainstem regions as targets for visceromotor control and relays of afferent interoceptive signals. Sympathetic and

parasympathetic outflow from the AIC and ACC are in the form of interoceptive predictions that enslave autonomic reflexes (e.g., heart/respiratory rate, smooth muscle

behaviour), just as proprioceptive predictions enslave classical motor reflexes in PC formulations of motor control [9]. This process depends on the transient attenuation of

the precision of interoceptive (and proprioceptive) PE signals. Blue (red) arrows signify top-down (bottom-up) connections respectively.
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and risk prediction error [34]. Holle et al. found AIC
activation on viewing movies of people scratching, with
the degree of activation correlating with the subjective
level of reported itchiness [35]. Here, AIC responses plau-
sibly reflect a conflict between predicted and actual inter-
oceptive responses given anticipated itch, which suggests
an engagement of AIC in predictive inference related to
mirror-system activity and empathy [36]. Using the neu-
roeconomic ‘ultimatum game’, Xiang and colleagues
showed that subjects used Bayesian rules to update
expected feelings given economic outcomes, and that feel-
ing prediction errors (when measured using variance)
scaled parametrically with AIC activation [37]. These
studies support the idea that interoceptive inference
extends into social contexts to explain emotional behav-
iour. For example, the expression of an emotional state
Box 2. The anterior insula cortex and interoception

The human insular cortex is found bilaterally beneath the temporal

and frontal lobes, enjoying widespread bidirectional connectivity to

parietal, frontal, and limbic regions [30]. Interoceptive pathways

have their primary cortical representation within the insula, which

contains a viscerotopic map [69]. A posterior-to-anterior gradient

has been proposed, whereby posterior regions support primary

(objective) mappings of interoceptive signals, whereas the anterior

insula (AIC) supports secondary re-representations that underlie

subjective access [9,12,13] and integration of interoceptive, motiva-

tional, and exteroceptive signals [6,70]. The AIC is closely connected

structurally and functionally with the anterior cingulate cortex (ACC)

as part of a cortical ‘salience network’ [71], though they can be

functionally differentiated [70], so that the AIC can be considered a

‘limbic sensory area’ and the ACC a ‘limbic motor area’ [13,70]. These

areas together engage subcortical regions, such as the periaque-

ductal gray matter and parabrachial nucleus, as targets for viscer-

omotor control and relays for viscerosensory afferents, as well as

many other areas related to self and emotion, including the

amygdala, nucleus accumbens, and orbitofrontal cortex. Interest-

ingly, the AIC contains a high density of von Economo neurons

(VENs) [72], which have been associated frequently though circum-

stantially with conscious awareness and selfhood [8,13,73]. VENs

are large projection neurons well suited for rapid long-range
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(e.g., anger) elicits behavioural responses from others, the
detection of which could serve to confirm predictions of
interoceptive condition. This provides a nice link to predic-
tive models of social interaction [38,39].

Supportive evidence is also provided by studies that
manipulate interoceptive feedback. Early evidence showed
that false cardiac feedback enhanced subjective ratings of
emotive stimuli [40]. This was later confirmed by Gray and
colleagues, who found that false cardiac feedback led to
increased fMRI responses in the right AIC and that en-
hanced AIC activity during false feedback correlated with
increased emotional salience attributed to previously un-
threatening stimuli [41]. Further evidence showing the
influence of false interoceptive feedback on the experience
of body ownership is described below. Taken together with
the structural and functional attributes of the AIC (Box 2),
information integration and so may underlie the efficient registration

of interoceptive prediction and prediction error signals. In PC, top-

down predictions are suggested to originate in infragranular

pyramidal cells (Figure 1), consistent with the layer V predominance

of VENs in the AIC [8,9,73].

The AIC is engaged in a wide range of processes that share as

common factors visceral representation, interoception, and emotional

awareness [6,9,13,26]. Importantly, the AIC (particularly on the right)

appears to support conscious access to both interoceptive informa-

tion – as reflected in subjective emotional states (though see [43,74]) –

and to associated representations of how encoded objects and

contexts relate to the biological self [15,75]. Distinct axes of

interoceptive information map onto specific insula sub-regions giving

rise to dissociable emotional feeling states [76]. Also, individual

differences in interoceptive sensitivity (IS), as measured by heartbeat

detection, are predicted by AIC activation and morphometry, and are

also associated with reported emotional symptoms [12] and suscept-

ibility to illusions of selfhood (see main text).

These structural and functional attributes, when considered

together with evidence for prediction error processing, strongly

suggest the AIC as a locus for comparator mechanisms that underlie

interoceptive inference, in turn supporting emotional awareness and

consciously accessible integrated self-representations.



Opinion Trends in Cognitive Sciences November 2013, Vol. 17, No. 11
these data provide indirect support for interoceptive infer-
ence and the central involvement of the AIC in prediction
error registration underlying subjective feeling states. Ad-
ditional experiments, perhaps based on designs utilized in
exteroceptive contexts (e.g., [42]), are needed to test more
directly interoceptive inference and the proposed role of
the AIC.

Relation to other models of emotion and insula function
The present model is related to several contemporary
frameworks for understanding emotion and self, including
prominently those of Damasio [11], Craig [13], and Critch-
ley [12]. Each of these sees selfhood as grounded in repre-
sentations of physiological condition, with the AIC
emphasised in some [12,13], but not all [43]. Crucially,
none identify emotional states with top-down inference of
the causes of interoceptive signals, as argued here (and as
recently taken up by others [9]). Rather, they emphasize a
continuous, dynamic, but largely bottom-up interoceptive
representational hierarchy that interacts with other
perceptions to motivate behaviour. Perhaps more closely
related is the suggestion that the AIC is involved in error-
based learning of feeling states and uncertainty [15]; here,
the notion of ‘prediction error’ is expressed in terms of
change detection and salience rather than through mech-
anisms of predictive coding. Also relevant are models of
insular dysfunction during anxiety [16] and psychosis [44]
that hypothesize the existence of interoceptive prediction
errors. However, although these models integrate abun-
dant evidence compatible with a role for predictive inter-
oception underlying emotion and self, the core notion of
interoceptive inference is not elaborated.

The predictive self and the experience of body
ownership
A predictive model of selfhood must extend beyond subjec-
tive feelings to integrate interoceptive and exteroceptive
signals across multiple levels of self-representation. Par-
ticularly significant is the representation of those parts of
the world perceived as belonging to one’s own body, sup-
porting EBO [45], and which plausibly are closely tied to
interoception in having the body as a referent. Experi-
ments such as the ‘rubber hand illusion’ (RHI) attest to
the plasticity of EBO: stroking of an artificial hand syn-
chronously with a participant’s real hand, while visual
attention is focused on the artificial hand, leads the par-
ticipant to experience the artificial hand as part of her own
body [46]. Similar effects have been described for face
perception [47] and whole-body ownership [48,49].

These manipulations of EBO have been explained by
models of multisensory integration, which propose that
conflicts between vision, touch, and proprioception are
minimized by visual capture of visual and felt (tactile)
events occurring in peri-personal space, on the basis of
statistical correlations among sensory signals together
with visual dominance [46,50]. This is compatible with
PC inasmuch as minimization of prediction errors – such
as those induced by multisensory conflicts during the
RHI – will update the posterior probabilities and, over time,
can induce changes in self-related priors [22]. Priors reflect-
ing high-level representations, such as selfhood and
body-ownership, are likely to operate at relatively
abstract multisensory or amodal levels. Thus,
statistical correlations among highly precision-weighted
sensory signals (vision, touch) could overcome prediction
errors in a different modality (proprioception), leading to a
revised multisensory predictive model that minimizes the
overall level of self-related precision-weighted prediction
error by incorporating the fake hand as part of the self-
representation. Moreover, the relative weighting of differ-
ent information sources according to their reliability in this
process is suggestive of the deployment of precision expec-
tations which underlie optimal cue combination in a Bayes-
ian scheme [51]. The engagement of predictive self-models is
further supported by recent evidence showing that percep-
tual correlations are not necessary for the RHI; the expec-
tation of correlated sensory input is sufficient [52].
Interestingly, EBO has also been associated with the integ-
rity and activity of the AIC on the basis of lesion data and
functional neuroimaging in healthy subjects [53].

Experiments have begun to address the impact of
interoceptive processing on the modulation of EBO in
paradigms like the RHI. One avenue is provided by indi-
vidual differences in ‘interoceptive sensitivity’ (IS), which
refers to a person’s ability to detect their own interocep-
tive signals, operationalized by heartbeat detection tasks
[54]. Tsakiris and colleagues reported that participants
with lower IS are more susceptible to the RHI [55] and to
the modulation of self–other boundaries in response to
multisensory stimulation [56,57], possibly reflecting low-
er precision-weighting of interoceptive prediction errors.
In addition, induction of the RHI leads to decreased
temperature [58] and increased histamine reactivity of
the real hand [59], whereas cooling the real hand
increases susceptibility to the RHI [60]. Also, threats to
the rubber hand during the RHI evoke enhanced skin
conductance responses [61]. These effects are compatible
with descending self-related predictions tuning reference
points for autonomic reflexes from the perspective of
active inference.

Two recent studies have addressed directly the role of
multisensory integration across interoceptive and extero-
ceptive domains in shaping EBO. In the first, Suzuki et al.
[19] combined augmented reality with physiological moni-
toring to implement a version of the RHI in which a virtual
hand changed colour either in-time or out-of-time with an
individual’s heartbeat (Figure 3). The authors found that
synchronous cardio-visual feedback enhanced the experi-
ence of ownership of the virtual hand, as measured both
subjectively by questionnaire and objectively by previously
validated measures of ‘proprioceptive drift’ – where the
latter measures the perceived position of the real (hidden)
hand by asking the participant to move a cursor to this
location. (Note that these two measures do not always
correlate [62].) The same setup enabled a replication of
the standard RHI by contrasting synchronous versus asyn-
chronous tactile-visual feedback. In a third condition,
Suzuki et al. found that real-time remapping of finger
movements to the virtual hand – supporting peri-hand
visual-proprioceptive coherence – provided strong
cues for EBO that overshadowed the influence of cardiac
(interoceptive) prediction errors. A second study [20]
569
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Figure 3. An interoceptive rubber-hand illusion. (A) Participants sat facing a desk so that their physical (left) hand was out of sight. A 3D model of the real hand was captured by

Microsoft Kinect and used to generate a real-time virtual hand that was projected into the head-mounted display (HMD) at the location of the augmented-reality (AR) marker.

Subjects wore a front-facing camera connected to the HMD, so they saw the camera image superimposed with the virtual hand. They also wore a pulse-oximeter to measure

heartbeat timings and they used their right hand to make behavioural responses. (B) Cardio-visual feedback (left) was implemented by changing the colour of the virtual hand

from its natural colour towards red and back, over 500 ms either synchronously or asynchronously with the heartbeat. Tactile feedback (middle) was given by a paintbrush,

which was rendered into the AR environment. A ‘proprioceptive drift’ (PD) test (right), adapted for the AR environment, objectively measured perceived virtual hand position by

implementing a virtual measure and cursor. (C) The experiment consisted of three blocks of four trials each. Each trial consisted of two PD tests flanking an induction period,

during which either cardio-visual or tactile-visual feedback was provided (120 s). Each trial ended with a questionnaire presented in the HMD. (D) PD differences (PDD, post-

induction minus pre-induction) were significantly larger for synchronous versus asynchronous cardio-visual feedback in the ‘cardiac still’ (without finger movements), but not

the ‘cardiac move’ condition (with finger movements). PDDs were also significantly larger for synchronous versus asynchronous tactile-visual feedback (‘tactile’ condition),

replicating the classical RHI. Each bar shows the across-participant average and standard error. (E) Subjective questionnaire responses that probed experience of ownership

showed the same pattern as PDDs, whereas control questions showed no effect of cardio-visual or tactile-visual synchrony. Adapted from [19].
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applied similar cardio-visual feedback to a virtual body as
seen from behind, thus testing the influence of such feed-
back on the ‘full body illusion’ [48,49]. Consistent with
Suzuki et al.’s results, they found that cardio-visual syn-
chrony increased identification with the virtual body, again
when measured both objectively and subjectively.

These data suggest that statistical correlations between
interoceptive (e.g., cardiac) and exteroceptive (e.g., visual)
signals can lead to updating of predictive models of self-
related signals through minimization of prediction error,
just as may happen for purely exteroceptive multisensory
conflicts in the classic RHI. Also, if predictive models are
continually probed by control signals that attempt to con-
firm the currently dominant model via active inference
[21], the framework naturally accommodates the phasic
physiological changes that accompany RHI induction
570
[58,59] when these changes are taken to reflect altered
autonomic control.

Concluding remarks
This opinion article proposes that emotion and embodied
selfhood are grounded in active inference of those signals
most likely to be ‘me’ across interoceptive and exterocep-
tive domains. In humans, self-related predictive coding
simultaneously engages multiple levels of self-representa-
tion, including physiological homeostasis, physical bodily
integrity, morphology and position, and – more specula-
tively – the metacognitive and narrative ‘I’. Subjective
feeling states (emotional experiences) arise from active
interoceptive inference, extending previous theories based
on cognitive appraisal of perceived physiological changes
[24] and contemporary frameworks that emphasize



Box 3. Interoceptive inference and psychopathology

A significant body of work now connects deficits in predictive inference

with psychiatric disorders that affect self-representation [6,16,44]. For

two decades, ‘comparator’ models of schizophrenia have suggested

that disturbances of selfhood (e.g., delusions of control) reflect

problems in distinguishing self-caused from externally-caused changes

in sensory input [77]. In psychosis, false perceptions (hallucinations)

and false beliefs (delusions) may arise from reshaping of top-down

predictions in attempts to suppress aberrant and persistent (exter-

oceptive) prediction errors [78]. This view has been finessed in terms of

abnormal encoding of the relative precision of priors and sensory

evidence to account for a broad range of psychotic symptoms [79,80].

Considering interoceptive inference and the AIC as its likely brain

basis further enhances the explanatory potential of this framework for

psychopathology. Links between perceptions of bodily state and

emotional and neuropsychiatric disorders are well established. For

example, alexithymia (broadly, deficits in emotional awareness) is

associated with failure to engage AIC [81] and with degeneration of

AIC and of VENs (Box 2) in the context of fronto-temporal dementia

[82,83]. Human VENs express proteins linked to schizophrenia

(notably DISC-1) and VEN density (in the anterior cingulate) has been

linked to illness duration and completed suicide in psychotic patients

[84]. Neuroimaging studies have correlated (right) AIC activity and

volume with individual interoceptive sensitivity (IS), which in turn

predicts sensitivity to mood states, including anxiety [12,16]. Indeed,

anxiety and psychosis have been specifically associated with

mismatches between predicted and actual interoceptive states

putatively computed within AIC [16,44]. The finding that low IS

predicts susceptibility to the RHI [55] provides a bridge to under-

standing how disorders of body image and ownership may involve

disrupted interoceptive inference.

Dissociative conditions, such as depersonalization and derealisa-

tion (DPD), involve disabling disturbances of selfhood, as reflected in

a persistent sense of unreality (‘as-if-ness’) [85]. These conditions are

associated with alexithymia and a general loss of ‘emotional colour’,

suggestive of deficient interoceptive inference and consistent with

observed hypoactivation of AIC (and ACC bilaterally) in DPD patients

when viewing aversive images [86]. By analogy with models of

psychosis [79,80], Seth et al. have suggested that DPD may arise from

imprecise (as opposed to inaccurate) interoceptive predictions, as

part of a model of conscious ‘presence’ [6]. The transition from DPD to

full-blown delusion (e.g., Cotard’s syndrome, in which patients

believe they are dead [87]) may also reflect aberrant high-level

inference as the result of attempting to explain away persistent

interoceptive prediction errors.
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bottom-up elaboration of interoceptive representations
with perception and motivation [11,13,15]. The close inter-
play between interoceptive and exteroceptive inference
implies that emotional responses are inevitably shaped
by cognitive and exteroceptive context, and that perceptual
scenes that evoke interoceptive predictions will always be
affectively coloured. Although the detailed neuroanatomy
that underlies interoceptive inference remains to be eluci-
dated, accumulating evidence implicates the AIC as a key
comparator mechanism sensitive to interoceptive predic-
tion error signals, as informing visceromotor control, and
as underpinning conscious access to emotional states (emo-
tional awareness). A predictive self is further supported by
emerging paradigms that combine virtual/augmented re-
ality and physiological monitoring, where the data so far
suggest that the experience of body ownership, a key aspect
Box 4. Questions for future research

� Can (structurally or functionally) segregated populations of

representation and error units be identified in the interoceptive

system? There are some early indications of such segregation in

perceptual systems [88].

� Do neurotransmitters like dopamine and oxytocin have a role in

modulating the precision of interoceptive prediction errors [89]?

How do these roles relate to similar roles in reward processing

[2]?

� Are VENs engaged in communicating top-down interoceptive

predictions from insular and cingulate cortices to subcortical and

brainstem targets [8]?

� What are the functional and effective connectivity patterns that

underlie interoceptive inference and the integration of interocep-

tive and exteroceptive signals relevant to conscious selfhood?

� What is the relation between predictive models of interoception

and similar models of agency [90], another central aspect of

selfhood?

� Can predictive models of selfhood accommodate more abstract

modes of self-experience, such as the narrative self or ‘I’ that links

episodic memories across time?

� Can interoceptive feedback provide new avenues for the treat-

ment of emotional and neuropsychiatric disorders? Might there

be a role for disrupted interoceptive inference in impairments of

social emotional behaviour, such as autism?
of selfhood, is modulated by predictive multisensory inte-
gration of precision-weighted interoceptive and exterocep-
tive signals.

This framework may have important implications for
understanding psychiatric disturbances of selfhood and
emotional awareness. Dysfunctions in interoceptive infer-
ence could underlie a range of pathologies, especially those
that involve dissociative symptoms, such as anxiety
(Box 3). A broad role for interoceptive inference is also
consistent with recent evidence that shows interoceptive
influences on cognition and perception. For example, word
recognition memory is modulated by the timing of visual
stimuli with respect to cardiac phase under restricted
attention [63]. Overall, ‘interoceptive inference’ highlights
common predictive mechanisms that underlie affect, self,
and perception, emphasizes their integration in shaping
self-related experience, and provides new experimental
possibilities for elucidating the underlying processes
(Box 4).
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