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Abstract

This article is about how the brain data mines its sensory inputs. There are several architectural principles of functional brain anatomy that

have emerged from careful anatomic and physiologic studies over the past century. These principles are considered in the light of

representational learning to see if they could have been predicted a priori on the basis of purely theoretical considerations. We first review the

organisation of hierarchical sensory cortices, paying special attention to the distinction between forward and backward connections. We then

review various approaches to representational learning as special cases of generative models, starting with supervised learning and ending

with learning based upon empirical Bayes. The latter predicts many features, such as a hierarchical cortical system, prevalent top-down

backward influences and functional asymmetries between forward and backward connections that are seen in the real brain.

The key points made in this article are: (i) hierarchical generative models enable the learning of empirical priors and eschew prior

assumptions about the causes of sensory input that are inherent in non-hierarchical models. These assumptions are necessary for learning

schemes based on information theory and efficient or sparse coding, but are not necessary in a hierarchical context. Critically, the anatomical

infrastructure that may implement generative models in the brain is hierarchical. Furthermore, learning based on empirical Bayes can

proceed in a biologically plausible way. (ii) The second point is that backward connections are essential if the processes generating inputs

cannot be inverted, or the inversion cannot be parameterised. Because these processes involve many-to-one mappings, are non-linear and

dynamic in nature, they are generally non-invertible. This enforces an explicit parameterisation of generative models (i.e. backward

connections) to afford recognition and suggests that forward architectures, on their own, are not sufficient for perception. (iii) Finally, non-

linearities in generative models, mediated by backward connections, require these connections to be modulatory, so that representations in

higher cortical levels can interact to predict responses in lower levels. This is important in relation to functional asymmetries in forward and

backward connections that have been demonstrated empirically.

q 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

This article uses the relationship among computational

models of representational learning as a vehicle to illustrate

how theoretical approaches to neuronal information proces-

sing can help understand the structure of functional brain

architectures. We start by reviewing two principles of brain

organisation, namely functional specialisation and func-

tional integration and how they rest upon the anatomy and

physiology of hierarchical cortico-cortical connections in

the brain. Section 3 deals with the nature and learning of

representations from a theoretical or computational per-

spective. This section reviews supervised (e.g. connection-

ist) approaches, information theoretic approaches and those

predicated on predictive coding. The review examines the

heuristics behind the various schemes using the framework

of generative models. We then introduce learning based on

empirical Bayes that is enabled by hierarchical generative

models. The key focus of this section is on the functional

architectures and assumptions implied by each model.

Representational learning based on information theory can,

in principle, proceed using only forward connections.

However, this is only tenable when processes generating

sensory inputs are invertible and independent. Invertibility

is precluded when the cause of a percept and its context

interact. These interactions create a problem of contextual

invariance that can only be resolved using internal or

generative models. Contextual invariance is necessary for

categorisation of sensory input (e.g. category-specific

responses) and represents a fundamental problem in

perceptual synthesis. Generative or forward models can

0893-6080/03/$ - see front matter q 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.neunet.2003.06.005

Neural Networks 16 (2003) 1325–1352

www.elsevier.com/locate/neunet

* Tel.: þ44-207-833-7457; fax: þ44-207-813-1445.

E-mail address: k.friston@fil.ion.ucl.ac.uk (K. Friston).

http://www.elsevier.com/locate/neunet


solve this problem using predictive coding but only if the

distribution of causes is known a priori. Empirical Bayes

allows these priors to be learned, along with the model

itself, using hierarchies of backward and lateral projections

that prevail in the real brain. In short, hierarchical models of

representational learning are a natural choice for under-

standing real functional architectures and, critically, confer

a necessary role on backward connections.

2. Functional specialisation and integration

2.1. Background

The brain appears to adhere to two fundamental

principles of functional organisation, namely functional

integration and functional specialisation, where the inte-

gration within and among specialised areas is mediated by

effective connectivity. The distinction relates to that

between ‘localisationism’ and ‘(dis)connectionism’ that

dominated thinking about cortical function in the 19th

century. Since the early anatomic theories of Gall, the

identification of a particular brain region with a specific

function has become a central theme in neuroscience.

However, functional localisation per se was not easy to

demonstrate. For example, a meeting that took place on

August 4th 1881 addressed the difficulties of attributing

function to a cortical area, given the dependence of cerebral

activity on underlying connections (Phillips, Zeki, &

Barlow, 1984). This meeting was entitled ‘Localisation of

function in the cortex cerebri’. Goltz, although accepting the

results of electrical stimulation in dog and monkey cortex,

considered that the excitation method was inconclusive,

because the behaviours elicited might have originated in

related pathways, or current could have spread to distant

centres. In short, the excitation method could not be used to

infer functional localisation because localisationism dis-

counted interactions, or functional integration among

different brain areas. It was proposed that lesion studies

could supplement excitation experiments. Ironically, it was

observed on patients with brain lesions some years later (see

Absher & Benson, 1993) that led to the concept of

‘disconnection syndromes’ and the refutation of localisa-

tionism as a complete or sufficient explanation of cortical

organisation. Since that time, there has been a great

endeavour to integrate electrophysiological findings and

those inspired by the lesion-deficit model. This convergence

has led to an increasingly refined understanding of the

segregation–integration axis. Much of this understanding

rests on the many-to-one and one-to-many mappings

between structure and function. For example, the functional

specialisation of motion-selective units in MT has been

characterised with remarkable finesse (e.g. Liu & Newsome,

2003), yet lesions to MT alone are not sufficient to produce

stable deficits in motion perception. Results like these

suggest that several neuronal systems may support the same

function (i.e. degenerate many-to-one mappings). Conver-

sely, one cortical system may contribute to many functions:

motion cues serve many purposes in primate vision.

Consequently, akinetopsia, a defect of movement percep-

tion due to cerebral lesions, may comprise a range of

motion-related defects. To address this issue Rizzo, Nawrot,

and Zihl (1995) explored the perceptual profiles in an

akinetopsia subject L.M. who had extensive bilateral lesions

of the dorsolateral visual association cortex that spared

primary visual cortex. “Surprisingly, L.M. also had trouble

perceiving 2-D shapes defined by non-motion signals

including ‘on’ and ‘off’ transients, dynamic and static

binocular disparity, and static texture cues.” This sort of

finding speaks to a one-to-many structure – function

relationship.

Functional localisation implies that a function can be

localised in a cortical area, whereas specialisation suggests

that a cortical area is specialised for some aspects of

perceptual or motor processing, where this specialisation

can be anatomically segregated within the cortex. The

cortical infrastructure supporting a single function may then

involve many specialised areas whose union is mediated by

the functional integration among them. Functional special-

isation and integration are not exclusive; they are comp-

lementary. Functional specialisation is only meaningful in

the context of functional integration and vice versa.

2.2. Functional specialisation and segregation

The functional role, played by any component (e.g.

cortical area, sub-area, neuronal population or neuron) of

the brain, is defined largely by its connections. Certain

patterns of cortical projections are so common that they

could amount to rules of cortical connectivity. “These rules

revolve around one, apparently, overriding strategy that the

cerebral cortex uses—that of functional segregation” (Zeki,

1990). Functional segregation demands that cells with

common functional properties be grouped together. There

are many examples of this grouping (e.g. laminar selectiv-

ity, ocular dominance bands and orientation domains in V1).

This architectural constraint necessitates both convergence

and divergence of cortical connections. Extrinsic connec-

tions, between cortical regions, are not continuous but occur

in patches or clusters. This patchiness has, in some

instances, a clear relationship to functional segregation.

For example, the secondary visual area V2 has a distinctive

cytochrome oxidase architecture, consisting of thick stripes,

thin stripes and inter-stripes. When recordings are made in

V2, directionally selective (but not wavelength or colour

selective) cells are found exclusively in the thick stripes.

Retrograde (i.e. backward) labelling of cells in V5 is limited

to these thick stripes. All the available physiological

evidence suggests that V5 is a functionally homogeneous

area that is specialised for visual motion. Evidence of this

nature supports the idea that patchy connectivity is
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the anatomical infrastructure that underpins functional

segregation and specialisation.

The notion that connections underpin segregation scales

from the level of stripes in V2 to processing streams that

encompass many cortical areas. For example, current

models partition the primate visual system into dorsal

(magno) and ventral (parvo, konio) streams. Evidence for

this derives from the pattern of projections between V1 and

V2. Recently this evidence has been re-evaluated (Sincich

& Horton, 2002) who demonstrate that “V1 output arises

from just two sources: patch columns and inter-patch

columns. Patch columns project to thin stripes and inter-

patch columns project to pale and thick stripes. Projection of

inter-patches to common V2 stripe types (pale and thick)

merges parvo and magno inputs, making it likely that these

functional channels are distributed strongly to both dorsal

and ventral streams.”

2.3. The anatomy and physiology of cortico-cortical

connections

If specialisation rests upon connectivity, then important

organisational principles should be embodied in the

neuroanatomy and physiology of extrinsic connections.

Extrinsic connections couple different cortical areas,

whereas intrinsic connections are confined to the cortical

sheet. There are certain features of cortico-cortical connec-

tions that provide strong clues about their functional role. In

brief, there appears to be a hierarchical organisation that

rests upon the distinction between forward and backward

connections. The designation of a connection as forward or

backward depends primarily on its cortical layers of origin

and termination. Some characteristics of cortico-cortical

connections are presented below and are summarised in

Table 1. The list is not exhaustive, nor properly qualified,

but serves to introduce some important principles that have

emerged from empirical studies of visual cortex.

Hierarchical organisation. The organisation of the visual

cortices can be considered as a hierarchy of cortical levels

with reciprocal extrinsic cortico-cortical connections among

the constituent cortical areas (Felleman & Van Essen,

1991). Forward connections run from lower to higher areas

and backward connections from higher to lower. Lateral

connections connect regions within a hierarchical level. The

notion of a hierarchy depends upon a distinction between

extrinsic forward and backward connections.

Reciprocal connections. Although reciprocal, forward

and backward connections show both a microstructural and

functional asymmetry. The terminations of both show

laminar specificity. Forwards connections (from a low to a

high level) have sparse axonal bifurcations and are

topographically organised, originating in supragranular

layers and terminating largely in layer IV. Backward

connections, on the other hand, show abundant axonal

bifurcation and a more diffuse topography, although they

can be patchy (Angelucci et al., 2002b). Their origins are

bilaminar/infragranular and they terminate predominantly

in supragranular layers (Rockland & Pandya, 1979; Salin

& Bullier, 1995). Extrinsic connections show an orderly

convergence and divergence of connections from one

cortical level to the next. At a macroscopic level, one point

in a given cortical area will connect to a region 5–8 mm in

diameter in another. An important distinction between

forward and backward connections is that backward

connections are more divergent. For example, the diver-

gence region of a point in V5 (i.e. the region receiving

backward afferents from V5) may include thick and inter-

stripes in V2 whereas its convergence region (i.e. the

region providing forward afferents to V5) is limited to the

thick stripes (Zeki & Shipp, 1988). Furthermore, backward

connections are more abundant than forward connections

and transcend more levels. For example the ratio of

forward efferent connections to backward afferents in the

lateral geniculate is about 1:10/20. Another important

distinction is that backward connections will traverse a

number of hierarchical levels whereas forward connections

are more restricted. For example, there are backward

connections from TE and TEO to V1 but no monosynaptic

connections from V1 to TE or TEO (Salin & Bullier,

1995).

Table 1

Some key characteristics of extrinsic cortico-cortical connections in the brain

Hierarchical organisation

The organisation of the visual cortices can be considered as a hierarchy (Felleman & Van Essen, 1991)

The notion of a hierarchy depends upon a distinction between forward and backward extrinsic connections

This distinction rests upon different laminar specificity (Rockland & Pandya, 1979; Salin & Bullier, 1995)

Backward connections are more numerous and transcend more levels

Backward connections are more diffuse than forward connections (Zeki & Shipp, 1988)

Forwards connections Backwards connections

Sparse axonal bifurcations Abundant axonal bifurcation

Topographically organised Diffuse topography

Originate in supragranular layers Originate in bilaminar/infragranular layers

Terminate largely in layer IV Terminate predominantly in supragranular layers

Post-synaptic effects through fast AMPA (1.3–2.4 ms decay) and GABAA

(6 ms decay) receptors

Modulatory afferents activate slow (50 ms decay) voltage-sensitive NMDA

receptors
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Functionally asymmetric forward and backward con-

nections. Functionally, reversible inactivation (e.g. Girard

& Bullier, 1989; Sandell & Schiller, 1982) and neuroima-

ging (e.g. Büchel & Friston, 1997) studies suggest that

forward connections are driving, always eliciting a

response, whereas backward connections can also be

modulatory. In this context, modulatory means backward

connections modulate responsiveness to other inputs. At the

single cell level “inputs from drivers can be differentiated

from those of modulators. The driver can be identified as the

transmitter of receptive field properties; the modulator can

be identified as altering the probability of certain aspects of

that transmission” (Sherman & Guillery, 1998).

The notion that forward connections are concerned with

the promulgation and segregation of sensory information is

consistent with: (i) their sparse axonal bifurcation, (ii)

patchy axonal terminations, and (iii) topographic projec-

tions. In contradistinction, backward connections are

generally considered to have a role in mediating contextual

effects and in the co-ordination of processing channels. This

is consistent with: (i) their frequent bifurcation, (ii) diffuse

axonal terminations, and (iii) more divergent topography

(Crick & Koch, 1998; Salin & Bullier, 1995). Forward

connections meditate their post-synaptic effects through fast

AMPA (1.3–2.4 ms decay) and GABAA (6 ms decay)

receptors. Modulatory effects can be mediated by NMDA

receptors. NMDA receptors are voltage-sensitive, showing

non-linear and slow dynamics (,50 ms decay). They are

found predominantly in supragranular layers where back-

ward connections terminate (Salin & Bullier, 1995). These

slow time-constants again point to a role in mediating

contextual effects that are more enduring than phasic

sensory-evoked responses. The clearest evidence, for the

modulatory role of backward connections (that is mediated

by ‘slow’ glutamate receptors) comes from corticogenicu-

late connections. In the cat lateral geniculate nucleus,

cortical feedback is partly mediated by type 1 metabotropic

glutamate receptors, which are located exclusively on distal

segments of the relay-cell dendrites. Rivadulla, Martinez,

Varela, and Cudeiro (2002) have shown that these backward

afferents enhance the excitatory centre of the thalamic

receptive field. “Therefore, cortex, by closing this cortico-

fugal loop, is able to increase the gain of its thalamic input

within a focal spatial window, selecting key features of the

incoming signal” (Rivadulla et al., 2002).

The asymmetry between forward and backward connec-

tions maps nicely onto the distinction between driving and

modulatory effects proposed by Sherman and Guillery

(1998). (i) Cross-correlograms from driving inputs have

sharper peaks than modulatory inputs, (ii) there are likely to

be few drivers but many modulators for any cell, and (iii)

drivers act through (fast) ionotropic receptors, whereas

modulators also activate metabotropic receptors with a slow

and prolonged post-synaptic effect.

In relation to the status of hierarchical cortical organis-

ation, it should be noted that the hierarchical ordering of

areas is a matter of debate and may be indeterminate. On the

basis of computational neuroanatomic studies, Hilgetag,

O’Neill, and Young (2000) conclude laminar hierarchical

constraints that are presently available in the anatomical

literature are “insufficient to constrain a unique ordering”

for any of the sensory systems analysed. However, basic

hierarchical principles were clearly evident. Indeed, the

authors note “All the cortical systems we studied displayed

a significant degree of hierarchical organisation” with the

visual and somato-motor systems showing an organisation

that was “surprisingly strictly hierarchical”.

In what follows we will consider hierarchies as entities in

their own right. However, there are probably many

hierarchical brain systems that are interconnected. The

schematic in Fig. 1 shows how several hierarchical

structures could be organised in the brain. This schematic

is inspired by Mesulam’s (1998) notion of sensory-fugal

processing over “a core synaptic hierarchy, which includes

the primary sensory, upstream unimodal, downstream

unimodal, heteromodal, paralimbic and limbic zones of

the cerebral cortex” (see Mesulam, 1998 for more details).

There are many mechanisms that are responsible for

establishing connections in the brain. Connectivity results

from interplay between genetic, epigenetic and activity- or

experience-dependent mechanisms. In utero, epigenetic

mechanisms predominate, such as the interaction between

the topography of the developing cortical sheet, cell

migration, gene expression and the mediating role of

gene–gene interactions and gene products such as cell

adhesion molecules (CAMs). Following birth, connections

are progressively refined and re-modelled with a greater

emphasis on activity- and use-dependent plasticity. These

changes endure into adulthood with ongoing reorganisation

and experience-dependent plasticity that subserves beha-

vioural adaptation and learning. In brief, there are two basic

determinants of connectivity. (i) Structural plasticity,

reflecting the interactions between the molecular biology

of gene expression, cell migration and neurogenesis in the

developing brain. (ii) Synaptic plasticity, activity-dependent

modelling of the pattern and strength of synaptic connec-

tions. This plasticity involves changes in the form,

expression and function of synapses that endure throughout

life.

It is interesting to note that forward and backward

connections evidence a structural plasticity that is, neuro-

developmentally, quite distinct. The laminar organisation of

cortico-cortical projection neurons (reflected in the percen-

tage of supragranular projecting neurons—SLN%) charac-

terises cortical pathways as forward or backward. The

developmental reduction of SLN% is a widespread

phenomenon in the neocortex and is a distinctive feature

of backward pathways (Batardiere et al., 2002). Recent

studies by Batardiere et al. (2002) suggest that forward and

backward connections “exhibit different developmental

processes and patterns of connections linking cortical
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areas and their hierarchical relations are established pre-

natally, independently of regressive phenomena”.

In the post-developmental period, synaptic plasticity is

an important functional attribute of connections in the brain

and is thought to subserve perceptual and procedural

learning and memory. This is a large and fascinating field

that ranges from molecules to maps (see for example

Buonomano & Merzenich, 1998; Martin, Grimwood, &

Morris, 2000). Changing the strength of connections

between neurons is widely assumed to be the mechanism

by which memory traces are encoded and stored in the

central nervous system. In its most general form, the

synaptic plasticity and memory hypothesis states that.

“Activity-dependent synaptic plasticity is induced at

appropriate synapses during memory formation and is

both necessary and sufficient for the information storage

underlying the type of memory mediated by the brain area in

which that plasticity is observed” (see Martin et al., 2000 for

an evaluation of this hypothesis). A key aspect of this

plasticity is that it is generally associative.

Associative plasticity. Synaptic plasticity may be transi-

ent (e.g. short-term potentiation STP or depression STD) or

enduring (e.g. long-term potentiation LTP or LTD) with

many different time constants. In contrast to short-term

plasticity, long-term changes rely on protein synthesis,

synaptic re-modelling and infrastructural changes in cell

processes (e.g. terminal arbours or dendritic spines) that are

mediated by calcium-dependent mechanisms. An important

aspect of NMDA receptors, in the induction of LTP, is that

they confer associativity on changes in connection strength.

This is because their voltage-sensitivity only allows calcium

ions to enter the cell when there is conjoint pre-synaptic

release of glutamate and sufficient post-synaptic depolaris-

ation (i.e. the temporal association of pre- and post-synaptic

events). Calcium entry renders the post-synaptic specialis-

ation eligible for future potentiation by promoting

Fig. 1. Schematic illustrating hierarchical structures in the brain and the distinction between forward, backward and lateral connections.

K. Friston / Neural Networks 16 (2003) 1325–1352 1329



the formation of synaptic ‘tags’ (e.g. Frey & Morris, 1997)

and other calcium-dependant intracellular mechanisms.

In summary, the anatomy and physiology of cortico-

cortical connections suggest that forward connections are

driving and commit cells to a pre-specified response given

the appropriate pattern of inputs. Backward connections, on

the other hand, are less topographic and are in a position to

modulate the responses of lower areas to driving inputs from

either higher or lower areas (see Table 1). For example, in

the visual cortex Angelucci et al. (2002b) used a

combination of anatomical and physiological recording

methods to determine the spatial scale and retinotopic logic

of intra-areal V1 horizontal connections and inter-areal

feedback connections to V1. ‘Contrary to common beliefs,

these (monosynaptic horizontal) connections cannot fully

account for the dimensions of the surround field (of

macaque V1 neurons). The spatial scale of feedback circuits

from extrastriate cortex to V1 is, instead, commensurate

with the full spatial range of centre–surround interactions.

Thus these connections could represent an anatomical

substrate for contextual modulation and global-to-local

integration of visual signals.’

Finally, brain connections are not static but are changing

at the synaptic level all the time. In many instances this

plasticity is associative. Backwards connections are abun-

dant in the brain and are in a position to exert powerful

effects on evoked responses, in lower levels, that define the

specialisation of any area or neuronal population. Mod-

ulatory effects imply the post-synaptic response evoked by

pre-synaptic input is modulated by, or interacts with,

another. By definition this interaction must depend on

non-linear synaptic or dendritic mechanisms. In Section 3

we describe a theoretical perspective, provided by gen-

erative models, that highlights the functional importance of

hierarchies, backward connections, with non-linear coup-

ling and associative plasticity.

3. Representational learning

This section compares and contrasts the heuristics behind

three prevalent computational approaches to represen-

tational learning, supervised learning, and two forms of

self-supervised learning based on information theory and

predictive coding. This section concludes with the introduc-

tion of learning based on empirical Bayes. These

approaches are considered within the framework of

generative models. This section follows Dayan and Abbot

(2001, pp. 359–397) to which the reader is referred for more

detailed background. A more heuristic discussion of these

issues can be found in Friston (2002a,b). The more

mathematical sections are divided into a conceptual over-

view and a computational subsection for the interested

reader.

We start with an overview of representations in which the

distinctions among various approaches can be seen clearly.

An important focus of this section is the interaction among

causes of sensory input. These interactions create a problem

of contextual invariance. In brief, it will be shown that this

problem points to the adoption of generative models where

interactions among causes of a percept are modelled

explicitly in backward connections. After establishing a

framework that covers representational learning in a general

way, specific examples are reviewed. Each example is

presented as a generalisation of the preceding example, by

successively relaxing assumptions or constraints under

which learning proceeds. We start with supervised learning

in which both the prior distribution of the underlying causes

of sensory inputs and the processes generating them are

known. We then consider self-supervised approaches in

which the generative processes are learned but under the

assumption of independent causes. Predictive coding is

presented as an example that relaxes the independence

assumption but still depends upon known priors. Finally, we

consider empirical Bayes in which both the generating

process and priors are learned. At this point neuronal

implementation is considered in sufficient depth to make

predictions about the anatomical and functional architec-

tures that would be needed to implement empirical Bayes in

the brain. We conclude by relating theoretical predictions

with the neurobiological principles listed at the end of the

previous section.

3.1. The nature of inputs, causes and representations

Here a representation is taken to be a neuronal event that

represents some ‘cause’ in the sensorium. Causes are simply

the states of processes generating sensory data or input. It is

not easy to ascribe meaning to these states without

appealing to the way that we categorise things, perceptually

or conceptually. High-level conceptual causes may be

categorical in nature, such as the identity of a face in the

visual field or the semantic category a perceived object

belongs to. In a hierarchical setting, high-level causes may

induce priors on lower-level causes that are more parametric

in nature. For example, the perceptual cause ‘moving

quickly’ may show a one-to-many relationship with

representations of different velocities in V5 (MT) units.

Causes have relationships to each other (e.g. ‘is part of’) that

often have a hierarchical structure. This hierarchical

ontology is attended by ambiguous many-to-one and one-

to-many mappings (e.g. a table has legs but so do horses; a

wristwatch is a watch irrespective of the orientation of its

hands). This ambiguity can render the problem of inferring

causes from sensory information under-determined or ill

posed.

Even though causes may be difficult to describe, they are

easy to define operationally. Causes are quantities or states

that are necessary to specify the products of a process

generating sensory information. To keep things simple, let

us frame the problem of representing causes in terms of
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a deterministic non-linear generative function

u ¼ Gðv; uÞ ð1Þ

where v is a vector (i.e. a list) of underlying causes in the

environment (e.g. the velocity of a particular object,

direction of radiant light, etc.), and u represents some

sensory inputs. Gðv; uÞ is a function that generates inputs

from the causes. u are the parameters of generative model.

Unlike the causes, they are fixed quantities that have to be

learned. We shall see later that the parameters correspond to

connection strengths in the brain’s model of how inputs are

caused. Non-linearities in Eq. (1) represent interactions

among the causes. Second-order interactions are formally

identical to interaction terms in conventional statistical

models of observed data. These can often be viewed as

contextual effects, where the expression of a particular

cause depends on the context established by another. For

example, the extraction of motion from the visual field

depends upon there being sufficient luminance or wave-

length contrast to define the surface moving. Another

ubiquitous example, from early visual processing, is the

occlusion of one object by another. In the absence of

interactions we would see a linear superposition of both

objects but the visual input, caused by the non-linear mixing

of these two causes, renders one occluded by the other. At a

more cognitive level the cause associated with the word

‘HAMMER’ will depend on the semantic context (that

determines whether the word is a verb or a noun). These

contextual effects are profound and must be discounted

before the representations of the underlying causes can be

considered veridical.

The problem the brain has to contend with is to find a

function of the input that recognises or represents the

underlying causes. To do this, the brain must effectively

undo the interactions to disclose contextually invariant

causes. In other words, the brain must perform some form of

non-linear unmixing of causes and context without knowing

either. The key point here is that this non-linear mixing may

not be invertible and that the estimation of causes from input

may be fundamentally ill posed. For example, no amount of

unmixing can discern the parts of an object that are occluded

by another. The mapping u ¼ v2 provides a trivial example

of this non-invertibility. Knowing u does not uniquely

determine v; which could be negative or positive. The

corresponding indeterminacy, in probabilistic learning, rests

on the combinatorial explosion of ways in which stochastic

generative models can generate input patterns (Dayan,

Hinton, & Neal, 1995). The combinatorial explosion

represents another example of the uninvertible ‘many-to-

one’ relationship between causes and inputs.

In probabilistic learning, one allows for stochastic (i.e.

random) components in the generation of inputs and

recognising a particular cause becomes probabilistic. Here

the issue of deterministic invertibility is replaced by the

existence of an inverse conditional probability (i.e.

recognition) density that can be parameterised. Although

not a mathematical fundament, parameterisation is critical

for the brain because it has to encode the parameters of these

densities with biophysical attributes of its nervous tissue. In

what follows, we consider the implications of this problem.

In brief, we will show that one needs separate (approximate)

recognition and generative models that induces the need for

both forward and backward influences. Separate recognition

and generative models resolve the problem caused by

generating processes that are difficult to invert and speak to

a possible role for backward connections in the brain.

3.2. Generative models and representational learning

3.2.1. Conceptual overview

In this subsection we introduce the basic framework

within which one can understand learning and inference. This

framework rests upon generative and recognition models,

which are simply functions that map causes to sensory input

or vice versa. The objective of learning is to build internal

models that can explain observed inputs in terms of some

inferred causes. Making inferences about causes (e.g. the

most likely cause, or how certain we are that the cause falls

within some interval) depends on some representation of the

relative probabilities of values the causes can take. This

entails representing the probability distribution or density of

the causes. The key density is the conditional or posterior

density that summarises the likelihood of any cause given the

input. This section establishes the nature of this density and

how it relates to the underlying models.

Generative models afford a generic formulation of

representational leaning in a supervised or self-supervised

context. There are many forms of generative models that

range from conventional statistical models (e.g. factor and

cluster analysis) and those motivated by Bayesian inference

and learning (e.g. Dayan et al., 1995; Hinton, Dayan, Frey,

& Neal, 1995). The goal of generative models is “to learn

representations that are economical to describe but allow the

input to be reconstructed accurately” (Hinton et al., 1995).

Representational learning is framed in terms of estimating

probability densities of the causes. This is referred to as

posterior density analysis in the estimation literature and

posterior mode analysis if the inference is restricted to

estimating the most likely cause. The mode of a distribution

is the location of its maximum. Although density learning is

formulated at a level of abstraction that eschews many

issues of neuronal implementation (e.g. the dynamics of

real-time learning), it provides a unifying framework that

connects the various schemes considered below. It is

important to appreciate the distinction between simply

estimating the most likely cause (i.e. mode) and the broader

problem of inference. Inference entails estimating the

conditional density not just its mode.

3.2.2. Inference vs. learning

Eq. (1) relates the unknown causes v and some unknown

parameters u; to observed inputs u: The objective is to make
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inferences about the causes and learn the parameters.

Inference may be simply estimating the most likely causes

and is based on the products of learning. A useful way of

thinking about the distinction between inference and

learning is in terms of how one accounts for the patterns

or distribution of inputs encountered. Fig. 2 shows a very

simple example with a univariate cause and a bivariate

observation. Observations are denoted by dots in the right

hand panel and cluster around a curvilinear line. A

parsimonious way of generating dots like these would be

to move up and down the line and add a small amount of

observation error. The position on the line corresponds to

the state of the single cause and the probability of selecting a

particular position to the probability density of the causes on

the right. Inference means ascertaining the probability of

each potential cause given an observation. Estimation refers

to estimating the most likely cause, denoted in Fig. 2 by v̂:

This estimate is the closest point on the line to the

observation that a priori has a reasonable probability of

being selected. This simple example introduces the notion

of representing observations in terms of points that lie on a

low dimensional manifold in observation space, in this case

a line. The dimensions of this manifold are the causes. The

shape and position of the manifold depends on the

parameters u: These have to be known or learned before

inference about any particular observation can proceed. This

learning requires multiple observations so that the manifold

can be placed to transect the highest density of observations.

In short, representational learning can be construed as

learning a low dimensional manifold onto which data can be

projected with minimum loss of information. This manifold

is an essential component of generative models.

The goal of learning is to acquire a recognition model for

inference that is effectively the inverse of a generative

model. The generative model creates data from causes and

the inverse model recognises causes from data. Learning a

generative model corresponds to making the density of

inputs, implied by a generative model pðu; uÞ; as close as

possible to those observed pðuÞ: The generative model is

specified in terms of a prior distribution over the causes

pðv; uÞ and the generative distribution or likelihood of

the inputs given the causes pðulv; uÞ: Together, these define

the marginal distribution that has to be matched to the input

distribution

pðu; uÞ ¼
ð

pðulv; uÞpðv; uÞdv ð2Þ

See Fig. 2. Once the parameters of the generative model

have been learned, through this matching, the posterior

density of the causes, given the inputs is given by the

recognition model, which is defined in terms of the

recognition distribution

pðvlu; uÞ ¼
pðulv; uÞpðv; uÞ

pðu; uÞ
ð3Þ

However, as considered above, the generative model

may not be easily inverted and it may not be possible to

parameterise the recognition distribution. This is crucial

because the endpoint of learning is the acquisition of a

useful recognition model that can be applied to sensory

inputs. One solution is to posit an approximate recognition

distribution qðv; u;fÞ that is consistent with the generative

model and that can be learned at the same time. The

approximate recognition distribution has some parameters

f; for example, the strength of forward connections. The

first question addressed in this section is whether forward

connections are sufficient for representational leaning.

3.3. Density estimation and EM

3.3.1. Conceptual overview

In this subsection we introduce a general scheme for

representational learning using expectation maximisation.

Section 3.2 established that the objective is to estimate the

parameters of an approximate recognition density qðv; u;fÞ

for some generative model. This objective can be split into

two steps. First, ensure that the recognition density is

consistent with the generative model, noting one is the

inverse of the other. Second, adjust the parameters of the

generative model to fully account for the data. These two

steps correspond to the expectation and maximisation steps,

respectively. We will now look more closely at what these

steps entail and specify operationally what they are trying to

attain in terms of an objective function. An objective

function is a function of the parameters and specifies how

‘good’ they are. As we will see below, the objective function

embodies both the internal consistency of the recognition

and generative models and the likelihood of the data given

the generative model.

A key point made in this subsection is that if the

generative model can be inverted easily, then there is no

need for the expectation step because internal consistency

between the generative and recognition models is assured.

From a neurobiological perceptive this means only one set

of (recognition) parameters is required. Conversely, if the

inversion is difficult, both recognition and generative

Fig. 2. Schematic of a simple model with a univariate cause and a bivariate

observation. Observations are denoted by dots in the right hand panel and

cluster around a curvilinear line. A parsimonious way of generating dots

like these would be move up and down the line and add a small amount of

random error. The position on the line corresponds to the state of the single

cause and the probability of selecting a particular position the probability

density of the causes on the right.
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parameters are needed. We will see later this means

backward connection become necessary.

3.3.2. The objective function

In density learning, representational learning has two

components that are framed in terms of expectation

maximisation (EM, Dempster, Laird, & Rubin, 1977).

Iterations of an E-step ensure the recognition approximates

the inverse of the generative model and the M-step ensures

that the generative model can predict the observed inputs.

Probabilistic recognition proceeds by using qðv; u;fÞ to

determine the probability that v caused the observed sensory

inputs. EM provides a useful procedure for density

estimation that helps relate many different models within

a framework that has direct connections with statistical

mechanics. Both steps of the EM algorithm involve

maximising a function of the densities that corresponds to

the negative free energy in physics

F ¼ klðuÞlu

l ¼
ð

qðv; u;fÞln
pðv; u; uÞ

qðv; u;fÞ
dv

¼ kln pðv; u; uÞlq 2 kln qðv; u;fÞlq

¼ ln pðu; uÞ2 KL{qðv; u;fÞ; pðvlu; uÞ}

ð4Þ

This objective function comprises two terms. The first is

the expected log likelihood of the inputs under the

generative model. The second term is the Kullback–Leibler

(KL) divergence1 between the approximating and true

recognition densities. Critically, the KL term is always

positive, rendering F a lower bound on the expected log

likelihood of the inputs. Maximising F encompasses two

components of representational learning: (i) it increases the

likelihood of the inputs produced by the generative model

and (ii) minimises the discrepancy between the approximate

recognition model and that implied by the generative model.

The E-step increases F with respect to the recognition

parameters f; ensuring a veridical approximation to the

recognition distribution implied by the generative par-

ameters u: The M-step changes u; enabling the generative

model to reproduce the inputs

E f ¼ max
f

F M u ¼ max
u

F ð5Þ

There are a number of ways of motivating the free energy

formulation in Eq. (4). A useful one, in this context, rests

upon the problem posed by non-invertible models. This

problem is finessed by assuming it is sufficient to match the

joint probability of inputs and causes under the generative

model pðu; v; uÞ ¼ pðulv; uÞpðv; uÞ with that implied by

recognising the causes of inputs encountered pðu; v;fÞ ¼

qðv; u;fÞpðuÞ: Both these distributions are well defined even

when pðvlu; uÞ is not easily parameterised. This matching

minimises the divergence

KL{pðv; u;fÞ; pðv; u; uÞ}

¼
ð

qðv; u;fÞpðuÞln
qðv; u;fÞpðuÞ

pðv; u; uÞ
dv du

¼ 2F 2 HðuÞ ð6Þ

This is equivalent to maximising F because the entropy

of the inputs HðuÞ is fixed. This perspective is used in Fig. 3

to illustrate the E and M steps schematically. The E-step

adjusts the recognition parameters to match the two joint

distributions, while the M-step does exactly the same thing

but by changing the generative parameters. The dependency

of the generative parameters, on the input distribution, is

Fig. 3. Schematic illustrating the two components of EM. In the E-step the

joint distribution of causes and inputs under the recognition model changes

to approximate that under the generative model. This refines the recognition

model. In the M-step the joint distribution under the generative model

changes to approximate that under the recognition model. This reduces the

difference between the distribution of inputs implied by the generative

model and that observed.

1 A measure of the distance or difference between two probability

densities.
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mediated vicariously in the M-step through the recognition.

In the setting of invertibility, where qðv; u;fÞ ¼ pðvlu; uÞ
the divergence in Eq. (6) reduces to KL{pðuÞ; pðu; uÞ}: As

above, the M-step then finds parameters that allow the

model to simply match the observed input distribution (i.e.

maximise the expected likelihood).

3.3.3. Invertibility

This formulation of representational leaning is critical

for the thesis of this section because it suggests that

backward and lateral connections, parameterising a gen-

erative model, are essential when the model is not invertible.

If the generative model is invertible then the KL term in Eq.

(4) can be discounted by setting qðv; u;fÞ ¼ pðvlu; uÞ with

Eq. (3) and learning reduces to the M-step (i.e. maximising

the expected likelihood).

F ¼ kln pðu; uÞlu ð7Þ

See Fig. 4 (upper panel). In principle, this could be done

using a feedforward architecture corresponding to the

inverse of the generative model. However, when processes

generating inputs are non-invertible (in terms of the

parameterisation of the recognition density) a generative

model and approximate recognition model are required that

are updated in M- and E-steps, respectively. In short, non-

invertibility enforces an explicit parameterisation of the

generative model in representational learning. In the brain

this parameterisation may be embodied in backward and

lateral connections.

3.3.4. Deterministic recognition

Another special case arises when the recognition is

deterministic. The recognition becomes deterministic when

qðv; u;fÞ is a Dirac d-function over its mode vðu;fÞ (i.e.

reduces to a point). In this instance, posterior density

analysis reduces to a posterior mode analysis at which point

inference and estimation coincide. They are equivalent in

the sense that inferring the posterior distribution of causes is

the same as estimating the most likely cause given the inputs

(the maximum a posteriori or MAP estimator). Here the

integral in Eq. (4) disappears, leaving the joint probability of

the inputs and their cause to be maximised

F¼ klnpðvðuÞ;u;uÞlu¼ klnpðulvðuÞ;uÞþ lnpðvðuÞ;uÞlu ð8Þ

Notice, again, that this objective function does not

require pðvlu;uÞ and eschews the inversion in Eq. (3). An

illustration of the E-step for deterministic recognition is

shown in Fig. 4 (lower panel). In this article the distinction

between deterministic and stochastic relates to inference

and refers to form of the recognition density. It should be

noted that learning could also employ a deterministic or

stochastic ascent on F: We will deal largely with

deterministic learning schemes.

EM enables exact and approximate maximum likelihood

density estimation for a whole variety of generative models

that can be specified in terms of prior and generative

distributions. Dayan and Abbot (2001) work though a series

of didactic examples from cluster analysis to independent

component analyses, within this unifying framework. For

example, factor analysis corresponds to the generative

model

pðv; uÞ ¼ Nðv : 0; 1Þ pðulv; uÞ ¼ Nðu : uv;SÞ ð9Þ

Namely, the underlying causes of inputs are independent

normal variates that are mixed linearly and added to

Gaussian noise to form inputs. Nðu : uv;SÞ means a normal

distribution over u with a mean of uv and variance–

covariance S: In the limiting case of S! 0 the ensuing

model become deterministic and conforms to PCA. By

simply assuming non-Gaussian priors one can specify

generative models for sparse coding of the sort proposed

Fig. 4. As for Fig. 2 but for two special cases of learning in which the

generative model is invertible (upper panel) and in which the recognition

model is deterministic (lower panel). When the model is invertible only the

generative parameters need to be learned in the M-step. This learning

reduces the difference between the distribution of inputs implied by the

generative model and that observed. In deterministic recognition the

recognition density reduces to a Dirac d-function (i.e. point) over the point

estimator of the causes vðu;fÞ:
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by Olshausen and Field (1996)

pðv; uÞ ¼
Y

pðvi; uÞ pðulv; uÞ ¼ Nðu : uv;SÞ ð10Þ

where pðvi; uÞ are chosen to be suitably sparse (i.e. heavy-

tailed) with a cumulative density function that corresponds

to the squashing function in Section 3.5.5. The deterministic

equivalent of sparse coding is ICA that obtains when S! 0:

The relationships among different models are rendered

apparent under the perspective of generative models. In

what follows we consider a series of models entailing

assumptions about the generation of sensory inputs that are

relaxed one by one. At each point we consider whether they

could be implemented plausibly in the brain.

3.4. Supervised learning

3.4.1. Conceptual overview

To start we will review briefly supervised learning, using

connectionist models in cognitive science as a paradigm

example. Supervised learning deals with the simplest

problem in which the parameters of the generative model

are known, allowing one to generate simulated sensory

inputs from causes with a known prior distribution.

Although supervised learning schemes have an established

utility in helping understand some aspects of functional

architectures in the brain they are not candidates for models

of representational learning. This is because their supervised

aspect means the generative model is already known. From

the point of view of expectation maximisation, only the first

step is required to find the parameters of the recognition

density. In this subsection we place supervised learning in

the framework described above and touch upon some of

their useful applications in cognitive neuroscience.

3.4.2. Implementation

In supervised schemes the generative model is pre-

specified and only the recognition parameters need to be

learned. The generative model is known in the sense that

any cause determines the input, either deterministically or

stochastically. In this case only the E-step is required in

which the parameters f that specify qðv; u;fÞ change to

maximise F: The only term in Eq. (4) that depends on f is

the divergence term, such that learning reduces to minimis-

ing the expected difference between the approximate

recognition density and that required by the generative

model

E f ¼ max
f

F ¼ min
f

kKLðqðv; u;fÞ; pðvlu; uÞÞlu ð11Þ

This can proceed probabilistically (e.g. contrastive

Hebbian learning in stochastic networks, Dayan & Abbott,

2001, p. 322) or deterministically. In a deterministic setting,

the connection strengths f (usually connecting multiple

layers of nodes) are changed, typically using the delta rule,

such that the distance between the modes of the approximate

and desired recognition distributions are minimised over all

inputs. This distance is typically measured by the average

sum of squared difference between the recognised and true

causes (see Fig. 5, upper panel). Supervised learning, of this

sort, is equivalent to non-linear function approximation, a

perspective that can be adopted on all supervised learning of

deterministic mappings with neural nets. Note that any

scheme, based on supervised learning, requires the pro-

cesses generating inputs to be known a priori and as such

cannot be used by the brain. However, supervised learning

has a substantial role in understanding some aspects of

functional anatomy.

3.4.3. Category specificity and connectionism

Supervised learning in the context of connectionism is an

approach that has proved very useful in relating putative

cognitive architectures to neuronal ones and, in particular,

modelling the impact of brain lesions on cognitive

performance. Semantic memory impairments can result

from a variety of pathophysiological insults, including

Alzheimer disease, encephalitis and cerebrovascular acci-

dents (e.g. Nebes, 1989; Warrington & Shallice, 1984). The

concept of category specificity stems from the work of

Warrington and colleagues (Warrington & McCarthy, 1983;

Warrington & Shallice, 1984) and is based on the

observation that patients with focal brain lesions have

difficulties in recognising or naming specific categories of

Fig. 5. Schematic illustrating architectures with forward connections that

are sufficient when the generative model is known (supervised learning) or

can be inverted (infomax). The circles represent nodes in a network and the

arrows represent a few of the connections. See the main text for an

explanation of the equations and designation of the variables each set of

nodes represents. The light grey boxes encompass connections and nodes

within the model. Connection strengths are determined by the free

parameters of the model f (forward connections).
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objects. Patients can exhibit double dissociations in terms of

their residual semantic capacity. For example, some patients

can name artefacts but have difficulty with animals, whereas

others can name animals with more competence than

artefacts. These findings have engendered a large number

of studies, all pointing to impairments in perceptual

synthesis, phonological or lexico-semantic analysis that is

specific for certain categories of stimuli. There are several

theories that have been posited to account for category

specificity. Connectionist models have been used to

adjudicate among some of them.

Connectionist (e.g. parallel distributed processing or

PDP) techniques use model neuronal architectures that can

be lesioned to emulate neuropsychological deficits. This

involves modelling semantic networks using connected

units or nodes and suitable learning algorithms to determine

a set of connection strengths (Rumelhart & McClelland,

1986). Semantic memory impairments are then simulated by

lesioning the model to establish the nature of the interaction

between neuropathology and cognitive deficit (e.g. Hinton

& Shallice, 1991; Plaut & Shallice, 1993). A compelling

example of this sort of approach is the connectionist model

of Farah and McClelland (1991): patterns of category-

specific deficits led Warrington and McCarthy (1987) to

suggest that an animate/inanimate distinction could be

understood in terms of a differential dependence on

functional and structural (perceptual) features for recog-

nition. For example, tools have associated motor acts

whereas animals do not, or tools are easier to discriminate

based upon their structural descriptions than four-legged

animals. Farah and McClelland (1991) incorporated this

difference in terms of the proportion of the two types of

semantic featural representations encoding a particular

object, with perceptual features dominating for animate

objects and both represented equally for artifacts. Damage

to visual features led to impairment for natural kinds and

conversely damage to functional features impaired the

output for artefacts. Critically the model exhibited category-

specific deficits in the absence of any category-specific

organisation. The implication here is that an anatomical

segregation of structural and functional representations is

sufficient to produce category-specific deficits following

focal brain damage. This example serves to illustrate how

the connectionist paradigm can be used to relate neuronal

and cognitive domains. In this example, connectionist

models were able to posit a plausible anatomical infrastruc-

ture wherein the specificity of deficits, induced by lesions, is

mediated by differential dependence on either the functional

or structural attributes of an object and not by any (less

plausible) category-specific anatomical organisation per se.

In summary, connectionist models specify distributed

profiles of activity over (semantic) primitives that are

induced by (conceptual) causes and try to find connection

parameters that emulate the inverse of these known

mappings. They have been used to understand how the

performance (storage and generalisation) of a network

responds to simulated damage, after learning is complete.

However, connectionism has a limited role in understanding

representational learning per se because the brain is not

given a generative model, it must be learned. Next we will

look at self-supervised approaches that do not require the

generative distribution to be known a priori.

3.5. Information theory and efficient coding

3.5.1. Conceptual overview

In the previous section we had assumed both the

generative pðulv; uÞ and prior pðv; uÞ distributions were

known. In this section we consider self-supervised schemes

that can be regarded as a generalisation of supervised

learning and that do not require the parameters of the

generative distribution. We first consider deterministic

models and then turn to stochastic models. This section

focuses on the links between the EM schemes and

information maximisation procedures. These rest on the

prior assumption that the causes are independent such that

pðv; uÞ ¼
Q

pðvi; uÞ where vi represents the ith cause. This

equation simply states the prior probability of several causes

is the product of each considered alone. This factorisation

means the causes do not interact, or depend on each other, in

terms of their expression.

It transpires that the independence assumption renders

the objective function equivalent to a measure of how

efficiently inputs are encoded. This is reflected in the

average information (i.e. entropy) expressed by the inferred

causes. This is important because it connects density

learning with a large body of work that uses information

theory to understand how the brain might encode its sensory

inputs in an efficient fashion with minimal loss of

information. In short, we will see that the principle of

maximum information transfer (i.e. infomax, Linsker, 1990)

is exactly the same as expectation maximisation under the

prior assumption of independent causes.

3.5.2. Implementation

For invertible deterministic models the KL term in Eq. (4)

can be discounted and learning reduces to maximising

F ¼ kln pðu; uÞlu ¼ ln pðvðuÞ; uÞh j
›vðuÞ

›u
jiu

¼ kln pðvðuÞ; uÞlu þ lnh j
›vðuÞ

›u
jiu

¼
X

kln pðviðuÞ; uÞlu þ HðvðuÞ;fÞ2 HðuÞ ð12Þ

The first term of the last line serves to constrain the

marginal distribution of the estimated causes while the

second requires their entropy to be maximised under these

constraints. This is the essence of infomax procedures

(Linsker, 1990) and can be understood as maximising the

mutual information between the estimated causes and inputs

as discussed below.
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3.5.3. Infomax

There have been many compelling developments in

theoretical neurobiology that have used information theory

(e.g. Barlow, 1961; Foldiak, 1990; Linsker, 1990; Oja,

1989; Optican & Richmond, 1987; Tononi, Sporns, &

Edelman, 1994; Tovee, Rolls, Treves, & Bellis, 1993).

Many appeal to the principle of maximum information

transfer (e.g. Atick & Redlich, 1990; Bell & Sejnowski,

1995; Linsker, 1990). This principle has proven extremely

powerful in predicting some of the basic receptive field

properties of cells involved in early visual processing (e.g.

Atick & Redlich, 1990; Olshausen & Field, 1996). This

principle represents a formal statement of the common sense

notion that neuronal dynamics in sensory systems should

reflect, efficiently, what is going on in the environment

(Barlow, 1961). In the present context, the principle of

maximum information transfer (infomax; Linsker, 1990)

suggests that a model’s parameters should maximise the

mutual information between the sensory input u and the

evoked responses or outputs vðu;fÞ: This maximisation is

usually considered in the light of some sensible constraints,

e.g. the presence of noise in sensory input (Atick & Redlich,

1990) or dimension reduction (Oja, 1989) given the smaller

number of divergent outputs from a cortical area than

convergent inputs (Friston et al., 1992).

The mutual information between inputs and responses is

given by

Iðu; vÞ ¼ HðuÞ þ HðvÞ2 Hðu; vÞ ¼ HðvÞ2 HðvluÞ ð13Þ

where HðvluÞ is the conditional entropy or uncertainty in the

response, given the input. For deterministic recognition

there is no such uncertainty and this term can be discounted

(see Bell & Sejnowski, 1995). More generally

›

›f
Iðu; v;fÞ ¼

›

›f
Hðv;fÞ ð14Þ

It follows that maximising the mutual information is the

same as maximising the entropy of the responses. The

infomax principle (maximum information transfer) is

closely related to the idea of efficient coding. Generally

speaking, redundancy minimisation and efficient coding are

all variations on the same theme and can be considered as

the infomax principle operating under some appropriate

constraints or bounds. The key thing that distinguishes

among the various information theoretic schemes is the

nature of the constraints under which entropy is maximised.

One useful way of looking at constraints is in terms of

efficiency.

3.5.4. Efficiency and redundancy

The efficiency of a system can be considered as the

complement of redundancy (Barlow, 1961), the less

redundant, the more efficient a system will be. Redundancy

is reflected in the dependencies or mutual information

among the outputs (c.f. Gawne & Richmond, 1993)

Iðv;fÞ ¼
X

Hðvi;fÞ2 Hðv;fÞ ð15Þ

Here Hðvi;fÞ is the marginal entropy of the ith output.

Eq. (15) implies that redundancy is the difference between

the joint entropy and the sum of the marginal entropies.

Intuitively this expression makes sense if one considers that

the variability in activity of any single unit corresponds to

its entropy. Therefore, an efficient neuronal system

represents its inputs with the minimal excursions from

baseline firing rates. Another way of thinking about Eq. (15)

is to note that maximising efficiency is equivalent to

minimising the mutual information among the outputs. This

is the basis of approaches that seek to de-correlate or

orthogonalise the outputs. To minimise redundancy one can

either minimise the entropy of the output units or maximise

their joint entropy, while ensuring the other is bounded in

some way. Olshausen and Field (1996) present a nice

analysis based on sparse coding. Sparse coding minimises

redundancy using single units with low entropy. Sparse

coding implies coding by units that fire very sparsely and

will, generally, not be firing. Therefore, one can be

relatively certain about their (quiescent) state, conferring

low entropy on them.

The relationship between Eqs. (12) and (15) rests on the

nature of the prior distribution. If we relax constraints on the

form of the marginal distributions of viðuÞ such that

pðvðuÞ; uÞ ¼
Q

pðviðuÞÞ then F becomes a functional of the

recognition parameters

F ¼
X

kln pðviðuÞÞlu þ Hðv;fÞ2 HðuÞ

¼ 2
X

Hðvi;fÞ þ Hðv;fÞ2 HðuÞ

¼ 2Iðv;fÞ2 HðuÞ ð16Þ

This has exactly the same dependence on the parameters

as the objective function employed by infomax in Eq. (15).

In this context, the free energy and the information differ

only by the entropy of the inputs. In other words minimising

the free energy is the same as minimising the redundancy or

maximising the efficiency with which the causes of inputs

are encoded. This equivalence rests on use of maximum

entropy priors of the sort used in sparse coding. Although

the infomax and density learning approaches have the same

objective, their heuristics are complementary. Infomax is

motivated by maximising the mutual information between u

and vðu;fÞ under some constraints. The generative model

approach takes its heuristics from the assumption that the

causes of inputs are independent and possibly non-

Gaussian. This results in a prior with maximum entropy

pðv; uÞ ¼
Q

pðvi; uÞ: The reason for adopting non-Gaussian

priors (e.g. sparse coding and ICA) is that the central limit

theorem implies mixtures of causes will have Gaussian

distributions and therefore something that is not Gaussian is

unlikely to be a mixture.
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3.5.5. Invertible models

It is often the case that the constraints on the marginal

distributions are absorbed into the parameters of the

recognition function. In this instance learning reduces to

maximising Hðv;fÞ: A simple example of this is PCA,

which samples the subspace of the inputs that have the

highest entropy (e.g. Foldiak, 1990). PCA is conventionally

regarded as maximising Hðv;fÞ; for deterministic recog-

nition vðu;fÞ ¼ fu where the sum of squared connections

in each row of f is constant. Similarly, ICA finds non-linear

functions of the inputs that maximise the joint entropy (Bell

& Sejnowski, 1995; Common, 1994). The marginal

entropies are constrained by passing the outputs through a

sigmoid squashing function vðu;fÞ ¼ gðfuÞ so that the

outputs lie in a bounded interval (hypercube). Learning can

then proceed by maximising klnl›vðuÞ=dullu in Eq. (12). See

Eq. (10) for the implicit generative model, in which the

outputs are not bounded but forced to have cumulative

density functions that conform to the squashing function g:

As noted above, PCA and ICA are based on linear

deterministic generative models with independent Gaussian

and non-Gaussian priors, respectively. Generalising to non-

deterministic models with Gaussian errors gives factor

analysis and sparse coding, respectively (see Eqs. (9) and

(10)). In principle, all these models are probabilistically

invertible. However, it is difficult to parameterise the

inverse of the sparse coding model in Eq. (10) and a

deterministic approximating recognition density is used (see

below).

3.5.6. Non-invertible models

In the context of invertible deterministic generative

models, the parameters of the recognition model specify the

generative model and only the recognition model, i.e.

forward connections constructing vðuÞ ¼ vðu;fÞ need to be

instantiated. If the generative model cannot be inverted, or

the inversion cannot be parameterised, the recognition

model is not defined and analytic infomax schemes are

precluded. In this instance, one has to parameterise both an

approximate recognition and generative model as required

by EM. This enables the use of non-linear generative

models, such as the Helmholtz machine (Dayan et al., 1995)

for binary stochastic systems and non-linear PCA for

parametric deterministic models (e.g. Dong & McAvoy,

1996; Friston et al., 2000; Karhunen & Joutsensalo, 1994;

Kramer, 1991; Taleb & Jutten, 1997). The latter schemes

typically employ a ‘bottleneck’ architecture that forces the

inputs through a small number of nodes. The output from

these nodes then diverges to produce the predicted inputs.

The approximate recognition model is implemented in

connections to the bottleneck nodes and the generative

model by connections from these nodes to the outputs. Non-

linear transformations, from the bottleneck nodes to the

output layer, recapitulate the non-linear mixing of the real

causes of the inputs. If such a scheme was implemented in

the brain, one would envisage the recognition to be

implemented in forward connections and learned in the E-

step. Critically, the generative model would be mediated by

backward connections from the bottleneck nodes, so that the

output nodes were juxtaposed to the inputs being predicted

(see Fig. 6, upper panel). The backward connections are

updated in the M-step. After learning, the activity of the

bottleneck nodes can be treated as estimates of the causes.

These representations are obtained by projection of the input

onto a low-dimensional curvilinear manifold that is

encompassed by the activity of the bottleneck nodes (c.f.

Fig. 2).

3.5.7. Summary

In summary, ICA and like-minded approaches try to find

some deterministic recognition function of the inputs that

maximises information transfer. Compared to supervised

schemes, this has the fundamental advantage that the

algorithm is unsupervised by virtue of the fact that the

causes and generating process are not needed for leaning.

This is shown in Fig. 5, which portrays the main difference

between supervised and self-supervised learning in terms of

whether F is a function of the true causes. An important

aspect of the infomax principle is that it goes a long way to

explain functional segregation in the cortex. One perspec-

tive on functional segregation is that each cortical area is

Fig. 6. Schematic illustrating architectures with forward and backward

connections that are necessary when the generative model is unknown and

cannot be inverted. This figure uses the same format as Fig. 4. Learning

involves changes in the free parameters of the model f (that correspond to

forward connections in the upper panel and neuronal states in the lower

panel) and u (backward connections). Non-linear effects are implied when

one arrow connects with another. The broken arrows represent forward

influences to the higher level from the input level.
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segregating its inputs into relatively independent functional

outputs. This is exactly what infomax predicts. See Friston

(2000) and references therein, for an example of how

infomax can be used to predict the segregation of processing

streams from V2 to specialised motion, colour and form

areas in extrastriate cortex.

Infomax assumes that the causes are independent. While

this may be sensible for simple systems, it is certainly not

appropriate for more realistic hierarchical processes that

generate sensory inputs (see below). This is because

correlations among causes at any level are induced by

changes at supraordinate levels. In Section 3.6 we will look

at a more general implementation of representational

learning that encompasses any specified form for the priors.

3.6. Predictive coding

3.6.1. Conceptual overview

In the previous section, we considered representational

learning from the infomax perspective afforded by indepen-

dence assumptions about the prior distributions. In this section

we relax the independence assumptions and relate predictive

coding to the free energy formulation of EM. Predictive

coding is based on minimising prediction error. This

prediction error is the difference between the observed input

and that predicted on the basis of the generative model and

inferred causes. It is relatively easy to show that maximising

the objective function above is equivalent to minimising

prediction error, under some constraints. The nature of these

constraints emerge naturally from the EM formulation and are

considered, usefully, in the light if ill-posed inverse problems

and regularisation (e.g. in machine vision).

This section introduces predictive coding as a general

implementation of EM that frees itself from the difficulties

of parameterising complicated recognition densities by

estimating the first few moments (mean or expectation and

covariance) for each input. This leads to an E-step that can

be implemented ‘on-line’ and takes us a step closer to a

neurobiological implementation.

3.6.2. Implementation

To do this we consider how probabilistic, non-linear

generative models are learned, under Gaussian assumptions

about the stochastic components

pðv; uÞ ¼ Nðv : mp;SpÞ

pðulv; uÞ ¼ Nðu : Gðv; uÞ;SuÞ

ð17Þ

where u includes the prior expectation, prior covariance and

observation error covariance (mp; Sp; Su). This can be

formulated as a non-linear observation model with two

levels

u ¼ Gðv; uÞ þ 1u v ¼ mp þ 1p ð18Þ

where Cov{1u} ¼ Su and Cov{1p} ¼ Sp: This perspective

will be useful in the next section when we generalise to

hierarchical models. In the previous section most of the

recognition models were deterministic which simplified

the parameterisation of the recognition density. Here the

approximate recognition density is taken to be probabilistic

and Gaussian

qðv; u;fÞ ¼ Nðu : f;SqÞ Sq ¼ ðJTS21
u J þ S21

p Þ21

J ¼
›Gðf; uÞ

›v

ð19Þ

The covariance of the recognition density is approxi-

mated here by the inverse of the negative curvature of the

log posterior ln pðvlu; uÞ evaluated at its mode. Critically,

this covariance is a function of the mode or MAP estimator

f meaning that it does not have to be learned. From Eq. (4)

lðuÞ ¼ kln pðv;u;uÞlq 2 kln qðv;u;fÞlq

¼ kln pðulv;uÞlq þ kln pðv;uÞlq þHðq;fÞ

<2
1

2
jT

u ju 2
1

2
jT

p jp 2
1

2
lnlSul2

1

2
lnlSplþ

1

2
lnlSql

ju ¼ S21=2
u ðu2Gðf;uÞÞ jp ¼ S21=2

p ðf2mpÞ ð20Þ

with equality for linear models. The E-step corresponds to

maximising f with respect to the expectation F ¼ klðuÞlu: A

general solution to this is to find fðuÞ that satisfies ›l=›f¼ 0

for each input. This is the approach adopted by Olshausen

and Field (1996) in their implementation of sparse coding.

Assuming dynamics are fast, in relation to changes in input,

this can be implemented with gradient ascent. This gives,

ignoring time constants

E _f¼
›lðuÞ

›f
M _u¼

›F

›u
ð21Þ

3.6.3. The nature of predictive coding

There is a subtle but key departure from the previous

sections implied by this scheme. In previous schemes we

had treated f as the parameters of some static recognition

function of the inputs. Here, the recognition parameters are

input-specific and correspond to the mode of the recognition

distribution for each input. From a neuronal perspective this

means that fðuÞ are not forward connections (c.f. connec-

tionist and infomax schemes) but are dynamically encoded

by the activity of units in the brain (c.f. predictive and sparse

coding). This distinction is illustrated schematically in

Fig. 6. An important consequence of this general solution to

learning the recognition parameters is that E-step learning

and inference become the same thing. This is because

finding the mode of the recognition distribution, for each

input, is the same as inferring its most likely cause. In other

words, f is both a parameter of the recognition density and

an estimate of the cause. This is nice because one does not

have to posit distinct neuronal mechanisms for inference

and learning. Both are implicit in the E-step, which can be
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implemented using neuronal-like dynamics that conform to

some gradient ascent. In the current discussion, we will take

this to be the essence of predictive coding, namely any

scheme that finds the mode of the recognition density by

dynamically minimising prediction error in an input-specific

fashion. The advantages of predictive coding are that

inference is implicit in the E-step and the use of gradient

ascent provides a general solution to arbitrarily complicated

and non-linear generative models. Note that predictive

coding does not imply deterministic recognition; the

recognition density may have a covariance defined by

Eq. (19), which is a function of Su and Sp: These can be

encoded by neuronal activity or, as shown later, the strength

of (lateral) connections.

Predictive coding, when defined in this way refers to

learning and inference schemes that employ a particular

process in the E-step, based on minimising predictive error.

Consequently, predictive coding is not defined by assump-

tions about the generative or prior densities (c.f. supervised

learning and infomax). Indeed predictive coding makes no

generic assumptions other than constraints on the manifolds

implicit in any generative functions. However, it should be

remembered predictive coding is essentially a process for,

as opposed to a category of, representational learning.

The E-step is trying to find

min
f

ðjT
u ju þ VðfÞÞ VðfÞ ¼ jT

p jp 2 lnlSql ð22Þ

This can be regarded as a minimisation of (whitened)

prediction error ju subject to some constraints, here denoted

by the potential VðfÞ that does not depend on the input.

These constraints comprise a term that penalises deviations

from prior expectations and a second term whose depen-

dency on f is mediated by non-linearities in the generative

model, through the conditional covariance, Eq. (19). For

linear models and non-linear models with deterministic

recognition, this second component disappears. These

constraints can be viewed in terms of regularisation, a

perspective that provided the heuristics for early generative

models in machine vision.

3.6.4. Predictive coding and the inverse problem

In predictive coding, the dynamics of units are trying to

predict the inputs. As with infomax schemes, the represen-

tational aspects of any unit emerge spontaneously as the

capacity to predict improves with learning. There is no a

priori ‘labelling’ of the units or any supervision in terms of

what a correct response should be (c.f. connectionist

approaches). The only correct response is one in which

the implicit internal model of the causes and their non-linear

mixing is sufficient to predict the input with minimal error,

under some constraints.

Conceptually, predictive coding and generative models

are related to ‘analysis-by-synthesis’ (Neisser, 1967). This

approach to perception, from cognitive psychology,

involves adapting an internal model of the world to match

sensory input and was suggested by Mumford (1992) as a

way of understanding hierarchical neuronal processing. The

idea is reminiscent of Mackay’s epistemological automata

(MacKay, 1956) which perceive by comparing expected and

actual sensory input (Rao, 1999). These models emphasise

the role of backward connections in mediating the

prediction, at lower or input levels, based on the activity

of units in higher levels.

Predictive coding schemes can also be regarded as

arising from the distinction between forward and inverse

models adopted in machine vision (Ballard, Hinton, &

Sejnowski, 1983; Kawato, Hayakawa, & Inui, 1993).

Forward models generate inputs from causes (c.f. generative

models), whereas inverse models approximate the reverse

transformation of inputs to causes (c.f. recognition models).

This distinction embraces the non-invertibility of generating

processes and the ill-posed nature of inverse problems. As

with all underdetermined inverse problems the role of

constraints becomes central. In the inverse literature a priori

constraints usually enter in terms of regularised solutions.

For example: “Descriptions of physical properties of visible

surfaces, such as their distance and the presence of edges,

must be recovered from the primary image data. Compu-

tational vision aims to understand how such descriptions can

be obtained from inherently ambiguous and noisy data. A

recent development in this field sees early vision as a set of

ill-posed problems, which can be solved by the use of

regularisation methods” (Poggio, Torre, & Koch, 1985).

The architectures that emerge from these schemes suggest

that “feedforward connections from the lower visual cortical

area to the higher visual cortical area provides an

approximated inverse model of the imaging process

(optics), while the backprojection connection from the

higher area to the lower area provides a forward model of

the optics” (Kawato et al., 1993). See also Harth,

Unnikrishnan, and Pandya (1987). The connection between

this perspective on forward influences and the error

minimisation can be seen by finessing the gradient decent

in the E-step using a Newton–Raphson scheme. For

deterministic recognition

E

_f ¼ 2
›2lðuÞ

›f2

 !21
›lðuÞ

›f

¼ ðJTS21
u J þ S21

p Þ21ðJTS21=2
u ju 2 S21=2

p jpÞ

ð23Þ

When Su ! 1 and S21
p ! 0 this reduces to _f ¼ J2ju

where J2 the generalised inverse of J ¼ ›G=›v: In other

words, forward influences on the recognition parameters

correspond to passing the prediction error through the

inverse of the generative or forward model (Kawato et al.,

1993). The use of Eq. (23) in the posterior mode analysis of

non-linear dynamical systems is discussed in Friston

(2002c).
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3.6.5. Summary

Predictive coding is a strategy that has some compelling

(Bayesian) underpinnings and embeds two concurrent

processes. (i) The parameters of the generative or forward

model change to emulate the real world mixing of causes,

using their current estimates (M-step) and (ii) these

estimates change to best explain the observed inputs,

using the current forward model (E-step). Both the

parameters and the estimates minimise prediction error.

To finesse the inverse problem, posed by non-invertible

generative models, constraints are required. These resolve

the problem of non-invertibility that confounds simple

infomax schemes but emphasise the dependency of

representational learning on priors. In the final subsection

we consider representational learning when the parameters

of the prior distribution are unknown and must be learned.

This represents the last generalisation of representational

learning that eschews knowledge about the parameters of

both the generative and prior distributions. This generalis-

ation speaks to hierarchical models and the notion of

empirical Bayes.

3.7. Cortical hierarchies and empirical Bayes

3.7.1. Conceptual overview

The problem with predictive coding is that the brain

cannot construct priors mp and Sp de novo. They have to be

learned along with the generative parameters. In Bayesian

estimation, priors are estimated from data using empirical

Bayes. Empirical Bayes harnesses the hierarchical structure

of a forward model, treating the estimates at one level as

prior expectations for the subordinate level (Efron &

Morris, 1973). This provides a natural framework within

which to treat cortical hierarchies in the brain, each

providing constraints on the level below. This approach

models the world as a hierarchy of systems where

supraordinate causes induce, and moderate, changes in

subordinate causes. For example, the presence of a

particular object in the visual field changes the incident

light falling on a particular part of the retina. A more

intuitive example is provided in Fig. 7. These priors offer

contextual guidance towards the most likely cause of the

input. Note that predictions at higher levels are subject to the

same constraints, only the highest level, if there is one in the

brain, is free to be directed solely by bottom-up influences

(although there are always implicit priors). If the brain has

evolved to recapitulate the causal structure of its environ-

ment, in terms of its sensory infrastructures, it is interesting

to reflect on the possibility that our visual cortices reflect the

hierarchical causal structure of our environment.

In this section we introduce hierarchical models and

extend the parameterisation of the ensuing generative model

to cover the priors. This means that the constraints required

by predictive coding and regularised solutions to inverse

problems in the previous section, are now embraced by the

learning scheme and are estimated in exactly the same way

as the parameters of the generative distribution. These new

parameters are refereed to as hyperparameters and are

absorbed into he M-step to maximise the same objective

function. This empirical approach to hyperparameter

estimation rests upon a hierarchical structure for the

generative model; indeed the term hyperparameter only

has meaning in a hierarchical context. Hierarchical models

are important because, as we will see, they encompass all

the observation models mentioned above. Furthermore,

hierarchical models may have a special standing in relation

to hierarchical cortical organisation in the brain.

3.7.2. The nature of hierarchical models

Consider any level i in a hierarchy whose causes vi are

induced by corresponding causes in the level above viþ1:

The hierarchical form of the implicit generative model is

u ¼ G1ðv2; u1Þ þ 11 v2 ¼ G2ðv3; u2Þ þ 12

v3 ¼ · · ·

ð24Þ

with u ¼ v1 c.f. Eq. (18). Technically, these models fall into

the class of conditionally independent hierarchical models

when the stochastic terms are independent at each level

(Kass & Steffey, 1989). These models are also called

parametric empirical Bayes (PEB) models because the

obvious interpretation of the higher-level densities as priors

led to the development of PEB methodology (Efron &

Fig. 7. Schematic illustrating the role of priors in biasing towards one

representation of an input or another. Upper panel: On reading the first

sentence ‘Jack and Jill went up the hill’ we perceive the word ‘event’ as

‘went’ despite the fact it is ‘event’ (as in the second sentence). However, in

the absence of any hierarchical inference the best explanation for the

pattern of visual stimulation incurred by the text is the grapheme ‘ev’. This

would correspond to the maximum likelihood estimate and would be the

most appropriate in the absence of prior information, from the lexical and

semantic context, about which is the most likely grapheme. However,

within hierarchical inference the semantics (provided by the sentence)

provide top-down predictions about the word, which in turn predicts the

graphemes and, finally, the visual input. The posterior estimate is

accountable to all these levels. When the semantic prior biases in favour

of ‘went’ and ‘w’ we tolerate a small error as a lower level of visual analysis

to minimise the overall prediction error. Lower panel: (left) The grapheme

‘ev’ is selected as the most likely cause of visual input; (right) The letter ‘w’

is selected, as it is (i) a reasonable explanation for the sensory input and (ii)

conforms to prior expectations induced by lexico-semantic context. The

bars represent prediction error, which is minimised over all levels to attain

the most likely cause.
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Morris, 1973). Often, in statistics, these hierarchical models

comprise just two levels, which is a useful way to specify

simple shrinkage priors on the parameters of single-level

models. We will assume the stochastic terms are Gaussian

with covariance Si ¼ SðliÞ: Therefore, ui and li para-

meterise the means and covariances of the likelihood at each

level

pðvilviþ1; uÞ ¼ Nðvi : Giðviþ1; uiÞ;SiÞ ð25Þ

This likelihood of vi also plays the role of a prior on vi

that is jointly maximised with the likelihood of the level

below pðvi21lvi; uÞ: This is the key to understanding the

utility of hierarchical models. By learning the parameters of

the generative distribution of level i one is implicitly

learning the parameters of the prior distribution for level

i 2 1: This enables this learning of prior densities.

Although li are parameters of the forward model they are

sometimes referred to as hyperparameters and in classical

statistics correspond to variance components. We will

preserve the distinction between ui and li because they

may correspond to backward and lateral connections

strengths, respectively.

The hierarchical nature of these models lends an

important context-sensitivity to recognition densities not

found in single-level models. This is shown in Fig. 8, which

should be compared with Fig. 2. The key point here is that

high-level causes viþ1 determine the prior expectation of

causes vi in the subordinate level. This can completely

change the marginal pðvi21; uÞ and recognition pðvilvi21; uÞ

distributions upon which inference in based. From the

manifold perspective on inference, the part of the manifold

Gi21ðvi; ui21Þ highlighted by prior expectations, changes

from input to input in a context-dependent way (see Fig. 8).

The context established by priors is not determined by

preceding events but is immediate and conferred by higher

hierarchical levels. For example, in Fig. 7 the semantic

context induced by reading one of the sentences has a

profound effect on the most likely graphemic cause of the

visual input subtended by ‘ev’. The dual role of pðvilviþ1; uÞ

as a likelihood or generative density for level i and a prior

density for level i 2 1 is recapitulated by a dual role for

MAP estimates of vi: From a bottom-up perspective, these

correspond to parameters (modes) of the recognition

densities. However, from a top-down perspective they also

act as parameters of the generative model by interacting

with ui21 in Gi21ðvi; ui21Þ to give the prior expectation of

vi21:

It may seem restrictive to make Gaussian assumptions

about the stochastic terms in Eq. (24). However, non-linea-

rities in Giðviþ1; uiÞ can transform Gaussian distributions

into arbitrarily complicated non-Gaussian distributions. A

simple example is given in Fig. 9 in which a bimodal

marginal density, of a bivariate input, is induced by a

univariate Gaussian density at the level above. In short, non-

linear hierarchical models, under Gaussian assumptions are

equivalent to non-hierarchical models under non-Gaussian

assumptions. Perhaps the simplest example of this is the

three-level model

u ¼ u1v2 þ 11 v2 ¼ Gðv3; u2Þ þ 12 v3 ¼ 13 ð26Þ

This is formally identical to the (non-Gaussian) sparse

coding model in Eq. (10) where Cov{11} ¼ S; Cov{12} ¼

0 and Cov{13} ¼ 1: Gðv3; u2Þ plays the role of a probability

integral transform that renders the cumulative distribution

of v2 the same as g in Section 3.5.5. When Cov{11} ! 0 Eq.

(24) reduces to the model adopted in ICA.

3.7.3. Implementation

The biological plausibility of the empirical Bayes in the

brain can be established fairly simply. To do this, a

hierarchical scheme is described in some detail. A more

Fig. 8. Hierarchical models embody context-sensitivity not found in single-

level models (c.f. Fig. 2). High-level causes viþ1 determine the prior

expectation of causes vi in the subordinate level. Changes in viþ1 can

completely change the marginal pðvi21; uÞ and recognition pðvilvi21; uÞ

distributions upon which inference in based.

Fig. 9. Non-linearities in Giðviþ1; uiÞ can transform Gaussian distributions

of viþ1 into arbitrarily complicated non-Gaussian densities for vi ¼

Giðviþ1; uiÞ þ 1i: In this illustration a bimodal marginal density, of a

bivariate input, is induced by a univariate Gaussian density at the level

above.
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thorough account of this scheme, including simulations of

various neurobiological and psychophysical phenomena,

will appear in future publications. For the moment, we will

address neuronal implementation at a purely theoretical

level, using the framework developed above.

For simplicity, we will assume deterministic recognition

such that qðfðuÞ; uÞ ¼ 1: In this setting, with conditional

independence, F comprises a series of log likelihoods

‘ðuÞ ¼ kln pðu; v; uÞlq ¼ ln pðu;f2;…; uÞ

¼ ln pðulf2; uÞ þ lnðf2lf3; uÞ þ · · ·

¼ 2
1

2
jT

1 j1 2
1

2
jT

2 j2 2 · · · 2
1

2
lnlS1l2

1

2
lnlS2l

2 · · ·

ji ¼ fi 2 Giðfiþ1; uiÞ2 liji

¼ ð1 þ liÞ
21ðfi 2 Giðfiþ1; uiÞÞ

ð27Þ

c.f. Eq. (20). Here S1=2
i ¼ 1 þ li: In the setting of neuronal

models the (whitened) prediction error is encoded by the

activities of units denoted by ji: These error units receive a

prediction from units in the level above2 and connections

from the principal units fi being predicted. Horizontal

interactions among the error units serve to de-correlate them

(c.f. Foldiak, 1990), where the symmetric lateral connection

strengths li hyper-parameterise the covariances of the errors

Si; which are the prior covariances for level i 2 1:

The estimators fi and the connection strength parameters

perform a gradient ascent on the compound log probability.

E _fiþ1 ¼
›lðuÞ

›fiþ1

¼ 2
›jT

i

›fiþ1

ji 2
›jT

iþ1

›fiþ1

jiþ1

M _ui ¼
›F

›ui

¼ 2
›jT

i

›ui

j

* +
u

_li ¼
›F

›li

¼ 2
›jT

i

›li

j

* +
u

2ð1 þ liÞ
21

ð28Þ

This is the simplest version of the most general learning

algorithm considered so far. It is general in the sense that is

does not require the parameters of either the generative or

prior distributions. It can model non-invertible, non-linear

generation of sensory inputs and encompasses complicated

hierarchical processes. Furthermore, each of the learning

components has a relatively simple neuronal interpretation

(see below)

When Gi models dynamical processes (i.e. is effectively

a convolution operator) this gradient ascent is more

complicated. In a subsequent paper we will show that,

with dynamical models, it is necessary to minimise

the prediction error and their temporal derivatives. An

alternative is to assume a simple hidden Markov model for

the dynamics and use Kalman filtering (c.f. Rao & Ballard,

1998). For the moment, we will assume the inputs change

sufficiently slowly for gradient ascent not to be confounded.

3.8. Theoretical implications for neuronal implementation

The scheme implied by Eq. (28) has four clear

implications or predictions about the functional architec-

tures required for its implementation. We now review these

in relation to cortical organisation in the brain. A schematic

summarising these points is provided in Fig. 10. In short, we

arrive at exactly the same four points presented at the end of

the previous section.

Hierarchical organisation. Hierarchical models enable

empirical Bayesian learning of prior densities and provide a

plausible model for sensory inputs. Single-level models that

do not show any conditional independence (e.g. those used

by connectionist and infomax schemes) depend on prior

constraints for unique inference and do not call upon a

hierarchical cortical organisation. On the other hand, if the

causal structure of generative processes is hierarchical, this

will be reflected, literally, by the hierarchical architectures

trying to minimise prediction error, not just at the level of

sensory input but at all levels (notice the deliberate mirror

symmetry in Fig. 10). The nice thing about this architecture

is that the responses of units at the ith level fi depend only

on the error at the current level and the immediately

preceding level. This follows from conditional indepen-

dence and is important because it permits a biologically

plausible implementation, where the connections driving

the error minimisation only run forward from one level to

the next.

Reciprocal connections. As established at the beginning

of this section, the non-invertibility of processes generating

sensory data induces a need for both forward and backward

connections. In the hierarchical model, the dynamics of

principal units fiþ1 are subject to two, locally available,

influences. A likelihood or recognition term mediated by

forward afferents from the error units in the level below and

an empirical prior conveyed by error units in the same level.

Critically, the influences of the error units in both levels are

mediated by linear connections with a strength that is

exactly the same as the [negative] effective connectivity of

the reciprocal connections from fiþ1 to ji and jiþ1:

Functionally, forward and lateral connections are recipro-

cated, where backward connections generate predictions of

lower-level responses. Effective connectivity is simply the

change in a neuronal unit (neuron, assembly or cortical area)

induced by inputs from another (Friston, 1995). In this case

›ji=›fiþ1 and ›jiþ1=›fiþ1:

Effective connectivity in the forward direction is the

reciprocal (negative transpose) of that in the backward

direction ›ji=›fiþ1 ¼ 2›Gi=ðfiþ1;biÞi=›viþ1 that is a func-

tion of the generative parameters. Lateral connections,

2 Clearly, in the brain, backward connections are not inhibitory but, after

mediation by inhibitory inter-neurons, their effective influence could be

rendered so.
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within each level, mediate the influence of error units on the

principal units and intrinsic connections li among the error

units decorrelate them, allowing competition among prior

expectations with different precisions (precision is the

inverse of variance). In short, lateral, forwards and back-

ward connections are all reciprocal, consistent with

anatomical observations.

Functionally asymmetric forward and backward con-

nections. The forward connections are the reciprocal of the

backward effective connectivity from the higher level to the

lower level, extant at that time. However, the functional

attributes of forward and backward influences are different.

The influences of units fiþ1 on error units in the lower level

ji instantiate the forward model ji ¼ fi 2 Giðfiþ1; uiÞ2

liji: These can be non-linear, where each unit in the higher

level may modulate or interact with the influence of others,

according to the non-linearities in Giðfiþ1; uiÞ: In contra-

distinction, the influences of units in lower levels do not

interact when producing changes at the higher level,

because their effects are linearly separable (see Eq. (28)).

This is a key observation because the empirical evidence,

reviewed in the previous section, suggests that backward

connections are in a position to interact (e.g. though NMDA

receptors expressed predominantly in the supragranular

layers receiving backward connections). Forward connec-

tions are not. It should be noted that, although the implied

forward connections 2›ji=›f
T
iþ1 mediate linearly separable

effects of ji on fiþ1; these connections might be activity-

and time-dependent because of their dependence on fiþ1: In

summary, non-linearities, in the way sensory inputs are

produced, necessitate non-linear interactions in the gen-

erative model that are mediated by backward influences but

do not require forward connections to be modulatory.

Associative plasticity. Changes in the parameters corre-

spond to plasticity in the sense that the parameters control

the strength of backward and lateral connections. The

backward connections parameterise the prior expectations

of the forward model and the lateral connections hyper-

parameterise the prior covariances. Together they para-

meterise the Gaussian densities that constitute the priors

Fig. 10. Upper panel: Schematic depicting a hierarchical extension to the predictive coding architecture, using the same format as Fig. 4. Here hierarchical

arrangements within the model serve to provide predictions or priors to representations in the level below. The open circles are the error units and the filled

circles are the states encoding the conditional expectation of causes in the environment. These change to minimise both the discrepancies between their

predicted value and the mismatch incurred by their own prediction of the level below. These two constraints correspond to prior and likelihood terms,

respectively (see main text). Lower panel: a more detailed picture of the influences on principal and error units.
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(and likelihoods) of the model. The plasticity implied can be

seen more clearly with an explicit parameterisation of the

connections. For example, let Giðviþ1; uiÞ ¼ uiviþ1: In this

instance

_ui ¼ ð1 þ liÞ
21kjif

T
iþ1lu

_li ¼ ð1 þ liÞ
21ðkjij

T
i lu 2 1Þ

ð29Þ

This is just Hebbian or associative plasticity where the

connection strengths change in proportion to the product of

pre- and post-synaptic activity; for example, kjif
T
iþ1l: An

intuition about Eq. (29) obtains by considering the conditions

under which the expected change in parameters is zero (i.e.

after learning). For the backward connections this implies

there is no component of prediction error that can be

explained by estimates at the higher level kjif
T
iþ1l ¼ 0: The

lateral connections stop changing when the prediction error

has been whitened kjij
T
i l ¼ 1:

Non-diagonal forms for li complicate the biological

interpretation because changes at any one connection

depend on changes elsewhere. The problem can be finessed

slightly by rewriting the equations as

_ui ¼ kjif
T
iþ1lu 2 li

_ui
_li ¼ kjij

T
i lu 2 li

_li 2 1 ð30Þ

where the decay terms are mediated by integration at the cell

body in a fashion similar to that described by Friston, Frith,

and Frackowiak (1993). Furthermore the expectations can

be approximated by a trace of the associative term. For

example, t _T ¼ jif
T
iþ1 2 T ; where the trace T may corre-

spond to the accumulation of post-synaptic tags (e.g. Frey &

Morris, 1997) mentioned above. Finally, one should note

that changes in lateral and self-connections encoding

precision do not have to be mediated by long-term changes

in plasticity. They could change on a short time-scale,

through classical neuromodulatory effects. However, this

would entail a slightly different parameterisation that pooled

over error units.

It is evident that the predictions of the theoretical

analysis coincide almost exactly with the empirical aspects

of functional architectures in visual cortices highlighted by

the previous section (hierarchical organisation, reciprocity

functional asymmetry and associative plasticity). Although

somewhat contrived, it is pleasing that purely theoretical

considerations and neurobiological empiricism converge so

precisely.

3.9. Summary

In summary, predictive coding lends itself naturally to

a hierarchical treatment, which considers the brain as an

empirical Bayesian device. The dynamics of the units or

populations are driven to minimise error at all levels of

the cortical hierarchy and implicitly render themselves

posterior modes (i.e. most likely values) of the causes

given the data. In contradistinction to supervised

learning, hierarchical prediction does not require any

desired output. Indeed predictions of intermediate outputs

at each level emerge spontaneously. Unlike information

theoretic approaches they do not assume independent

causes. In contrast to regularised inverse solutions (e.g.

in machine vision) they do not depend on a priori

constraints. These emerge spontaneously as empirical

priors from higher levels. Fig. 11 is a schematic that

reviews the issues covered in this section from the point

of view of model estimation.

The overall scheme implied by Eq. (28) relates

comfortably to the hypothesis (Mumford, 1992), “on the

role of the reciprocal, topographic pathways between two

cortical areas, one often a ‘higher’ area dealing with more

abstract information about the world, the other ‘lower’,

dealing with more concrete data. The higher area attempts to

fit its abstractions to the data it receives from lower areas by

sending back to them from its deep pyramidal cells a

template reconstruction best fitting the lower level view.

The lower area attempts to reconcile the reconstruction of its

view that it receives from higher areas with what it knows,

sending back from its superficial pyramidal cells the

features in its data which are not predicted by the higher

area. The whole calculation is done with all areas working

simultaneously, but with order imposed by synchronous

activity in the various top-down, bottom-up loops”. We

have seen that supervised, infomax and regularised models

require prior assumptions about the distribution of causes.

The final section introduced empirical Bayes to show that

these assumptions are not necessary and that priors can be

learned in a hierarchical context. Furthermore, we have tried

to show that hierarchical prediction can be implemented in

brain-like architectures using mechanisms that are biologi-

cally plausible.

Clearly, there are many aspects of neuronal information

processing that have not been included in the theoretical

considerations above. For example, we have not specified

the detailed role of local neuronal circuits or the potentially

important role of horizontal connections within areas, or

lateral connections among areas. Furthermore, a number of

the dynamical aspects of neuronal interactions have been

ignored (e.g. timing of responses, conduction delays

synchrony, etc.). A number of these issues, particularly

the dynamic aspects are the subject of current work, in many

units, that represents an exciting confluence of estimation

theory, statistics, computational neuroscience and neuro-

biology. See, for example, Pouget, Deneve, and Duhamel

(2002) for a theoretical treatment of multimodal represen-

tations within a Bayesian framework.

4. Discussion

4.1. Representational leaning

The formulation of representational learning in terms of

generative models embodies a number of key distinctions,
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(i) the distinction between invertible vs. non-invertible

models, (ii) deterministic vs. probabilistic recognition and

(iii) static vs. dynamic recognition. If the inverse of the

generative model cannot be parameterised an approximate

recognition is required. This invokes the need for an explicit

parameterisation of both the recognition and generative

densities and suggests an important role for forward and

backward connections in the brain. Invertible models can, in

principle, be implemented using only forward connections

because the recognition parameters are completely specified

by the generative model. However, non-linear, hierarchical

and dynamic aspects of the sensorium render easy inversion

highly unlikely. Most of the examples in this section have

focussed on deterministic recognition where neuronal

dynamics encode the most likely causes of the current

sensory input. The distinction between deterministic and

probabilistic representation addresses a deeper question

about whether neuronal dynamics represent the state of

the world or embody probability densities of those states.

Classically, patterns of activity have been treated as

encoding the value of the stimulus (e.g. the orientation of

a contour). Pouget, Dayan, and Zemel (2003) explore the

more recent suggestion “that neural computation is akin to a

Bayesian inference process, with population activity

patterns representing uncertainty about stimuli in the form

of probability distributions (e.g., the probability density

function over the orientation of a contour).”

Does the brain estimate or infer? From the point of view

of hierarchical models, the states of units encode the mode

of the posterior density at any given level. This can be

considered a point recognition density or an estimate.

However, the states of units at any level also induce a prior

density in the level below. This is because top-down

influences provide a prior expectation in the context of a

prior covariance that is encoded by the strength of lateral

connections. These covariances render the generative model

Fig. 11. A taxonomy of procedures for representational learning. The various schemes are organised to reflect their dependence on different assumptions about

generative and prior distributions that are necessary to learn a recognition distribution. See main text for a full discussion of the schemes and mathematical

notion.
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probabilistic. By summarising densities in terms of their

modes, using neuronal activity, the posterior and prior

densities can change quickly with sensory inputs. However,

this does entail unimodal densities. From the point of view

of a statistician, this may be an impoverished representation

of the world that compromises inference, especially when

the posterior distribution is multimodal. However, it is

exactly this approximate nature of recognition that pre-

occupies psychophysicists and psychologists; the emer-

gence of unitary, deterministic perceptual representations in

the brain is commonplace and is of special interest when the

causes are ambiguous (e.g. illusions and perceptual

transitions induced by binocular rivalry and ambiguous

figures).

The arguments in the preceding section clearly favour

predictive coding, over supervised or information theoretic

frameworks, as a more plausible account of functional brain

architectures. However, it should be noted that the

differences among them have been deliberately emphasised.

For example, predictive coding and the implicit error

minimisation results in the maximisation of information

transfer. In other words, predictive coding conforms to the

principle of maximum information transfer, but in a distinct

way. The infomax principle is a principle, whereas

predictive coding represents a particular scheme that serves

that principle. There are examples of infomax that do not

employ predictive coding (e.g. transformations of stimulus

energy in early visual processing; Atick & Redlich, 1990)

that may be specified genetically or epigenetically.

However, predictive coding is likely to play a much more

prominent role at higher levels of processing for the reasons

detailed in the previous section.

In a similar way predictive coding, especially in its

hierarchical formulation, embraces PDP principles found in

connectionist schemes. The representation of any cause

depends upon internally consistent representations of

subordinate and supraordinate causes in lower and higher

levels. These representations induce and maintain them-

selves, across and within all levels of the sensory hierarchy,

through dynamic and reentrant interactions (Edelman,

1993). The same PDP phenomena (e.g. lateral interactions

leading to competition among representations) can be

observed. For example, the lateral connection strengths

embody what has been learnt empirically about the prior

covariances among causes. A prior that transpires to be very

precise (i.e. low variance) will receive correspondingly low

strength inhibitory connections from its competing error

units (recall S1=2
i ¼ 1 þ li). It will therefore supervene over

other error units and have a greater corrective impact on the

estimate causing the prediction error. Conversely, top-down

expectations that are less informative will produce errors

that are more easily suppressed and have less effect on the

representations. In predictive coding, these dynamics are

driven explicitly by error minimisation, whereas in connec-

tionist simulations the activity is determined solely by the

connection strengths established during training.

In addition to the theoretical bias toward generative

models and predictive coding, the clear emphases on

backward and recursive dynamics make it a more natural

framework for understanding neuronal infrastructures.

Figs. 5 and 6 show the fundamental differences among

supervised, infomax and predictive schemes. In the

supervised and infomax schemes the connections are

universally forward. In the predictive coding scheme the

forward connections (broken line) drive the prediction so as

to minimise lðuÞ whereas backwards connections (solid

lines) use these representations of causes to emulate mixing

enacted by the real world. The non-linear aspects of this

mixing imply that only backward influences interact in the

predictive coding scheme. Section 2 assembled some of the

anatomical and physiological evidence suggesting that

backward connections are prevalent in the real brain and

could support non-linear mixing through their modulatory

characteristics. Before turning to electrophysiological

evidence for backward connections we consider the

implications for classical views of receptive fields and the

representational capacity of neuronal units.

4.2. Context, causes and representations

The Bayesian perspective suggests something quite

profound for the classical view of receptive fields. If

neuronal responses encompass a bottom-up likelihood term

and top-down priors, then responses evoked by bottom-up

input should change with the context established by prior

expectations from higher levels of processing. Consider the

example in Fig. 7. Here a unit encoding the visual form of

‘went’ responds when we read the first sentence at the top of

this figure. When we read the second sentence ‘The last

event was cancelled’ it would not. If we recorded from this

unit we might infer that our ‘went’ unit was, in some

circumstances, selective for the word ‘event’. This might be

difficult to explain without an understanding of hierarchical

inference and the semantic context the stimulus was

presented in. In short, under a predictive coding scheme,

the receptive fields of neurons should be context-sensitive.

The remainder of this subsection deals with empirical

evidence for these extra-classical receptive field effects.

Generative models suggest that the role of backward

connections is to provide contextual guidance to lower levels

through a prediction of the lower level’s inputs. When this

prediction is incomplete or incompatible with the lower

area’s input, an error is generated that engenders changes in

the area above until reconciliation. When, and only when, the

bottom-up driving inputs are in harmony with top-down

prediction, error is suppressed and a consensus between the

prediction and the actual input is established. Given this

conceptual model, a stimulus-related response or ‘activation’

corresponds to some transient error signal that drives the

appropriate change in higher areas until a veridical higher-

level representation emerges and the error is ‘cancelled’ by

backwards connections. Clearly the prediction error will

K. Friston / Neural Networks 16 (2003) 1325–1352 1347



depend on the context and consequently the backward

connections confer context-sensitivity on the functional

specificity of the lower area. In short, the activation does not

just depend on bottom-up input but on the difference between

bottom-up input and top-down predictions.

The prevalence of non-linear or modulatory top-down

effects can be inferred from the fact that context interacts

with the content of representations. Here context is

established simply through the expression of causes other

than the one in question. Backward connections from one

higher area can be considered as providing contextual

modulation of the prediction from another area. Because the

effect of context will only be expressed when the thing

being predicted is present these contextual afferents should

not elicit a response by themselves. Effects of this sort,

which change the responsiveness of units but do not elicit a

response, are a hallmark of modulatory projections. In

summary, hierarchical models offer a scheme that allows for

contextual effects; firstly through biasing responses towards

their prior expectation and secondly by conferring a context-

sensitivity on these priors through the modulatory com-

ponent of backward projections. Next we consider the

nature of real neuronal responses and whether they are

consistent with this perspective.

4.3. Neuronal responses and representations

Classical models (e.g. classical receptive fields) assume

that evoked responses will be expressed invariably in the

same units or neuronal populations irrespective of the

context. However, real neuronal responses are not invariant

but depend upon the context in which they are evoked. For

example, visual cortical units have dynamic receptive fields

that can change from moment to moment (c.f. the non-

classical receptive field effects modelled in (Rao and

Ballard, 1998)). A useful synthesis of data for the macaque

visual system that highlights the anatomical and physio-

logical substrates of context-dependent responses can be

found in Angelucci, Levitt, and Lund (2002a). A key

conclusion of the authors is that “feedback from extrastriate

cortex (possibly together with overlap or inter-digitation of

coactive lateral connectional fields within V1) can provide a

large and stimulus-specific surround modulatory field. The

stimulus specificity of the interactions between the centre

and surround fields, may be due to the orderly, matching

structure and different scales of intra-areal and feedback

projection excitatory pathways.”

There are numerous examples of context-sensitive

neuronal responses. Perhaps the simplest is short-term

plasticity. Short-term plasticity refers to changes in

connection strength, either potentiation or depression,

following pre-synaptic inputs (e.g. Abbot, Varela, Sen, &

Nelson, 1997). As noted by Fuhrmann, Segev, Markram,

and Tsodyks (2002) “Synaptic transmission in the neocortex

is dynamic, such that the magnitude of the post-synaptic

response changes with the history of the pre-synaptic

activity. Therefore each response carries information about

the temporal structure of the preceding pre-synaptic input

spike train.” In brief, the underlying connection strengths,

that define what a unit represents, are a strong function of

the immediately preceding neuronal transient (i.e. preceding

representation). A second, and possibly richer, example is

that of attentional modulation that can change the sensitivity

of neurons to different perceptual attributes (e.g. Treue &

Maunsell, 1996). It has been shown, both in single unit

recordings in primates (Treue & Maunsell, 1996) and

human functional fMRI studies (Büchel & Friston, 1997),

that attention to specific visual attributes can profoundly

alter the receptive fields or event-related responses to the

same stimuli.

These sorts of effects are commonplace in the brain and

are generally understood in terms of the dynamic modu-

lation of receptive field properties by backward and lateral

afferents. There is clear evidence that horizontal connec-

tions in visual cortex are modulatory in nature (Hirsch &

Gilbert, 1991), speaking to an interaction between the

functional segregation implicit in the columnar architecture

of V1 and the neuronal dynamics in distal populations.

These observations suggest that lateral and backwards

interactions may convey contextual information that shapes

the responses of any neuron to its inputs (e.g. Kay &

Phillips, 1996; Phillips & Singer, 1997) to confer on the

brain the ability to make conditional inferences about

sensory input. See also McIntosh (2000) who develops the

idea from a cognitive neuroscience perspective “that a

particular region in isolation may not act as a reliable index

for a particular cognitive function. Instead, the neural

context in which an area is active may define the cognitive

function.” His argument is predicated on careful character-

isations of effective connectivity using neuroimaging.

4.3.1. Examples from neurophysiology

Here we consider the evidence for contextual represen-

tations in terms of single cell responses, to visual stimuli, in

the temporal cortex of awake behaving monkeys. If the

representation of a stimulus depends on establishing

representations of subordinate and supraordinate causes at

all levels of the visual hierarchy, then information about the

high-order attributes of a stimulus must be conferred by top-

down influences. Consequently, one might expect to see the

emergence of selectivity, for high-level attributes, after the

initial visually evoked response (although delays vary

greatly, it typically takes about 10 ms for spike volleys to

propagate from one cortical area to another and about a

100 ms to reach prefrontal areas). This is because the

representations at higher levels must emerge before back-

ward afferents can reshape the response profile of neurons in

lower areas. This temporal delay, in the emergence of

selectivity, is precisely what one sees empirically: Sugase,

Yamane, Ueno, and Kawano (1999) recorded neurons in

macaque temporal cortex during the presentation of faces

and objects. The faces were either human or monkey faces
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and were categorised in terms of identity (whose face it was)

and expression (happy, angry, etc.). “Single neurones

conveyed two different scales of facial information in their

firing patterns, starting at different latencies. Global

information, categorising stimuli as monkey faces, human

faces or shapes, was conveyed in the earliest part of the

responses. Fine information about identity or expression

was conveyed later”, starting on average about 50 ms after

face-selective responses. These observations demonstrate

representations for facial identity or expression that emerge

dynamically in a way that might rely on backward

connections. These influences imbue neurons with a

selectivity that is not intrinsic to the area but depends on

interactions across levels of a processing hierarchy.

A similar late emergence of selectivity is seen in motion

processing. A critical aspect of visual processing is the

integration of local motion signals generated by moving

objects. This process is complicated by the fact that local

velocity measurements can differ depending on contour

orientation and spatial position. Specifically, any local

motion detector can measure only the component of motion

perpendicular to a contour that extends beyond its field of

view (Pack & Born, 2001). This ‘aperture problem’ is

particularly relevant to direction-selective neurons early in

the visual pathways, where small receptive fields permit

only a limited view of a moving object. Pack and Born

(2001) have shown “that neurons in the middle temporal

visual area (known as MT or V5) of the macaque brain

reveal a dynamic solution to the aperture problem. MT

neurons initially respond primarily to the component of

motion perpendicular to a contour’s orientation, but over a

period of approximately 60 ms the responses gradually shift

to encode the true stimulus direction, regardless of

orientation”.

Friston (2002a,b) presented a number of examples from

functional neuroimaging that demonstrated the context-

sensitivity of evoked brain responses and the use of effective

connectivity to establish interactions between bottom-up

and top-down influences. Recent neuroimaging studies have

addressed predictive coding explicitly, with some compel-

ling results: Murray, Kersten, Olshausen, Schrater, and

Woods (2002) used functional MRI to measure responses in

V1 and a higher object processing area, the lateral occipital

complex, to visual elements that were either grouped into

objects or arranged randomly. They “observed significant

activity increases in the lateral occipital complex and

concurrent reductions of activity in primary visual cortex

when elements formed coherent shapes, suggesting that

activity in early visual areas is reduced as a result of

grouping processes performed in higher areas. These

findings are consistent with predictive coding models of

vision that postulate that inferences of high-level areas are

subtracted from incoming sensory information in lower

areas through cortical feedback.”

Recent developments in functional mapping, at the

cellular level, may disclose more details about the specific

contribution of backward and lateral connections. These

advances involve the use of extra-cellular electrode

recordings, optical imaging and three-dimensional anatom-

ical reconstruction cells in conjunction with the GABA

inactivation paradigm and related interventions (see Kisvar-

day, Crook, Buzas, & Eysel, 2000). The predictions of the

empirical Bayesian model reviewed above are clear:

Disabling backward and lateral afferents should destroy

context sensitivity. Principal units should still be able to

‘recognise’ stimulus configurations but will simply attain

the ‘maximum likelihood’ estimate of their cause, uncon-

strained by priors or contextual information. Error units will

respond exuberantly, because prediction error cannot be

cancelled by constructs from higher levels of synthesis.

Learning-related deficits may be expressed as a failure of

repetition suppression leading to an overall picture of

disinhibition and context-insensitive responses.

4.4. Perception and action

This paper has deliberately restricted its focus to

perceptual synthesis in (visual) cortical hierarchies. How-

ever, it is useful to note the close links between predictive

coding in perception and motor control. These links exist at

a number of levels. First, the conjoint use of forward

(generative or predictive) and inverse (recognition or

controller) models has been central to theories of motor

control and action for many years (see Wolpert & Kawato,

1998). Indeed the use of prediction error to drive changes is

probably more established in this context. Here, the

prediction error is used to adjust motor executive processes

to minimise the discrepancy between the consequences of

action and that predicted (by a forward model) given top-

down signals. Hitherto, we have portrayed error units as

suppressing themselves, in a reentrant fashion, though

supraordinate principal units. In motor systems error signals

self-suppress, not through neuronally mediated effects, but

by eliciting movements that change bottom-up propriocep-

tive and sensory input. This unifying perspective on

perception and action suggest action is both perceived and

caused by its perception. The behaviour of co-evolving

forward and inverse models, embedded in the real world, is

a fascinating area that links perception and action and even

encompasses communication. For example, Wolpert, Doya,

and Kawato (2003) have examined the extent to which

motor commands acting on the body can be equated with

communicative signals acting on other people and suggest

that “computational solutions for motor control may have

been extended to the domain of social interaction.”

The behaviour of embodied agents, capable of empirical

Bayesian inference, is another area we have not considered.

It is interesting to reflect on what might happen if principal

units were connected to motor effectors. The activity of

principal units is directed by their ability to suppress

prediction error. In this paper we have only dealt with

neuronally mediated suppression through backward
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connections. However, it is perfectly possible for this

suppression to be mediated though the physical world by

changing the sensorium or the way it is sampled. This leads

to the interesting conjecture that much innate orientating

and tracking behaviour is simply a reflection of the brain’s

inherent tendency to maintain a predictable sensory input.

5. Conclusion

In conclusion, the representational capacity and inherent

function of any neuron, neuronal population or cortical area

in the brain is dynamic and context-sensitive. Functional

integration, or interactions among brain systems, that

employ driving (bottom-up) and backward (top-down)

connections, mediate this adaptive and contextual special-

isation. We have seen that most models of representational

learning require prior assumptions about the distribution of

causes. However, empirical Bayes suggests that these

assumptions can be relaxed and that priors can be learned

in a hierarchical context. We have tried to show that this

hierarchical prediction can be implemented in brain-like

architectures and in a biologically plausible fashion.

A key point, made above, is that backward connections,

mediating internal or generative models of how sensory

inputs are caused, are essential if the processes generating

inputs are difficult to invert. This non-invertibility demands

an explicit parameterisation of both the generative model

(backward connections) and approximate recognition (for-

ward connections). This suggests that feedforward archi-

tectures are not sufficient for representational learning or

perception. Moreover, non-linearities in generative models,

that make backward connections necessary, require these

connections to be modulatory, so that estimated causes in

higher cortical levels can interact to predict responses

in lower levels. This is important in relation to asymmetries

in forward and backward connections that have been

characterised empirically.

The arguments in this article were developed under

hierarchical models of brain function, where high-level

systems provide a prediction of the inputs to lower-levels.

Conflict between the two is resolved by changes in the high-

level representations, which are driven by the ensuing error in

lower regions, until the mismatch is ‘cancelled’. From this

perspective the specialisation of any region is determined

both by bottom-up driving inputs and by top-down predic-

tions. Specialisation is therefore not an intrinsic property of

any region but depends on both forward and backward

connections with other areas. Because the latter have access

to the context in which the inputs are generated they are in a

position to modulate the selectivity or specialisation of lower

areas. The implications for classical models (e.g. classical

receptive fields in electrophysiology, classical specialisation

in neuroimaging and connectionism in cognitive models) are

severe and suggest these models may provide incomplete

accounts of real brain architectures. On the other hand,

representational learning, in the context of hierarchical

generative models not only accounts for extra-classical

phenomena seen empirically but enforces a view of the brain

as an inferential machine through its empirical Bayesian

motivation.

Acknowledgements

The Wellcome Trust funded this work. I would like to

thank my colleagues for help in writing this paper and

developing the ideas, especially Cathy Price for the

psychological components, Peter Dayan for the compu-

tational neuroscience and three anonymous reviewers for

extremely helpful suggestions.

References

Abbot, L. F., Varela, J. A., Sen, K., & Nelson, S. B. (1997). Synaptic

depression and cortical gain control. Science, 275, 220–223.

Absher, J. R., & Benson, D. F. (1993). Disconnection syndromes: An

overview of Geschwind’s contributions. Neurology, 43, 862–867.

Angelucci, A., Levitt, J. B., & Lund, J. S. (2002a). Anatomical origins of

the classical receptive field and modulatory surround field of single

neurons in macaque visual cortical area V1. Progress in Brain

Research, 136, 373–388.

Angelucci, A., Levitt, J. B., Walton, E. J., Hupe, J. M., Bullier, J., & Lund,

J. S. (2002b). Circuits for local and global signal integration in primary

visual cortex. Journal of Neuroscience, 22, 8633–8646.

Atick, J. J., & Redlich, A. N. (1990). Towards a theory of early visual

processing. Neural Computation, 2, 308–320.

Ballard, D. H., Hinton, G. E., & Sejnowski, T. J. (1983). Parallel visual

computation. Nature, 306, 21–26.

Barlow, H. B. (1961). Possible principles underlying the transformation of

sensory messages. In W. A. Rosenblith (Ed.), Sensory communication.

Cambridge, MA: MIT Press.

Batardiere, A., Barone, P., Knoblauch, K., Giroud, P., Berland, M., Dumas,

A. M., & Kennedy, H. (2002). Early specification of the hierarchical

organization of visual cortical areas in the macaque monkey. Cerebral

Cortex, 12, 453–465.

Bell, A. J., & Sejnowski, T. J. (1995). An information maximisation

approach to blind separation and blind de-convolution. Neural

Computation, 7, 1129–1159.
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