
Technical Note

Posterior probability maps and SPMs

K.J. Friston* and W. Penny
The Wellcome Department of Imaging Neuroscience, London, Queen Square, London WC1N 3BG, UK

Received 15 July 2002; revised 5 February 2003; accepted 14 February 2003

Abstract

This technical note describes the construction of posterior probability maps that enable conditional or Bayesian inferences about
regionally specific effects in neuroimaging. Posterior probability maps are images of the probability or confidence that an activation exceeds
some specified threshold, given the data. Posterior probability maps (PPMs) represent a complementary alternative to statistical parametric
maps (SPMs) that are used to make classical inferences. However, a key problem in Bayesian inference is the specification of appropriate
priors. This problem can be finessed using empirical Bayes in which prior variances are estimated from the data, under some simple
assumptions about their form. Empirical Bayes requires a hierarchical observation model, in which higher levels can be regarded as
providing prior constraints on lower levels. In neuroimaging, observations of the same effect over voxels provide a natural, two-level
hierarchy that enables an empirical Bayesian approach. In this note we present a brief motivation and the operational details of a simple
empirical Bayesian method for computing posterior probability maps. We then compare Bayesian and classical inference through the
equivalent PPMs and SPMs testing for the same effect in the same data.
© 2003 Elsevier Science (USA). All rights reserved.
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Introduction

To date, inference in neuroimaging has been restricted
largely to classical inferences based on statistical parametric
maps (SPMs). The statistics that comprise these SPMs are
essentially functions of the data (Friston et al., 1995). The
probability distribution of the chosen statistic, under the null
hypothesis (i.e., the null distribution), is used to compute a
P value. This P value is the probability of obtaining the
statistic, or the data, given that the null hypothesis is true. If
sufficiently small, the null hypothesis can be rejected and an
inference is made. The alternative approach is to use Bayes-
ian or conditional inference based upon the posterior distri-
bution of the activation given the data (Holmes and Ford
1993). This necessitates the specification of priors (i.e., the
probability distribution of the activation). Bayesian infer-
ence requires the posterior distribution and therefore rests

on a posterior density analysis. A useful way to summarize
this posterior density is to compute the probability that the
activation exceeds some threshold. This computation repre-
sents a Bayesian inference about the effect, in relation to the
specified threshold. In this technical note we describe an
approach to computing posterior probability maps for acti-
vation effects, or more generally treatment effects, in im-
aging data sequences. A more thorough account of this
approach can be found in Friston et al. (2002a, 2002b). We
focus here on a specific procedure that has been incorpo-
rated into the SPM software. This approach represents,
probably, the most simple and computationally expedient
way of constructing posterior probability maps (PPMs).

The motivation for using conditional or Bayesian infer-
ence is that it has high face validity. This is because the
inference is about an effect, or activation, being greater than
some specified size that has some meaning in relation to
underlying neurophysiology. This contrasts with classical
inference, in which the inference is about the effect being
significantly different from zero. The problem for classical
inference is that trivial departures from the null hypothesis
can be declared significant, with sufficient data or sensitiv-
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ity. From the point of view of neuroimaging, posterior
inference is especially useful because it eschews the multi-
ple-comparison problem. In classical inference one tries to
ensure that the probability of rejecting the null hypothesis
incorrectly is maintained at a small rate, despite making
inferences over large volumes of the brain. This induces a
multiple-comparison problem that, for continuous spatially
extended data, requires an adjustment or correction to the P
values using Gaussian random field theory. This Gaussian
field correction means that classical inference becomes less
sensitive or powerful with large search volumes. In contra-
distinction, posterior inference does not have to contend with
the multiple-comparison problem because there are no false
positives. The probability that an activation has occurred, given
the data, at any particular voxel is the same, irrespective of
whether one has analyzed that voxel or the entire brain. For this
reason, posterior inference using PPMs may represent a rela-
tively more powerful approach than classical inference in neu-
roimaging. The reason that there is no need to adjust the P
values is that we assume independent prior distributions for the
activations over voxels. In this simple Bayesian model the
Bayesian perspective is similar to that of the frequentist who
makes inferences on a per-comparison basis (see Berry and
Hochberg, 1999, for a detailed discussion).

Priors and Bayesian inference

PPMs require the posterior distribution or conditional
distribution of the activation (a contrast of conditional pa-
rameter estimates) given the data. This posterior density can
be computed, under Gaussian assumptions, using Bayes
rule. Bayes rule requires the specification of a likelihood
function and the prior density of the model’s parameters.
The models used to form PPMs, and the likelihood func-
tions, are exactly the same as in classical SPM analyses. The
only extra bit of information that is required is the prior
probability distribution of the parameters of the general
linear model employed. Although it would be possible to
specify these in terms of their means and variances using
independent data, or some plausible physiological con-
straints, there is an alternative to this fully Bayesian ap-
proach. The alternative is empirical Bayes in which the
variances of the prior distributions are estimated directly
from the data. Empirical Bayes requires a hierarchical ob-
servation model where the parameters and hyperparameters
at any particular level can be treated as priors on the level
below. There are numerous examples of hierarchical obser-
vations models. For example, the distinction between fixed-
and mixed-effects analyses of multisubject studies relies
upon a two-level hierarchical model. However, in neuroim-
aging there is a natural hierarchical observation model that
is common to all brain mapping experiments. This is the
hierarchy induced by looking for the same effects at every
voxel within the brain (or gray matter). The first level of the
hierarchy corresponds to the experimental effects at any
particular voxel and the second level of the hierarchy com-

prises the effects over voxels. Put simply, the variation in a
particular contrast, over voxels, can be used as the prior
variance of that contrast at any particular voxel.

This technical note describes the computation of PPMs
that is implemented in our software (SPM2, http://www.fil.
ion.ucl.ac.uk/spm). The theoretical background, on which
this approach is based, was presented in Friston et al.
(2002a, 2002b) and the reader is referred to these articles for
a full description. The model used here is a special case of
the spatiotemporal models described in Section 3 of Friston
et al. (2002a). This special case is one in which the spatial
relationship among voxels is discounted. The advantage of
treating an image like a “gas” of unconnected voxels is that
the estimation of between-voxel variance in activation can
be finessed to a considerable degree (see Eq. A.7 in Friston
et al., 2002b, and following discussion). This renders the esti-
mation of posterior densities tractable because the between-
voxel variance can then be used as a prior variance at each
voxel. We therefore focus on this simple and special case and
on the “pooling” of voxels to give precise [restricted maximum
likelihood] ([ReML]) estimates of the variance components
required for Bayesian inference. The main advance described
in this article is the pooling procedure that affords a computa-
tional saving necessary to produce PPMs of the whole brain. In
what follows we describe how this approach is implemented
and provide some examples of its application.

Theory

Conditional estimators and the posterior density

In this section we describe how the posterior distribution of
the parameters of any general linear model can be estimated at
each voxel from imaging data sequences. Under Gaussian
assumptions about the errors � � N {0,C�} of a general linear
model with design matrix X the responses are modeled as

y � X� � �. (1)

The conditional or posterior covariances and mean of the
parameters � are given by (see Friston et al., 2002b).

C��y � �XTC�
�1X � C�

�1��1 (2)

���y � C��yX
TC�

�1y,

where C� is the prior covariance and assuming a prior
expectation of 0. Once these moments are known, the pos-
terior probability that a particular effect or contrast specified
by a contrast weight vector c exceeds some threshold � is
easily computed

p � 1 � ��� � cT���y

�cTC��yc
� . (3)

�(.) is the cumulative density function of the unit normal
distribution. An image of these posterior probabilities con-
stitutes a PPM.
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Estimating the error covariance with ReML

Clearly, to compute the conditional moments in Eq. (2),
one needs to know the error and prior covariances C� and
C�. In the next section we will describe how the prior
covariance C� can be estimated. For the moment, assume
that the prior covariance is known. In this case the error
covariance can be estimated in terms of a hyperparameter
��, where C� � ��V, and V is the correlation or nonsphe-
ricity matrix of the errors (see below). This hyperparameter
is estimated simply using ReML. ReML estimation involves
recursion of the following equations that can be formulated
in terms of expectation maximization (EM, Dempster et al.,
1977), as described in Friston et al. (2002b)

Until convergence

�E-Step

C� � ��V

C��y � �XTC�
�1X � C�

�1��1

M-Step

P � C�
�1 � C�

�1XC��yX
TC�

�1

g � �
1

2
tr�PV	 �

1

2
tr�PTVPyyT	

H �
1

2
tr�PVPV	

��4 �� � H�1g} (4)

These equations are presented in the form used in Friston et
al. (2002b) and below, to make the connection with EM
explicit. See the Appendix of Friston et al. (2002b) for a
detailed explanation of this scheme.1 In brief, P represents
the residual forming matrix, premultiplied by the inverse of
the error covariance. It is this projector matrix that “re-
stricts” the estimation of variance components to the null
space of the design matrix. g and H are the first- and
expected second-order derivatives (i.e., gradients and ex-
pected negative curvature) of the ReML objective function.
The M-Step can thus be regarded as a Fisher scoring
scheme that maximizes the ReML objective function. Given
that there is only one hyperparameter to estimate this
scheme converges very quickly (two to three iterations for a
tolerance of 10�6).

Estimating the prior density with empirical Bayes

Simply computing the conditional moments using Eq. (2)
corresponds to a fully Bayesian analysis at each and every

voxel. However, there is an outstanding problem in the
sense that we do not know the prior covariances of the
parameters. It is at this point that we introduce the hierar-
chical perspective that enables an empirical Bayesian ap-
proach. If we now consider Eq. (1) as the first level of the
two-level hierarchy, where the second level corresponds to
observations over voxels, we have a hierarchical observa-
tion model for all voxels that treats some parameters as
random effects and others as fixed. The random effects �1

are those that we are interested in and the fixed effects �0 are
nuisance variables or confounds (e.g., drifts or the constant
term) modeled by the regressors in X0, where X � [X1, X0]
and

y � 
X1,X0���1

�0
� � ��1�

�1 � 0 � �(2) (5)

This model posits that there is a voxelwide prior distribution
for the parameters �1 with zero mean and unknown covari-
ance E���2���2�T	 � �i�iQi. The bases Qi specify the prior
covariance structure of the interesting effects and would
usually comprise a basis for each parameter whose ith
leading diagonal element was 1 and zeros elsewhere. This
implies that if we selected a voxel at random from the
search volume, the ith parameter at that voxel would con-
form to a sample from a Gaussian distribution of zero
expectation and variance �i. The reason this distribution can
be assumed to have zero mean is that parameters of interest
reflect region-specific effects that, by definition, sum to 0
over the search volume.2 By concatenating the data from all
voxels and using Kronecker tensor products of the design
matrices and covariance bases, it is possible to create a very
large hierarchical observation model that could be subject to
EM (see, for example, Friston et al., 2002a, Section 3.2).
However, given the enormous number of voxels in neuro-
imaging this is, computationally, prohibitive. A mathemat-
ically equivalent but more tractable approach is to consider
the estimation of the prior hyperparameters as a variance
component estimation problem after collapsing Eq. (5) to a
single-level model

y � X0�0 � 	

	 � X1�
�2� � ��1�. (6)

This is simply a rearrangement of Eq. (5) to give a linear
model with a compound error covariance that includes the
observation error covariance and m components for each
parameter in �1. These components are induced by variation
of the parameters over voxels.

1 Note that the augmentation step shown in Fig. 4 of Friston et al.
(2002b) is unnecessary because the prior covariance enters explicitly into
the conditional covariance.

2 In the SPM2 implementation we allow for any mean of the parameters
at the second level by subtracting the mean over voxels from the data. This
mean represents an estimate of the prior expectation projected onto the
observation space by the design matrix.
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C	 � E�		T	 � ��kQk

Q � �X1Q1X1
T,. . .,X1QmX1

T,V	

� � [�1,. . ., �m, ��]
T. (7)

This equation says that the covariance of the compound
error can be linearly decomposed into m components (usu-
ally one for each parameter) and the error variance. The
form of the observed covariances, owing to variation in the
parameters, is determined by the design matrix X and Qi

that model variance components in parameter space.
Eq. (7) affords a computationally expedient way to esti-

mate the prior covariances for the parameters that then enter
into Eq. (2) to provide for voxel-specific error hyperparam-
eter estimates and conditional moments. In brief, the hyper-
parameters are estimated by pooling the data from all voxels
to provide ReML estimates of the variance components of
C	 according to Eq. (7). The nice thing about this pooling is
that the hyperparameters of the parameter covariances are,
of course, the same for all voxels. This is not the case for the
error covariance hyperparameters that may change from
voxel to voxel. The pooled estimate of �� can be treated as
an estimate of the average �� over voxels. The hyperparam-
eters are estimated by iterating

Until convergence

�E-Step

C	 � ��kQk

C�0�y � �X0
TC�

�1X0�
�1

M-Step

P � C	
�1 � C	

�1X0C�0�yX0
TC	

�1

gi � �
1

2
tr�PQi	 �

1

2
tr�PTQiPYYT/n	

Hij �
1

2
tr�PQiPQj	

�4 � � H�1 g} (8)

It can be seen that this has exactly the form as Eq. (4) used
for the analysis at each voxel. The differences are (1) yyT

has been replaced by its sample mean over voxels YYT/n
and (2) there are no priors because the parameters control-
ling the expression of confounding effects or nuisance vari-
ables are treated as fixed effects. This is equivalent to setting
their prior variance to infinity (i.e., flat priors) so that
C�0

�13 0. (3) Finally, the regressors in X1 have disappeared
from the design matrix because these effects are embodied
in the covariance components of the compound error. As
above, the inclusion of confounds restricts the hyperparam-
eter estimation to the null space of X0, hence restricted
maximum likelihood. In the absence of confounds the
hyperparameters would simply be maximum likelihood
(ML) estimates that minimize the difference between the

estimated and observed covariance of the data, averaged
over voxels. The ensuring ReML estimates are very high
precision estimators. Their precision increases linearly
with the number of voxels n and is in fact equal to nH.
These hyperparameters now enter as priors into the voxel-
specific estimation along with the flat priors for the nuisance
variables

C� � �
� �iQi

. . . 0
···

�
· · ·

0 �
	 (9)

We now have a very precise estimate of the prior covariance
that can be used to revisit each voxel to compute the con-
ditional or posterior density using Eqs. (2) and Eq. (4).
Finally, the conditional moments enter Eq. (3) to give the
posterior probability for each voxel (see Fig. 1 for a sche-
matic illustration of this scheme).

Dealing with multiple error hyperparameters

Above it was assumed that the error covariance could be
modeled with a single hyperparameter that scaled a known
nonsphericity matrix V. In many instances the exact form of
V may not be known (e.g., serial correlations in fMRI or
heteroscedasticity when using different sorts of data). In this
case, nonsphericity among the errors is modeled by more
than one covariance basis. That is, the bases and hyperpa-
rameters in Eq. (7) are augmented to

Q � �X1Q1X1
T,. . .,X1QmX1

T, Q1
�,. . .,Ql

�	

� � 
�1,. . .,�m,�1
�,. . .,�l

��T.

Additional bases can model serial correlations or a block
diagonal set could accommodate different forms of het-
eroscedasticy. The nonsphericity matrix can then be com-
puted by renormalizing V � ¥�i

�Qi
� such that tr{V} � n.

This ensures that the voxel-specific error hyperparameters
are estimated with high precision by reducing the number of
error hyperparameters to 1. However, it does entail the
assumption that nonsphericity among the errors has the
same structure at all voxels.

A computational saving

Although it would be possible to save the conditional
covariances of the parameters for every voxel, this is quite
burdensome, in terms of both memory and time (because
one would have to save a matrix for each voxel). A simple
approximation to the conditional covariance of the param-
eters obtains through a first-order Taylor expansion in terms
of the voxel-specific error hyperparameter that obtains after
iterating Eq. (4).

C��y���� 
 C��y�E���	� �

C��y


��

��� � E���	�, (10)
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where the expectations are over voxels. Adopting this first-
order approximation means that we only have to save one
hyperparameter for each voxel. This speeds up the compu-
tation of voxel-specific conditional variances of contrasts
(as in Eq. (3)). This first-order approximation provides an
upper bound on the variance owing to the concavity of the
function relating the conditional covariance to the hyperpa-
rameters (see Fig. 2). This upper bound on the variance
translates into a conservative lower bound on the posterior
probability.

In summary, a natural hierarchy characterizes all neuro-
imaging experiments, where the second level is provided by
variation over voxels. Although it would be possible to form
a very large two-level observation model and estimate the
conditional means and covariances of the parameters at the
first level this would involve dealing with matrices of size
(ns)  (ns) (number of voxels n times the number of scans
s). The same conditional estimators can be computed using
the two-step approach described above. First, the data co-
variance components induced by parameter variation over
voxels and observation error are computed using ReML
estimates of the associated covariance hyperparameters.

Second, each voxel is revisited to compute voxel-specific error
variance hyperparameters and the conditional moments of the
parameters, using the empirical priors from the first step (see
Fig. 1). Both these steps deal only with matrices of size n  n.
The voxel-specific estimation sacrifices the simplicity of a
single large iterative scheme for lots of quicker iterative
schemes at each voxel. This exploits the fact that the same
first-level design matrix is employed for all voxels. For those
interested in computing architectures in neuroimaging, this
approach lends itself nicely to parallelizing.

The approach conforms to empirical Bayes under para-
metric assumptions (PEB). PEB is simple [restricted] max-
imum likelihood estimation in the context of hierarchical
models, where the ReML estimators can be viewed as con-
ditional estimators by treating any level a source of priors
for its subordinate (cf. Efron and Morris, 1973).

Applications

In this section we compare and contrast Bayesian and
classical inference using PPMs and SPMs based on real

Fig. 1. Schematic summarizing the two-step procedure for (1) ReML estimation of the prior covariance based on the data covariance, pooled over voxels and
(2) a voxel-by-voxel estimation of the posterior expectation and covariance of the parameters, required for inference. See the main text for a detailed
explanation of the equations.
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data. The first data are the PET verbal fluency data that have
been used to illustrate methodological advances in SPM
over the years. In brief, these data were required from five
subjects each scanned 12 times during the performance of
one of two word-generation tasks. The subjects were asked
either to repeat a heard letter or to respond with a word that
began with the heard letter. These tasks were performed in
alternation over the 12 scans and the order was randomized
over subjects. The second data set comprised data from a
study of attention to visual motion (Büchel and Friston
1997). The data used in this note came from the first subject
studied. This subject was scanned at 2 T to give a time series
of 360 images comprising 10 block epochs of different
visual motion conditions. These conditions included a fix-
ation condition, visual presentation of static dots, visual
presentation of radially moving dots under attention, and
no-attention conditions. In the attention condition subjects
were asked to attend to changes in speed (which did not
actually occur). These data were reanalyzed using a con-
ventional SPM procedure and using the empirical Bayesian
approach described in the previous section. The ensuing
SPMs and PPMs are presented below for the PET and fMRI
data, respectively. The contrast for the PET data compared
the word-generation with the word-shadowing condition
and the contrast for the fMRI data tested for the effect of
visual motion above and beyond that due to photic stimu-
lation with stationary dots.

Inference for the PET data

The top panel of Fig. 3 shows the PPM for a deactivating
effect of verbal fluency. There are two thresholds for the
PPM. The first and more important is � in Eq. (3). This
defines what we mean by “activation” and, by default, is set
at one standard deviation of the prior variance of the con-
trast, in this instance 2.2. This corresponds to a change in
rCBF of 2.2 adimensional units (equivalent to ml/dl/min).
The second threshold is more trivial and simply enables the
use of maximum intensity projections. This is the probabil-
ity the voxel must exceed to be displayed. In the PPM
shown this was set at 95%. This means that all voxels shown
have greater than 95% probability of being deactivated by
2.2 or more. The PPM can be regarded as a way of sum-
marizing ones confidence that an effect is present (cf. the
use of confidence intervals where the lower bound on the
interval is set at �). It should be noted that posterior infer-
ence would normally require the reporting of the conditional
probability whether it exceeded some arbitrary threshold or
not. However, for the visual display of posterior probability

Fig. 3. Bayesian and classical and inference for the PET study of word
generation. (a) PPM for a contrast reflecting the difference between word
shadowing and word generation, using an activation threshold of 2.2 and a
confidence of 95%. The design matrix and contrast for this model are
shown (right) in image format. We have modeled each scan as a specific
effect that has been replicated over subjects. (b) Classical SPM of the t
statistic for the same contrast. This SPM has been thresholded at P � 0.05,
corrected using a Gaussian field adjustment.

Fig. 2. An example of the relationship between the conditional variance of
a parameter estimate and the value of a single hyperparameter governing
error variance. It can be seen that the conditional variance of the parameter
(or contrast) is always less than it would have been in the absence of priors
(dashed line). Critically, when the error variance is high, the conditional
variance asymptotes to the prior covariance (here 0.5). Conversely, when
the error variance is very low, so is the conditional variance. The important
thing is that this relationship is concave, such that a first-order Taylor
expansion around any expected value for the hyperparameter will provide
an upper bound on the conditional variance (dotted line).
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maps it is useful to remove voxels that fall below some
threshold.

Fig. 4 provides a quantitative representation of Bayesian
inference afforded by PPMs. In the top panel the posterior
expectation for the 12 condition-specific effects are shown,
encompassed by the 95% confidence intervals (bars) based
on the posterior covariance. It can be seen that in the fifth
condition (the third word-shadowing condition) one could
be almost certain the activation is greater than zero. The
prior and posterior densities for this activation are shown in
the bottom panel. These are the probability distributions
before and after observing the data. Note that the posterior
variance is always smaller than the prior variance, depend-
ing on how noisy the data are.

The corresponding SPM is shown in the bottom panel
(Fig. 3b). The SPM has been thresholded at 0.05 adjusted
for the search volume using a Gaussian field correction.
There is a remarkable correspondence between the activa-
tion profiles inferred by the PPM and the SPM. The simi-
larity between the PPM and the SPM for these data should
not be taken as characteristic. The key difference between
Bayesian inference, based on the confidence we have about
activation, and classical inference, based on rejecting the
null hypothesis, is that the latter depends on the search
volume. The classical approach, when applied in a mass
univariate setting (i.e., over a family of voxels) induces a

multiple comparison problem that calls for a procedure to
control for familywise false positives. In the context of
imaging data this procedure is a Gaussian field adjustment
to the threshold. This adjustment depends on the search
volume. The consequence is that if we increased the search
volume the threshold would rise and some of the voxels
seen in the SPM would disappear. Because the PPM does
not label any voxel as “activated,” there is no multiple
comparison problem and the 95% confidence threshold is
the same irrespective of search volume. This difference
between PPMs and SPMs is highlighted in the analysis of
the fMRI data. Here the search volume is increased by
reducing the smoothness of the data by changing modalities
from PET to fMRI. Smoothness controls the “statistical”
search volume, which is generally much greater for fMRI
than for PET.

Inference for the fMRI data

The difference between the PPM and SPM for the fMRI
analysis is immediately apparent on inspection of Fig. 5 and
6. Here the default threshold for the PPM was 0.7% (equiv-
alent to percentage of whole-brain mean signal). Again only
voxels that exceed 95% confidence are shown. These are
restricted to visual and extrastriate cortex involved in mo-
tion processing. The critical thing to note here is that the
corresponding SPM identifies a smaller number of voxels
than the PPM. Indeed the SPM appears to have missed a
critical and bilaterally represented part of the V5 complex
(circled cluster on the PPM in the bottom panel of Fig. 5).
The SPM is more conservative because the correction for
multiple comparisons in these data is very severe, rendering
classical inference relatively insensitive. It is interesting to
note that dynamic motion in the visual field has such wide-
spread (if small) effects at a hemodynamic level.

PPMs and FDR

There is an interesting connection between false discov-
ery rate (FDR) control and thresholded PPMs. Subjecting
PPMs to a 95% threshold means that surviving voxels have,
at most, a 5% probability of not exceeding the default
threshold �. In other words, if we declared these voxels as
“activated,” 5% of the voxels could be false activations.
This is exactly the same as FDR in the sense that the FDR
is the proportion of voxels that are declared significant but
are not. It should be noted that many voxels will have a
posterior probability that is more than 95%. Therefore, the
5% is an upper bound on the FDR. This interpretation rests
explicitly on thresholding the PPM and labeling the excur-
sion set as “activated.” It is reiterated that this declaration is
unnecessary and only has any meaning in relation to clas-
sical inference. However, thresholded PPMs do have this
interesting connection to SPMs in which false discovery
rate has been controlled.

Fig. 4. Illustrative results for a single voxel—the maximum in the left
temporal region of the PPM in the previous figure (�54, �4, �2mm).
(Top) These are the conditional or posterior expectations and 95% confi-
dence intervals for the activation effect associated with each of the 12
conditions. Note that the odd conditions (word shadowing) are generally
higher. In condition 5 one would be more than 95% certain the activation
exceeded 2.2. (Bottom) The prior and posterior densities for the parameter
estimate for condition 5.
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Conclusion

In this note we have presented a simple way to construct
posterior probability maps using empirical Bayes. Empirical
Bayes can be used because of the natural hierarchy in
neuroimaging engendered by looking for the same thing
over multiple voxels. The approach provides simple shrink-
age priors based on between-voxel variation in parameters
controlling effects of interest. A computationally expedient

way of computing these priors using ReML has been pre-
sented that pools over voxels. This pooling device offers an
enormous computational saving through simplifying the
matrix algebra and enabling the construction of whole-brain
PPMs. The same device has found an interesting application
in the ReML estimation of prior variance components in
space, by pooling over time bins, in the EEG source recon-
struction problem (Phillips et al., 2003).

A key consideration, in the use of empirical Bayes in this

Fig. 5. PPM for the fMRI study of attention to visual motion. The display format in the bottom panel uses an axial slice through extrastriate regions but the
thresholds are the same as employed in maximum intensity projections (top panels). The activation threshold for the PPM was 0.7. As can be imputed from
the design matrix, the statistical model of evoked responses comprised boxcar regressors convolved with a canonical hemodynamic response function.
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setting is “which voxels to include in the hierarchy?” There
is no right or wrong answer here (cf. the search volume in
classical inference with SPMs). The most important thing to
bear in mind is that the conditional estimators of an activa-
tion or effect are those that minimize some cost function.
This cost function can be regarded as the ability to predict
the observed response with minimum error, on average,
over the voxels included in the hierarchical model. In other
words, the voxels over which the priors are computed define
the space one wants, on average, the best estimates for. In
this work we have simply used potentially responsive vox-
els within the brain as defined by thresholding the original
images (to exclude extracranial regions).

The theory described in this technical note has been
implemented in the current version of the SPM software

(SPM2). Simple posterior inferences that are enabled by this
approach may find a useful role in characterizing evoked
brain responses or differences among cohorts.
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