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To use Electroencephalography (EEG) and Magnetoencephalography

(MEG) as functional brain 3D imaging techniques, identifiable

distributed source models are required. The reconstruction of EEG/

MEG sources rests on inverting these models and is ill-posed because

the solution does not depend continuously on the data and there is no

unique solution in the absence of prior information or constraints. We

have described a general framework that can account for several priors

in a common inverse solution. An empirical Bayesian framework based

on hierarchical linear models was proposed for the analysis of

functional neuroimaging data [Friston, K., Penny, W., Phillips, C.,

Kiebel, S., Hinton, G., Ashburner, J., 2002. Classical and Bayesian

inference in neuroimaging: theory. NeuroImage 16, 465–483] and was

evaluated recently in the context of EEG [Phillips, C., Mattout, J.,

Rugg, M.D., Maquet, P., Friston, K., 2005. An empirical Bayesian

solution to the source reconstruction problem in EEG. NeuroImage 24,

997–1011]. The approach consists of estimating the expected source

distribution and its conditional variance that is constrained by an

empirically determined mixture of prior variance components. Esti-

mation uses Expectation-Maximization (EM) to give the Restricted

Maximum Likelihood (ReML) estimate of the variance components (in

terms of hyperparameters) and the Maximum A Posteriori (MAP)

estimate of the source parameters. In this paper, we extend the

framework to compare different combinations of priors, using a second

level of inference based on Bayesian model selection. Using Monte-

Carlo simulations, ReML is first compared to a classic Weighted

Minimum Norm (WMN) solution under a single constraint. Then, the

ReML estimates are evaluated using various combinations of priors.

Both standard criterion and ROC-based measures were used to assess

localization and detection performance. The empirical Bayes approach

proved useful as: (1) ReML was significantly better than WMN for

single priors; (2) valid location priors improved ReML source

localization; (3) invalid location priors did not significantly impair

performance. Finally, we show how model selection, using the log-

evidence, can be used to select the best combination of priors. This
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enables a global strategy for multiple prior-based regularization of the

MEG/EEG source reconstruction.
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Introduction

Magnetoencephalography (MEG) and Electroencephalography

(EEG) both provide a non-invasive and instantaneous measure

of whole brain activity. These measures reflect synchronous

post-synaptic potentials of cortical populations of neurons

(Nunez and Silberstein, 2000). Unfortunately, localizing those

electromagnetic sources is an ill-posed inverse problem that, in

the absence of constraints, does not admit a unique solution

(Baillet et al., 2001). Consequently, deriving a realistic and

unique solution rests on prior knowledge, in addition to the

observed measurements.

Any source reconstruction approach is characterized by three

components. The first relates to the definition of the solution

space and a parametric representation of the sources. The second

embodies the information about the physical and geometrical

properties of the head. The latter is needed for modeling the

propagation of the sources electromagnetic field through various

tissues. Together, these two components constitute a generative or

forward model of the MEG/EEG data that can also be used for

data simulation (see Synthetic MEG data). Finally, given a

forward model, the third component is an inverse operator which,

according to some criterion, defines a unique source distribution.

For instance, when based on a probabilistic approach (Baillet and

Garnero, 1997; Schmidt et al., 1999; Phillips et al., 2002;

Amblard et al., 2004), the unique inverse solution corresponds to

http://www.sciencedirect.com
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the most likely solution according to a predefined criterion

formulated in terms of the source probability distribution.

Two types of inverse method can be distinguished by their

respective source models: the equivalent current dipole (ECD) and

the distributed model (DM). Although other source models have

been used, such as multipoles (Jerbi et al., 2004) or continuous

current densities (Riera et al., 1998), both approaches usually rely

upon a dipolar representation of cortical sources, which are

parameterized in terms of location, orientation and intensity. An

ECD models the activity of a large cortical area. MEG or EEG data

are then explained by few ECDs (usually less than five).

Distributed models consider a large number (typically ¨10,000)

of dipoles distributed at fixed locations over the cortical surface.

Although the underlying parametric models are the same, the

parametrization of the solution space is very different, calling for

different forward calculations as well as different inverse operators

and solutions.

ECDs are fitted using iterative algorithms that estimate the

source parameters in order to explain the data as accurately as

possible. In the iterative process, the source parameters are

modified to minimize the residual error (Scherg and von

Cramon, 1986; Koles, 1998). The solution is very sensitive to

the number of sources and initial parameters (dipole locations

and orientations), which need to be specified a priori. Indeed,

ECD models require non-linear optimization with the possibility

of local minima. Moreover, determining the optimal number of

ECD (model complexity) is a non-trivial issue (Waldorp et al.,

2005); some simulation studies have shown that, even with the

right number of sources, ECD approaches are less reliable than

distributed ones, when dealing with more than one source (Yao

and Dewald, 2005). Finally, unlike distributed methods, ECD

models do not address the anatomical deployment of an active

region.

In contradistinction to ECD approaches, a DM uses the

subject’s anatomy derived from high resolution anatomical

Magnetic Resonance Images (MRI) (Dale and Sereno, 1993).

The solution space and associated forward models can then be

made as realistic as allowed by computational constraints and the

precision of head tissue conductivity measures. Moreover, due to

the use of fixed dipoles, the forward solution only needs to be

computed once, prior to any inverse operation. The DM represents

a highly under-determined but linear system (see Notation). This

(general) linear model, although under-determined, is formally

similar to those encountered in signal and image processing and

can be treated in a Bayesian way, using priors to furnish a unique

solution.

In this paper, we focus on distributed source models and

explore the usefulness of Bayesian model selection for

determining the best combination of constraints on the inverse

solution. To establish the face validity of the ensuing model

selection, we also evaluated performance using conventional

criteria based on detection and localization error. To assess

localization error, we used simulations with quite focal sources.

It is possible that ECD models would have been better than the

distributed models for these focal responses. In principle, one

could use Bayesian model selection to disambiguate between

distributed source and ECD models for the same data.

Furthermore, the application of Bayesian model selection to

ECD models provides a principled way of finding the optimum

number of ECDs. We are currently exploring this in the context

of dynamic causal models for ERPs. In this paper, we introduce
model selection and illustrate it in the context of selecting

constraints (as opposed to sources).

In the context of distributed approaches, priors based on

mathematical, anatomical, physiological and functional heuristics

have been considered (Hämäläinen and Llmoniemi, 1994; Pascual-

Marqui et al., 1994; Gorodnitsky et al., 1995; Baillet and Garnero,

1997; Dale et al., 2000; Phillips et al., 2002; Mattout et al., 2003;

Babiloni et al., 2004). Although these approaches involve different

constraints and inverse criteria, they all obtain a unique solution by

optimizing a goodness of fit term and a prior term in a carefully

balanced way. Most can be framed in terms of a Weighted

Minimum Norm criterion (WMN), which represents the classical

and most popular distributed approach (see Classical regulariza-

tion: single prior) (Hauk, 2004).

However, a critical outstanding issue lies in the relative

weighting of the accuracy and regularization criteria upon which

the solution depends. Usually, in the context of Tikhonov

regularization or WMN solutions, this weighting is fixed arbitrarily,

or by using the L-curve heuristic (see Classical regularization:

single prior). The latter case, which we will refer to as the (classical)

WMN, is limited because it can only accommodate a single

constraint on the source parameters. This means that multiple

constraints (e.g., spatial and temporal; Baillet and Garnero, 1997)

have to be mixed into a single prior term, using ad hoc criteria.

In this paper, we generalize the WMN approach, using a

hierarchical (general) linear model that embraces, under the

assumption of Gaussian errors, multiple constraints specified in

terms of variance components (see Empirical Bayes: multiple

priors). These priors can be formulated in sensor or source space.

The optimal weight associated with each constraint is estimated

from the data following an empirical Bayesian approach and is

computed iteratively using ExpectationMaximization (EM) (Friston

et al., 2002). These weights are equivalent to restricted maximum

likelihood (ReML) estimates of the prior covariance components.

In a companion paper (Phillips et al., 2005), we addressed

the face validity of empirical Bayes in this context. In the

present paper, the proposed framework is applied to simulated

event related field (ERF) data with realistic noise. Our

investigation focused on the comparison between the ReML

approach and the classical WMN and on the comparison

between single vs. multiple priors when solving the MEG

inverse problem. The main contribution of this paper is the

introduction of a second level of inference using Bayesian

model selection. Because each model is defined by its prior

covariance component, we can compare different combinations

of priors in a principled way. We will illustrate this by showing

that model selection can identify invalid priors and point to the

optimum number of valid or useful priors.

The paper is organized as follows. In the Method section, we

review the classical weighted minimum norm approach and present

the ReML scheme that enables a principled and unique incorpo-

ration of multiple priors. In the Application section, we describe

the simulations we have used to compare quantitatively the

classical and ReML inverse approaches. The priors have been

chosen to emphasize the role of ReML in the context of

multimodal integration. In addition to the conventional localization

error criterion, two complementary evaluation procedures are

introduced. The first refers to the notion of detection power and

is based upon Receiver Operating Characteristic (ROC) curve

analysis. The second is based on Bayesian model selection and the

evidence for different models with different prior covariance



J. Mattout et al. / NeuroImage 30 (2006) 753–767 755
components. The results are presented in the final section and

commented in the Discussion.
Method

Notation

Consider a t-sample-long window of MEG measurements

acquired on n sensors. A distributed source model, involving p

dipoles with fixed position and orientation (Dale and Sereno, 1993),

can be expressed as the linear matrix equation

M ¼ KJþ E; ð1Þ

where M is the n� t data matrix, K is the n�p forward operator

defining the propagation of themagnetic field in head tissues and J is

the p� t matrix of dipole magnitudes to be estimated. Data are

corrupted by additive measurement noise E.

The columns of K are called the ‘‘forward fields’’ and describe

the measurements observed across sensors, induced by a particular

dipole. The rows of K are the ‘‘lead fields’’ and describe the flow

of current for a given sensor through each dipole location (Ermer

et al., 2001). K is obtained by solving the forward problem for

each dipole location and orientation of the given DM. It relies

only upon the geometry and conductivity of head tissues (Mosher

et al., 1999).

Classical regularization: single prior

A classical approach to the inverse problem is the weighted

minimum norm (WMN) solution (Tikhonov and Arsenin, 1977).

Simple and convenient, it has become a standard solution for the

MEG inverse problem as stated by Eq. (1) (Hämäläinen and

Llmoniemi, 1994; Dale and Halgren, 2001; Hauk, 2004). It entails

minimizing the quadratic energy function

U Jð Þ ¼ jjM�KJjj2Wn
þ kjjJjj2Wp

; ð2Þ

where ||.||W
2 indicates the L2 norm associated with metric W and k

is a hyperparameter which tunes the relative importance of the two

terms to be minimized, the accuracy and prior term, respectively.

The unique minimum of Eq. (2) can be expressed in two ways

using the matrix inversion lemma

Jwmn ¼
�
KT
�
WT

nWn

�
K þ k WT

pWp

� ���1
KT
�
WT

nWn

�
M

¼ WT
pWp

� ��1
KT K WT

pWp

� ��1
KT þ k

�
WT

nWn

��1� ��1
M:

ð3Þ

Under Gaussian assumptions, this relates directly to the

Bayesian estimate of the source posterior density whose maximum

a posteriori (MAP) or conditional expectation is given by

E JjM½ � ¼ KTC�1n K þ C�1p

h i�1
KTC�1n M

¼ CpK
T KCpK

T þ Cn

� ��1
M; ð4Þ

with E ¨ N 0;Cnð Þ and J ¨ N 0;Cp

� 	
.

This formulation shows how the constraints can be expressed

in terms of prior source covariance matrices such that

Cp ¼ ðkWT
pWpÞ�1. The lower the prior variance at some dipole

location, the more the dipole amplitude will be ‘‘shrunk’’ to zero.

Several different constraints have been considered within the

WMN framework. The most simple, so-called (unweighted)

minimum norm, consists of setting Cp = Ip where Ip is the p�p

identity matrix (Hämäläinen and Llmoniemi, 1994).When k tends to

zero, one obtains the maximum likelihood (ML) solution. The well-

known LORETA approach entails setting Wp equal to a spatial

Laplacian operator (Pascual-Marqui et al., 1994). This is also known

as the maximum smoothness solution. Finally, external functional

constraints such as derived from fMRI have also been considered

(Liu et al., 1998; Phillips et al., 2002).

The WMN solution depends upon the hyperparameter k,
which is usually evaluated using the L-curve approach (Hansen,

1992; Gorodnitsky et al., 1995; Babiloni et al., 2001) (cf.

Appendix A). A major drawback of this heuristic is that it

cannot readily be extended to the estimation of multiple

hyperparameters. Therefore, only one single constraint can be

considered. This is why the above priors have never been

evaluated in conjunction.

Empirical Bayes: multiple priors

The ReML scheme relies upon rewriting Eq. (1) as a 2-level

hierarchical model

M ¼ KJþ E1

J ¼ 0þ E2; ð5Þ

where E1 ¨ N 0;Cnð Þ and E2 ¨ N 0;Cp

� 	
.

In this framework, errors at both levels are Gaussian variables

with zero mean but unknown variance. The matrices Cn and Cp are

modeled as linear combination of variance components such that

Cn ¼ l1Qn;1 þ l2Qn;2 þ N

Cp ¼ k1Qp;1 þ k2Qp;2 þ N ð6Þ
where l =[l1, l2, . . .] and k =[k1, k2, . . .] are the unknown

hyperparameters that balance the various variance components

introduced, either at the first (sensor) or second (source) level. At the

second level, Cp acts as a prior covariance (a shrinkage prior).

In the context of parametric empirical Bayes (PEB), the hyper-

parameters are estimated from the data, and multiple priors can be

incorporated. After Cn and Cp have been estimated, the inverse

solution J is given by the corresponding MAP estimator (cf. Eq. (4)).

In practice, hyperparameter estimation is performed using

Expectation Maximization (EM) which iteratively calculates the

parameters (E-step) and hyperparameters of the model (M-step)

until convergence. Because the system is linear, the E-step can

be absorbed in the M-step. The M-step returns the Restricted

Maximum Likelihood (ReML) solution, which differs from the

standard ML as it accounts for the loss of degrees of freedom

due to conditional uncertainty about the parameters (Friston et

al., 2002). The objective function associated with the ReML

solution is given in Appendix B.

Heuristically, the closer the prior variance component Qk and

the true source spatial covariance, the higher the corresponding

hyperparameter kk. Consequently, the hyperparameters quantify

the relative importance of each constraint.
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Bayesian model selection and comparison

The quality of each prior model can be assessed in terms of its

evidence. Each model is defined by Pk, representing a set of

constraints (Q1,. . .,Qmk
; Q1,. . .,Qqk

) that comprises mk (resp. qk)

prior variance components in sensor (resp. source) space. From

Bayes rule, the parameter’s posterior density is the likelihood times

the prior divided by the evidence

p J=M;Pkð Þ ¼ p M=J;Pkð Þp J=Pkð Þ
p M=Pkð Þ : ð7Þ

Given a model Pk, our first level of inference is based on the

posterior, which is maximized using ReML, while treating the

evidence as a normalization constant.

We introduce here a second level of inference which

identifies the most plausible model given the data. This is

achieved by computing the evidence given model Pk

p M=Pkð Þ ¼
Z

p M=J;Pkð Þp J=Pkð ÞdJ ¼
Z

p J;M=Pkð ÞdJ: ð8Þ

Since Pk is defined fully by the set of prior variance components,

i.e., the set of hyperparameters (k, l), the log-evidence

corresponds to the final estimate of the ReML objective function

(cf. Appendix B) which is maximized in the first level. The best

model has the maximum log-evidence. We used the log-evidence

to assess the four priors and their various combinations.

Furthermore, Bayes factors B12 defined as the ratio of the

evidences associated withmodelP1 andP2 enable us to compare two

prior models when applied to the same data (Kass and Raftery, 1995)

B12 ¼
p M=P1ð Þ
p M=P2ð Þ : ð9Þ

When B12 > 1, the data favor model P1 over model P2, and when

B12 < 1, the data favor modelP2. Tomake decisions based on Bayes

factors, some cut-off value is required. Kass and Raftery (1995)

proposed an interpretation of the Bayes factor based on the use of P

values in classical statistics. This has been recently applied to

neuroimaging data and we adopt here the same interpretation, which

is summarized in Table 1 in Penny et al. (2004). It specifies that,

given candidate hypotheses encoded by P1 and P2, B12 � 20

(B12 � 150) corresponds to a belief of at least 95% (resp. 99%) in

the statement FP1 is true_. This corresponds to Fstrong evidence_
(resp. Fvery strong evidence_) in favor of P1, relative to P2.

Note that unlike the LE and ROC-based criteria (see Evaluation

procedure), the log-evidence does not refer to any true or reference

source distribution. It is a relative measure of the data and how well

they are explained by a model. This makes log-evidence and

associated Bayes factors especially useful in an empirical setting.
1 SNR stands for Signal to Noise Ratio and is here expressed in decibels,

i.e. SNR = 20Ilog10 (As /An), where As (resp. An) refers to the maximum

absolute signal (resp. noise) value. A SNR of 20dB thus corresponds to a

10% noise level.
Application

Synthetic MEG data

Numerical phantom

Since MEG/EEG sources are believed to be restricted to

pyramidal cells (Nunez and Silberstein, 2000), a common

approach, within the distributed model framework, is to constrain

the dipoles to the cortical surface extracted from a structural

Magnetic Resonance Image (MRI) (Dale and Sereno, 1993).
Following segmentation of the MRI volume, dipoles are typically

located at each node of a triangular mesh covering the white/grey

matter interface (Mangin, 1995). Furthermore, since the apical

dendrites of these cortical neurons are organized perpendicularly to

the surface, the corresponding dipoles are often constrained to this

normal orientation.

To simulate MEG data, a 3D high resolution (voxel size: 0.9375

mm�0.9375 mm�1.5 mm) MRI volume from a healthy

volunteer was segmented. The boundary between white and grey

matter was approximated with small triangles whose vertices

provided 7081 dipole locations spread uniformly over the cortex.

The spatial resolution of this numerical phantom was a sufficient

representation of cortical topology, since the mean distance

between two neighboring dipoles was about 3 mm. We calculated

the forward operator K, for this dipole mesh, using a single-shell

spherical head model (Sarvas, 1987).

Simulations

MEG data were simulated over 130 sensors spread uniformly

over the head, by activating two extended sources (cf. Fig. 1). Each

source was a cluster comprising one randomly chosen dipole and

its four nearest neighbors. The extent of each simulated source was

about 5 mm in radius. The activation was modeled with a half-

period sine function (over 15 time bins). A delay of two time bins

was applied to waveforms of the two sources. After projection onto

sensor space, white Gaussian noise was added (SNR = 20 dB, cf.

Fig. 1).1

Five hundred different source configurations were simulated to:

& compare the ReML approach with the classical WMN

estimation,

& study the performance of the ReML scheme when considering

various combinations of priors.

Regularization constraints

At the sensor level, for the sake of simplicity and to focus on

constraints in source space, we only considered a single measure-

ment noise component defined by Ce = In, i.e., independent

measurement noise on each sensor with identical variance. At the

source level, three types of constraint were considered, either

individually or together. These constraints provide complementary

information about the source locations. They were chosen to

illustrate the possible types of constraint one might employ for

regularizing MEG source reconstruction. Moreover, such priors can

be expressed easily in terms of covariance components.

Smoothness constraint

The prior covariance component Qsc (see Eq. (6)) associated

with this constraint is defined by

Qsc i;jð Þ ¼ exp
�d2ij
2s2

! 
; ð10Þ

where dij is the euclidian distance between dipoles i and j.

The higher dij, the lower the correlation between activity at



Fig. 1. Example of a simulated MEG data set: the two extended underlying sources (a, b) and their corresponding dynamics in sensor space, before (c) and after

adding white Gaussian noise to render SNR = 20 dB (d).
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the dipoles i and j.2 The spatial smoothness parameter s was

set to 8 mm. It specifies the standard deviation of the

implicit smoothness. Like LORETA (Pascual-Marqui et al.,

1994), this prior enforces correlation among neighboring

sources.

Intrinsic functional constraint

It has been shown recently that an efficient regularization

prior can be derived from the MEG data itself (Mattout et al.,

2005). This is known as Multivariate Source Prelocalization

(MSP) which provides, at each source location, a coefficient of

activation. This coefficient refers to the spatial support of activity
2 Note that this smoothness operator might be improved by using

the geodesic distance between nodes rather than the Euclidian

distance.
but does not encode any estimated intensity. The MSP process

focuses on where sources are expressed, without considering their

amplitude.

MSP entails a multivariate comparison of the observed

normalized magnetic field scalp topology, M̄, with all possible

linear combinations of the normalized forward fields, K̄ . This

process returns a coefficient that quantifies the correspondence

of a normalized forward field (the putative contribution of a

given dipole) with the normalized observations.

The larger the prelocalization coefficient ai associated with

dipole i, the higher the affinity between forward field ki and the

filtered MEG data. These coefficients can be introduced as

quantitative priors into a regularization scheme as shown here.

They can also enable a substantial reduction of the inverse solution

space, by only considering dipoles that are most likely to be active

(high ai). Regularizing and restricting the solution space in this way

have been shown to improve localization (Mattout et al., 2005).



Fig. 2. Illustration of the two functional external priors considered (hatched regions) pertaining to the location of the two simulated sources (a): right location

(b) and wrong location (c) priors.
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For each source configuration, we restricted the solution space

to the 1500 dipoles with the highest coefficients.3 Within this

subset, we defined the intrinsic prior covariance component Qint

as

Qint i;ið Þ ¼ ai;
Qint i;jð Þ ¼ 0 when i m j:



ð11Þ

Extrinsic functional constraints

The final sort of constraint we considered is either based on

previous experience or on data from other imaging modalities,

typically fMRI. This constraint was simply designed as a binary

mask, distinguishing qualitatively between a priori active and non-

active cortical areas. The corresponding prior source variance

component is defined by the diagonal matrix

Qext i;ið Þ ¼ 1 in active regions;
¼ 0 elsewhere:



ð12Þ

We modeled two sorts of extrinsic priors; valid (Qext = Qext
v ) and

invalid (Qext = Qext
i ) (cf. Fig. 2). We were interested in the impact

of invalid priors, particularly in the context of multiple priors

where there is an opportunity to discount invalid priors in favor of

valid priors.

Evaluation procedure

Since the classical WMN approach (i.e., the L-curve approach)

can only accommodate one constraint, single and multiple prior

cases are considered separately. Single prior simulations enabled us

to compare the proposed Bayesian estimation to classical WMN,

while the second set of analyses allowed us to study the behavior

of the ReML approach under multiple constraints.

Using ReML, each of the 500 simulated data sets were analyzed

under all combinations of one, two, three or four priors.4 The

evaluation of those reconstructions relied upon the two comple-
3 Although a statistical approach has been proposed for this dimension

reduction (Mattout et al., 2005), we kept the size of the solution space

constant (1500 dipoles) so that each simulation would entail the same

number of parameters. Critically, the span of the solution space remained

identical whatever the set of priors. By modeling the prior covariance as a

mixture of components, we can use improper (i.e., non-invertible

components). For example, a prior component of zero does not imply that

the mixture is zero. This would not be the case if we had modeled the

precision as a mixture. Here, a prior component of infinity means the

mixture would also be precise.
4 The four priors are the four variance components Qsc, Qint, Qext

v and

Qext
i described in Regularization constraints. This gave 19 inverse solutions

perdataset: [WMN + ReML]*[4singlepriors] + [ReML] * [62-priors + 4

3-priors + 1 4-priors] = 19 source reconstructions.
mentary measures described next. The model comparison metric

introduced here, based on the model evidence, constitutes the third

and only data-driven evaluation criterion.

Localization error

Each estimated source distribution was first compared to the

true distribution in terms of Localization Error (LE). The LE

provides a measure of the localization accuracy. It corresponds to

the distance between the true source and the estimated source with

the greatest absolute amplitude. To obtain a single value per

inverse solution, the LE was set to the maximum of the LE

associated with the two simulated sources (i.e., an upper bound).

ROC analysis

ROC techniques enabled us to characterize the inverse

methods in terms of correctly classifying each dipole, as either

active or not. This complements performance measures based

solely on localization.

A ROC curve can be constructed for each estimated source

distribution, which represents the true positive rate (sensitivity) as

a function of the false positive rate (1 � specificity). To assess the

false positive rate, we chose 10 random dipoles among the non-

active ones.

The area under the curve (AUC) quantifies the detection power

of the method (Metz, 1998). The AUC ranges between 0 and 1 and

indicates the probability of correct separation of an active source

from a non active one.

Comparing the AUC of different inverse models enables

one to assess the relative performance in terms of detection

power. We analyzed the AUC formally using Analysis of Variance

(ANOVA).
Results

Empirical Bayes vs. classical estimation

Fig. 3 shows the distribution of the localization error (LE)

derived from the simulations, for the WMN (i.e., L-curve) and

ReML estimations, when considering each of the four priors

independently. The valid location prior (Qext
v ) gave the best results,

whatever the inverse method, with an exact localization of the two

active sources in more than 90% of the simulations.5 Conversely,
5 Although a valid location prior was used here, the correct localization

was obtained for most but not all simulations. This could be explained by

the improper (i.e. non-invertible) form of the prior. It is possible that adding

another prior (e.g. smoothness constraint) would yield a proper mixture o

covariance components and a better inverse solution. This speaks to the

importance of model selection as provided by an extended Bayesian

framework (cf. Bayesian model selection and comparison).
f



Fig. 3. Single-prior LE histogram: obtained for the WMN (L-curve) and ReML approach, considering each of the four constraints: smoothness, MSP, valid and

invalid location priors.

Table 1

Averaged values of the AUC for the WMN and ReML approaches and the

four different prior models

AUC ReML WMN

Qsc 0.7883 0.7770

Qint 0.7944 0.7746

Qext
v 0.8560 0.8560

Qext
i 0.4994 0.4994

2 constraints Qsc, Qint 0.7999

Qsc, Qext
v 0.8211

Qsc, Qext
i 0.7931

Qint, Qext
v 0.8211

Qint, Qext
i 0.7962

Qext
v ,Qext

i 0.8536

3 constraints Qsc, Qint, Qext
v 0.8211

Qsc, Qint, Qext
i 0.7972

Qsc, Qext
v , Qext

i 0.8211

Qint, Qext
v , Qext

i 0.8211

4 constraints Qsc, Qint, Qext
v , Qext

i 0.8206
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the invalid location prior (Qext
i ) gave the worse results, with a LE

over 4 cm in more than 80% of the simulations.

When considering either the smoothness or intrinsic prior, the

ReML localization is better than WMN. Indeed, under the

smoothness prior (resp. intrinsic prior), ReML localizes the two

sources with a LE of less than 2 cm in 55% (resp. 65%) of the

simulations, while the WMN affords the same spatial precision in

only 20% (resp. 30%) of the same simulations.

This difference between the two approaches was confirmed

by the statistical comparison of the AUC for each inverse method

and prior (cf. Table 1). A two by four ANOVA was performed,

whose factors were the inverse method and the prior. The main

effect of method (ReML vs. WMN) proved highly significant

(F(1,499) = 81,01; P < 0.001***), implying a much better

source detection profile with ReML.

Since the ReML and WMN approaches differ only in the way

they estimate the hyperparameters, these results suggest that the

ReML estimate of the balance between the constraint and data fit

affords more precise estimates than obtained with the traditional L-

curve approach.

For the toy example described in Fig. 1, we show in Fig. 4 the

reconstructed sources obtained with WMN and ReML under a

single smoothness constraint. In both cases, the source distribution
is rather distributed and smooth and the first source is not seen.

However, the second source location is better estimated with

ReML than WMN.



Fig. 4. Sample of simulation results (see also Fig. 1): inflated cortical representation of the two source locations (a), the invalid prior location (b) and some

typical reconstructions using classical WMN and ReML (c–f). To allow a qualitative comparison of the different localizations, the source distributions have

been normalized between �1 and 1.
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Regularization under multiple constraints

The results presented in this section pertain only to ReML

analyses. All the different prior models were considered and the

corresponding values of the AUC are provided in Table 1.

Fig. 4 illustrates the effect of valid and invalid location priors

on ReML solution using the same example as in Fig. 1. It is

noticeable that the valid prior, when added to the single

smoothness prior, enables ReML to identify the two source

locations and to greatly reduce spurious activity. Moreover, the

ReML solution is not affected by the introduction of an invalid

location prior. These two anecdotal observations were confirmed

and quantified by the evaluation below.

Effect of the valid location prior

Fig. 5 illustrates the effect of the valid location prior on the LE of

the ReML-based source reconstruction. It shows that, whatever the

set of priors, if this set includes the valid location constraint, then the

LE decreases dramatically. This finding generalizes the equivalent

result obtained for the single prior case.

The importance of valid location priors was also observed in

terms of the ROC analysis. A two by seven ANOVAwas performed

whose factors were the inclusion or not of the valid location

constraint and the seven possible prior models. The main effect on

the valid prior was highly significant (F(1,499) = 2565.272;

P < 0.001***).
Effect of the invalid location prior

Fig. 6 illustrates the effect of the invalid location prior on the

LE of the ReML-based source reconstruction. It shows that,

whatever the set, if it includes the invalid location constraint,

then the LE is not compromised, showing only a slight increase.

Indeed, any deterioration in detectability was insignificant, as

assessed by a two by seven ANOVA on the ROC AUC

(F(1,499) = 0.140; P = 0.708).

The key conclusion here is that the ReML scheme is robust to

misspecified or redundant priors.

Selecting and comparing prior models

Finally, the Log-evidence and Bayes factors allowed us to select

and compare the different prior models.

Bayesian model selection. For a given data set, Bayesian

model selection enables one to select the best model, based on

its Log-evidence. The higher the Log-evidence, the better the

model. As an example, Table 2 gives the Log-evidences

obtained for each prior model when applied to the particular

data set described in Fig. 1. In this case, the single prior model

comprising the valid location prior had the maximum Log-

evidence.

More generally, Fig. 7 presents the distribution, over all

simulations, of the prior models selected according to their Log-

evidence. For comparison, the histogram of prior models leading



Fig. 5. Effect of valid location prior on the ReML Localization Error distribution, for each prior model, with and without the valid location prior.
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Fig. 6. Effect of invalid location prior on the ReML Localization Error distribution, for each prior model, with and without the invalid location prior.
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Table 2

Log-evidence calculated for each prior model, when applying ReML to the

simulation sample described in Fig. 1

Log-evidence

1 constraint Qsc 205.2

Q int 208.4

Qext
v 215.6

Qext
i 131.5

2 constraints Qsc, Qint 207.4

Qsc, Qext
v 214.1

Qsc, Qext
i 204.9

Q int, Qext
v 214.9

Q int, Qext
i 207.4

Qext
v , Qext

i 213.2

3 constraints Qsc, Qint, Qext
v 211.5

Qsc, Qint, Qext
i 207.2

Qsc, Qext
v , Qext

i 214.7

Q int, Qext
v , Qext

i 212.7

4 constraints Qsc, Qint, Qext
v ,Qext

i 211.3
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to the lowest Localization Error is also shown. In 87% of the

500 simulated data sets, the model with the largest Log-

evidence was the same as the one with the lowest LE.

Note, however, that contrary to the Log-evidence, the LE

criterion does not account for the goodness of fit, which explains

the minor differences between the two histograms.

Bayesian model comparison. In Table 2, one can see, on one

hand, that any model which contains the valid location prior has a

high Log-evidence and, on the other hand, that any model which

contains both valid and invalid location priors does not show a

dramatic decrease in Log-evidence, compared to the same model

without the invalid location prior. However, to fully assess this

observation and quantitatively confirm the results in Effect of the

valid location prior and Effect of the invalid location prior, one
Fig. 7. Histograms, over all simulations, of the best prior models as indicated b

according to the rows in Tables 1 and 2).
needs to compute and interpret the corresponding Bayes factors

(see Bayesian model selection and comparison). Table 3 illus-

trates, on the simulation toy example of Fig. 1, the effect of valid

and invalid location priors as quantified using Bayes factors. It

shows significantly enhanced evidence in favor of models

including valid location priors. On the other hand, it shows weak

evidence in favor of models that do not contain the invalid prior

compared to the ones that do. As expected, this suggests that the

valid location prior is the best constraint to include in the model. It

further suggests that the smoothness and intrinsic location priors

are valid priors that can ameliorate the misleading effect of invalid

priors.
Discussion

In Phillips et al. (2005), we described and evaluated, in the

context of EEG, a variance component estimation framework

based upon parametric empirical Bayes (PEB) as introduced in

Friston et al., (2002). The key aspect of this generalized

regularization approach is the data-driven estimation of the various

covariance components of the EEG/MEG source parameters. Since

many constraints, for example, anatomical, functional, physiolog-

ical or mathematical, can be expressed in terms of variance

components, the proposed methodology affords a precise and

realistic estimate of the source covariance structure. Furthermore,

the contribution of each prior or component is quantified by its

corresponding hyperparameter. In Phillips et al. (2005), using a

simplified geometrical model and EEG synthetic data, the

approach was shown to accommodate different levels of noise

while accounting for various location priors on the sources. The

use of accurate location priors led to negligible localization errors.

When both valid and invalid location priors were introduced, the

solution was not degraded by the invalid priors.
y their Log-evidence and the LE, respectively (prior models are ordered



6 Here, the estimation of the 19 prior models associated with each

simulation required less than 1 min CPU time on a standard workstation.

Table 3

Three different models P1 are compared to associated models P2 (resp. P3)

which only differ by also including the valid (resp. invalid) location

constraint

Bayes factor

P1 B21 B31

(In; Qsc) 7047 0.8

(In; Qint) 655 0.4

(In; Qsc, Qint) 60 0.8
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In the present paper, we extend this Bayesian framework so that

the contribution of various priors can be assessed formally, using

Bayesian model selection with the log-evidence metric. We

focused on MEG, using Monte-Carlo simulations based on a

realistic cortical model. Our evaluation considered the ReML

approach in relation to hyperparameter estimation using the L-

curve heuristic. We then proceeded with a quantitative study of

multiple prior-based regularization in source space.

Three complementary metrics were used in this evaluation. First,

a standard criterion was used to compare the source reconstructions

in terms of Localization Error (LE). Second, ROC curve analysis

was introduced to assess the detection power of the different models.

Meta-analysis of the area under the curves (AUC) enabled us to

evaluate performance in terms of correctly classifying active and

non-active sources. This type of analysis might complement

evaluation procedures for EEG/MEG source reconstruction. Unlike

LE, ROC techniques enable one to quantify the accuracy of the

location of active sources as well as their spatial extent.

Finally, we introduced a supra ordinate level of inference. This

was based on the log-evidence or data likelihood given a particular

model (Trujillo-Barreto et al., 2004; Penny et al., 2004; Daunizeau

et al., 2005). We used this probability-based criterion to identify

the best prior model and, more generally, the best strategy for

introducing priors. Unlike the LE and ROC criteria, the log-

evidence can be calculated for real data. No reference to any true

source distribution is needed.

The application of the three evaluation criteria led to the

following conclusions.

First, using only a single prior on the sources, the ReML

hyperparameter estimation led to a similar or better reconstruction

than the classical WMN, whose hyperparameter was estimated by

the L-curve approach. This confirms the construct validity of the

proposed method. However, when considering either valid or

invalid location priors, WMN and ReML gave very similar results.

ReML proved slightly but significantly better only when consid-

ering smoothness and intrinsic functional priors. This can be

explained by the fact that the extrinsic priors were either fully valid

or fully invalid. The L-curve approach maximizes a mixture of the

prediction error and departure of the conditional estimates from

their prior expectations (see Appendix A). This is a poor

approximation to the evidence p(M|k,l) which is maximized by

ReML (see Appendix B). The L-curve approach therefore provides

a suboptimal solution.

Under multiple priors, within the ReML scheme, the findings of

Phillips et al. (2005) were replicated in the context of our cortical

source-based MEG simulations. Indeed, whatever the dimension of

the prior model:

& valid location priors significantly improved the source

reconstruction,
& invalid location priors did not compromise the results given at

least one other informative prior.

The second finding reflects the flexible and adaptive nature of the

ReML approach and suggests that ReML could be of particular

interest for multimodal integration, namely the introduction of

fMRI-derived priors for constraining the MEG inverse solution. A

major concern about these data fusion approach is the different time

scale and nature of the physiological processes measured with MEG

and fMRI techniques: as noted by many authors (Nunez and

Silberstein, 2000; Gonzalez Andino et al., 2001; Pflieger and

Greenblatt, 2001), an adaptative method that could distinguish

between valid and invalid location priors is particularly relevant for

multimodal fusion.

Note that other approaches have been proposed to estimate

hyperparameters. For instance, the Generalized Cross-Validation

method (GCV) (Golub et al., 1979) could be extended to estimate

several regularization parameters. However, contrary to the ReML

approach, the GCV method does not provide any estimate of

(multiple) noise components. Moreover, in the context of a single

hyperparameter, better results are sometimes obtained with the

classical Tikhonov/L-curve approach (Babiloni et al., 1998).

Finally, we demonstrated the effectiveness of the extended

Bayesian framework for data-driven model selection and compar-

ison. Based on model evidence, Bayesian model selection enables

one to identify the best prior model for reconstructing the sources

of a given data set. With our linear hierarchical models, under

Gaussian assumptions, the model evidence can be computed

exactly and does not require any approximations implicit in

surrogate criteria; like the Akaike Information Criterion (AIC) or

the Bayesian Information Criterion (BIC) (Kass and Raftery,

1995). Our results show that the log-evidence reflects faithfully the

LE criterion. This suggests that, with real data, when LE and ROC

curves cannot be established, the log-evidence affords a reliable

criterion for model selection. Note that to perform Bayesian model

selection, all prior models, corresponding to all possible combina-

tions of available constraints, have to be estimated with ReML. It is

important to emphasize that ReML computation is not time

consuming,6 since only low dimensional matrices (n�n) need to

be inverted.

Model evidence ratios or Bayes factors can be used to compare

two prior models. Importantly, Bayes factors can be interpreted

quantitatively, as described in Bayesian model selection and

comparison and illustrated here on a simulation toy-example. In

that example, although the prior model defined by the smoothness

(or functional intrinsic) prior yielded a higher log-evidence than

when including invalid location priors, the Bayes factor did not

show any significant evidence in favor of omitting invalid priors.

This result endorses the above conclusions about ReML and the

ability of Bayesian model comparison to evaluate the contribution

of a given prior.

Note that this paper addresses Bayesian model comparison as

opposed to Bayesian model averaging. The formalism developed

in this paper can be extended easily to include averages over

models (Trujillo-Barreto et al., 2004). We have restricted

ourselves to model selection because we wanted to focus on

the quantitative evaluation of different priors, using the log-



J. Mattout et al. / NeuroImage 30 (2006) 753–767 765
evidence. In principle, it would be possible to average over all

combinations of priors. However, practically speaking, this might

be a little redundant, given that the different priors are weighted

optimally within the optimum combination. Having said this, it

would be interesting to compare the best model with the

Bayesian model average.
Conclusion

The proposed framework for the MEG/EEG inverse problem

relies upon a linear hierarchical model, typically provided by

distributed source models. It estimates the source parameters as well

as their spatial covariances (hyperparameters) that can be expressed

as linear combination of independent prior components. Any putative

informative prior on the sources can be introduced independently and

can be subject to a quantitative evaluation of its contribution. We

focussed on smoothness, functional intrinsic and extrinsic priors

but other components of different forms may be useful, such as

constraints on source orientation (Phillips et al., 2005).

The extended framework also affords a data-driven estima-

tion of the model hyperparameters as well as a data-driven

evaluation of each constraint’s contribution. Indeed, Bayesian

model comparison proved useful for evaluating the relative

contribution of constraints. This is of particular interest in the

context of multimodal integration and speaks to a FLeave-one-
out-strategy_ where different priors, typically those derived from

fMRI data analysis (each prior corresponding to an activated

area), could be evaluated by being successively introduced or

excluded from the ReML scheme according to the log-evidence.

Further studies will evaluate this procedure on real multimodal

data. This approach may be useful for characterizing empirically

the overlap and discrepancy between brain functional mapping

as revealed by EEG/MEG and fMRI, respectively.

In summary, the extended framework affords a general

methodology for solving the EEG/MEG inverse problem, account-

ing for multiple independent priors and for evaluating quantita-

tively their relative contributions.

So far, this framework has been applied to static data averaged

over narrow time-windows. Since the source covariance might

change with time, the model selection could be extended dynam-

ically to estimate temporal dynamics as proposed in Phillips et al.

(2004). In multimodal integration, this might contribute to the better

understanding of the dynamics of neural networks revealed by fMRI

data.

Finally, the same framework can be extended to estimate induced

responses which are not phased-locked to the stimulus or task

manipulation. This extension is described in a companion paper

(Friston et al., in press). Note also that to account for the full model

complexity, one should model uncertainty about the hyperpara-

meters. This could be achieved using Laplace or Variational

approximations, or indeed an adjustment to the log-evidence as

described in Trujillo-Barreto et al. (2004). In its current form, the

ReML approach does not account for the increase in model

complexity with increasing numbers of hyperparameters (i.e.,

covariance components). Quantitatively, this additional complexity

is small relative to the accuracy components of the Log-evidence.

However, we have pursued this issue by augmenting the ReML

objective function to provide a better evaluation of the Log-evidence

(Friston et al., Variational Free energy and the Laplace approxima-

tion, in preparation).
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Appendix A. The L-curve approach

This heuristic involves estimating the WMN solution for

various values of a hyperparameter k. Plotting the norm of the

prior term against the norm of the data fit term leads to an L-shape

curve whose inflection point indicates an optimal hyperparameter

value. It amounts maximizing the following log-likelihood

lnp M=kð Þ ¼ � 1

2
M�KĴJ
� 	T

C�1n M�KĴJ
� 	

� 1

2
ĴJTC�1p ĴJ; ð13Þ

where Ĵ indicates the current estimate of the parameters.

The more exhaustive the discrete scanning of hyperparameter

space, the more precise the estimation of this optimal value. An

important drawback of this approach thus lies in the need for a

large number of estimations to find an appropriate level of

regularization.

In this paper, we used this approach as a reference for the

estimation of the single hyperparameter in the WMN simulations.

Practically, we used

k ¼ b� jjKKT jj
n

; ð14Þ

and considered the following [30] values for b: [0.00005 0.000075

0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009

0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01 0.02

0.03 0.04 0.05 0.075 0.1 0.5 1 50].

This sampling of hyperparameter space was chosen to ensure an

L-shape curve with a relatively fine sampling in the vicinity of the

inflection point.
Appendix B. The ReML objective function

The Restricted Maximum Likelihood (ReML) scheme allows

the simultaneous estimation of parameters J and hyperparameters

(k,l) while accounting for the loss of degrees of freedom in the

model incurred from estimating J when (k,l) are calculated

(Harville, 1977). The ReML estimation consists of maximizing the

likelihood of the observed data p(M /k,l), conditional on the

hyperparameters, in the presence of parameters J. This is

equivalent to maximizing the log-likelihood

lnp M=k;lð Þ ¼ ln

Z
p J;M=k;lð ÞdJ � F q Jð Þ;k; lð Þ; ð15Þ

where F corresponds to the negative free energy in statistical

thermodynamics and is given by the sum of potential and entropy

terms

F q Jð Þ;k;lð Þ ¼
Z

q Jð Þln p J;M=k;lð ÞdJ�
Z

q Jð Þln q Jð ÞdJ;

ð16Þ

where q(J) is any distribution over the model parameters (Neal and

Hinton, 1998).
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The log-likelihood is implicitly maximized through the

maximization of F. This is achieved using an EM algorithm which

alternates between maximizing F with respect to the distribution

q(J) (E-step) and the hyperparameters (k,l) (M-step) until

convergence. It can be shown that the maximum in the E-step is

obtained when q(J) = p(J /M,k,l) at which point the log-

likelihood is strictly equal to F. The M-step finds the Maximum

Likelihood (ML) estimate of the hyperparameters by integrating

p(J,M /k,l) over the parameters using the current estimate of their

conditional distribution.

In practice, the ReML objective function is obtained by

embedding the E-step into the M-step, substituting the posterior

variance estimate CJ/M = (KTCn
�1K + Cp

�1)�1 into the expression

for the negative energy so that

F ¼ � 1

2
M�KĴJ
� 	T

C�1n M�KĴJ
� 	

� 1

2
ĴJTC�1p ĴJ

� 1

2
lnjCnj �

1

2
lnjCpj �

1

2
lnjKTC�1n K þ C�1p j þ const:

ð17Þ

We refer the reader to Friston et al. (2002) for a detailed description

of the ReML objective function and the implementation of EM7 and

to Phillips et al. (2005) for a detailed formulation in the context of

EEG/MEG. In brief, this substitution eliminates the need for an

explicit E-step and ReML estimates of the hyperparameters require

only iterations of the M-step. An explicit E-step can be performed

after convergence to obtain J according to Eqs. (3) and (4).
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