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Distributed linear solutions of the EEG source lo-
calization problem are used routinely. Here we de-
scribe an approach based on the weighted minimum
norm method that imposes constraints using ana-
tomical and physiological information derived from
other imaging modalities to regularize the solution.
In this approach the hyperparameters controlling
the degree of regularization are estimated using re-
stricted maximum likelihood (ReML). EEG data are
always contaminated by noise, e.g., exogenous noise
and background brain activity. The conditional ex-
pectation of the source distribution, given the data,
is attained by carefully balancing the minimization
of the residuals induced by noise and the improba-
bility of the estimates as determined by their priors.
This balance is specified by hyperparameters that
control the relative importance of fitting and con-
forming to prior constraints. Here we introduce a
systematic approach to this regularization problem,
in the context of a linear observation model we
have described previously. In this model, basis func-
tions are extracted to reduce the solution space a
priori in the spatial and temporal domains. The
basis sets are motivated by knowledge of the
evoked EEG response and information theory. In
this paper we focus on an iterative “expectation-
maximization” procedure to jointly estimate the
conditional expectation of the source distribution
and the ReML hyperparameters on which this solu-
tion rests. We used simulated data mixed with real
EEG noise to explore the behavior of the approach
with various source locations, priors, and noise lev-
els. The results enabled us to conclude: (i) Solutions
in the space of informed basis functions have a
high face and construct validity, in relation to con-
ventional analyses. (ii) The hyperparameters con-
trolling the degree of regularization vary largely
with source geometry and noise. The second conclu-
sion speaks to the usefulness of using adaptative
ReML hyperparameter estimates. © 2002 Elsevier
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1. INTRODUCTION

Estimating the sources of an electromagnetic field
(EEG/MEG) recorded on the scalp surface is a major
problem and the subject of a large literature. Various
solutions have been proposed that attain varying de-
grees of success. These can be divided into two main
categories: “equivalent current dipole” approaches, in
which the EEG/MEG signals are assumed to be gener-
ated by a relatively small number of focal sources
(Miltner et al., 1994; Scherg and Ebersole, 1994;
Scherg et al., 1999; Aine et al., 2000), and the “linear
distributed” approach, in which “all” possible source
locations are considered simultaneously (Backus and
Gilbert, 1970; Sarvas, 1987; Hämäläinen and Ilmo-
niemi, 1994; Grave de Peralta Menendez and Gonzalez
Andino, 1999; Pascual-Marqui, 1999; Uutela et al.,
1999).

Here we present a linear distributed approach, based
on the weighted minimum L2-norm (WMN) method,
that employs constraints using anatomical and physi-
ological information derived from other imaging mo-
dalities. This approach has already been introduced in
Phillips et al. (2002) and rests upon three assumptions
(Nunez, 1981; Hämäläinen et al., 1993; Dale and Ser-
eno, 1993): sources are located in gray matter, they are
oriented orthogonal to the cortical sheet, and, for a
sufficiently dense dipole distribution, they are locally
coherent (i.e., their activity changes smoothly along the
cortical sheet). These constraints are used to reduce
the solution space a priori by modeling the spatial
source distribution with a set of basis functions. By
analogy to the spatial basis functions, the construction
of a temporal basis set can be motivated by knowledge
about the evoked EEG response: namely, the “window”
of activity and its temporal coherence. This set of tem-
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poral basis functions can be used to further reduce the
size of the solution space.

Spatial and temporal basis functions are used in this
paper to illustrate how priors, which can be specified
with high precision, can be employed to form basis sets.
The reduced problem can then be solved using, for
example, a classical WMN method. Further “soft” con-
straints can be introduced in the weighting of the
WMN solution using, for example, hemodynamic mea-
sures of brain activity as spatial priors (Rugg, 1998;
Liu et al., 1998; Dale et al., 2000). The focus of this
paper is the relative weighting of these priors in the
context of observation noise.

In the context of noisy data, regularization is neces-
sary to control the relative influence of the likelihood
of, and priors on, the solution. Within the WMN ap-
proach regularization is achieved by carefully balanc-
ing, through some hyperparameters �i, the fitting of
the data and the strength of priors, according to the
level of noise, and the precision of the priors that are
considered. An iterative procedure for estimating hy-
perparameters, using “restricted maximum likelihood”
(ReML), is presented. An “expectation-maximization”
(EM) algorithm is used to jointly estimate the param-
eters (source distribution) and the hyperparameters
(that parameterize the variance of the priors and
noise).

In this paper we fix the relative contribution of dif-
ferent priors so that the effective number of hyperpa-
rameters reduces to 1. This hyperparameter can be
regarded as the standard deviation of the noise relative
to that expected for the underlying sources. The reason
for doing this is to show how the Bayesian formulation
can be developed from standard regularization, in
which the regularization parameter is exactly the same
as our single hyperparameter.

This paper is divided into two subsequent sections.
In the first (Section 2) the theoretical background and
operational details of our approach are described. The
first part (Sections 2.1–2.3) is a brief synopsis of the
technique presented in full in Phillips et al. (2002),
while the second part (Sections 2.4–2.5) introduces the
regularization procedure. In the last section (Section
3), we use simulated signals mixed with real EEG noise
to explore the behavior of the approach over a range of
variables and noise levels. To assess the construct va-
lidity of our method we compare it with two established
approaches to the source localization problem, simple
weighted minimum norm and a maximum smoothness
(LORETA-like) solution.

In the rest of this paper, a, a� , a, and A will represent,
respectively, a scalar, a vector of size 3 � 1, a vector of
any size Na � 1 and a matrix; At will designate the
transpose of A.

2. THEORY

The instantaneous source localization problem in
EEG can be summarized by the equation

v � ��r�, j�� � �, (1)

where v, a vector of size Ne � 1, is the potential at the
Ne electrodes, r� and j� are the source location and mo-
ment, � is the additive noise, and � is the function
linking the sources (r�, j�) and the potential r�. The func-
tion � is the solution of the forward problem and de-
pends only on the head model adopted.

For multiple sources defined by r� i and j�i (with i �
1, . . . , Ni) the source localization problem is written as

v � �
i�1

Ni

��r� i, j�i� � �. (2)

2.1. Head and Source Model

� was calculated using the “boundary element
method” (BEM) for a three-shell realistic head model
(Geselowitz, 1967; Hämäläinen and Sarvas, 1989;
Meijs et al., 1989; de Munck, 1992; Schlitt et al., 1995;
Ferguson and Stroink, 1997; Buchner et al., 1997). A
structural MR image of the head was segmented (Ash-
burner and Friston, 1997) and divided into three vol-
umes with homogeneous isotropic conductivity: the
brain, the skull, and the scalp volume. Then the poten-
tial at the electrode sites on the scalp surface was
computed for any current source located in the brain
volume.

In this paper, the sources of the EEG signal are
modeled by a fixed, uniform, three-dimensional grid of
current dipoles throughout the entire brain volume,
conforming to the “distributed linear solution” ap-
proach. Because the location r� of each current source is
now fixed, Eq. (1) becomes an underdetermined but
linear problem,

v � Lj � �, (3)

where j represents the current dipoles at all the Nd

locations simultaneously, and L is the lead field matrix
linking the current sources j to the electrical potential
v. If the source orientation is left free, then j � [ j�1

t ,
j�2

t , . . . , j�Nd

t ]t, where j�i � [ jx,i, jy,i, jz,i]
t encodes both ori-

entation and amplitude of the ith current dipole. Oth-
erwise the orientated sources, j � [ ji, j2, . . . , jNd]

t,
where each ji specifies only the amplitude of the ith
current dipole.

For discrete data time series with Nt time bins, Eq.
(3) can be expressed as a multivariate linear model,

V � LJ � �, (4)
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with V � [v1, v2, . . . , vNt], J � [j1, j2, . . . , jNt], and � �
[�1, �2, . . . , �Nt] where vl, jl, and �l are the potential,
current dipoles, and additive noise at the lth time.

For the simulations presented in Section 3, the realistic
BEM head model was generated from the template T1-
weighted MR image of the SPM99 software (Wellcome
Department of Cognitive Neurology, 1999). The lead field
matrix L was calculated for a set of Ne � 61 approxi-
mately equidistant electrodes and Nd � 12,300 dipoles.

2.2. Weighted Minimum Norm Solution

As Eq. (3) is underdetermined, some constraints are
necessary to estimate a unique solution. These con-
straints are generally based on a priori knowledge
about the sources. One common approach to solve this
problem is the WMN solution or Tikhonov regulariza-
tion method (Tikhonov and Arsenin, 1977), in which
the a priori constraint can be interpreted in a Bayesian
sense.

The WMN solution constrains the reconstructed source
distribution by minimizing a linear mixture of some
weighted norm �Hj� of the current sources j and the
residuals of the fit. Assuming the noise � is Gaussian � �
�(0, �2C�) with a covariance that can be factorized into a
scalar variance �2 and a known matrix C�,

ĵ � arg min
j

��C �
�1/2�Lj � v��2 � � 2�Hj�2�, (5)

where the hyperparameter � expresses the balance
between fitting the model �C�

�1/2(Lj � v)� and minimiz-
ing the a priori constraint �Hj�. We will refer to C� as
a correlation matrix, but note this does not imply
diag(C�) � 1. In this paper a correlation matrix plays
the same role as a covariance matrix but is scaled so
that trace(C�) � rank(C�).

Equation (5) can also be expressed as an overdeter-
mined least-square problem,

�C �
�1/2v
0 � � �C �

�1/2L
�H �j � ��1

�2
� , (6)

where the solution is obtained by minimizing the norm
of the residuals [�1

t �2
t]t. The solution of Eq. (5) or (6) for

a given � is

ĵ � Tv, (7)

where

T � 	L tC �
�1L � �2�H tH�
�1L tC �

�1 (8a)

� �H tH��1L t	L�H tH��1L t � � 2C�

�1 (8b)

using the matrix inversion Lemma.

For the continuous case of multiple observations like
Eq. (4), the least-square problem is formally identical
to Eq. (6),

�C �
�1/2V
0 � � �C �

�1/2L
�H �J � ��1

�2
� , (9)

and has the corresponding solution Eq. (7).
The important and useful connection with Bayesian

estimates of the sources rests on Gaussian assump-
tions, when the conditional expectation or posterior
mean of the sources j is given by

E� j�v� � 	L tC �
�1L � �2C j

�1
 �1L tC �
�1v (10a)

� CjL t	LCjL t � � 2C�

�1v, (10b)

where Cj is the prior covariance of the sources and �2 is
the noise variance. Comparing Eqs. (10) with Eqs. (8)
provides the motivation for choosing forms of H where

��

�
� 2

�H tH� � Cj
�1. (11)

As will be shown later (Section 2.4.1), � can be thought
of as the ratio �/� where Cj � �2(HtH)�1 and (HtH)�1 is
the prior correlation matrix of j and �2 is the prior
variance.

One could of course embrace a whole series of priors
or constraints,

� 1
�2�H 1

t H1� � � 2
�2�H 2

t H2� � . . . � C j
�1. (12)

This would correspond to expanding the prior disper-
sion Cj

�1 in terms of a linear basis set, specified by Hi.
Although the EM algorithm below can easily handle
multiple hyperparameters (see Section 2.4), for sim-
plicity we will deal with a single set of constraints.

In some instances the priors can be so precise that
they preclude the solution from spanning certain sub-
spaces of the solution space (precision is the inverse of
variance); i.e., if Cj was 0 along its leading diagonal the
regularization or penalty would be infinite at that lo-
cation and the conditional estimate Eqs. (10) would be
zero. For example, the prior variance of source activity
in white matter can be set to 0. In these situations it is
computationally more efficient to remove these “impos-
sible” subspaces before computing the WMN solution.
This involves projecting the solution onto a subspace
that has nonzero prior variance. An example of this
approach is the use of spatial or temporal basis func-
tions to reduce the solution space as described in the
next section. The use of basis functions can therefore
be viewed as implementing priors with infinite preci-
sion.
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2.3. Constraints and Priors

Anatomical and physiological information derived
from other imaging modalities are often used to con-
strain the solution in the spatial domain. A two-step
approach was presented in Phillips et al. (2002): First
the source distribution is modeled by a set of spatial
and temporal basis functions (“hard” constraints spec-
ified with infinite precision), then further “soft” con-
straints are introduced through H in the WMN solu-
tion in the usual way.

2.3.1. Basis Functions

As presented in Phillips et al. (2002), prior knowl-
edge about the sources J can be embodied in matrices
summarizing the prior constraints on source location
(in space or time), say G, and dispersion, say D. This
prior on the signal induces spatiotemporal coherence.
G is a leading diagonal matrix encoding the prior vari-
ance in signal at different points in space or peristimu-
lus time. D will be a (generally nonstationary) convo-
lution matrix that controls the degree of coherence in
the prior covariance matrix C, where

C � G t/2D tDG 1/2. (13)

Informed basis functions B are then obtained from the
eigenvector solution of C or, equivalently, by using the
singular value decomposition of C1/2 � DG1/2:

USW t � svd�DG1/2�. (14)

Columns of W corresponding to normalized eigenval-
ues S2 greater than unity are retained to form the basis
set B. Selecting these eigenvectors, either in space or
time, ensures a high mutual information between the
signal before and that after projection onto the basis
set (under prior assumptions). In terms of the Bayesian
formulation this is equivalent to setting the prior vari-
ance of spatial or temporal modes (corresponding to the
“minor” eigenvectors) to 0. The major modes, retained
to form the basis set, could be entered into Eq. (12) but
again, for simplicity we will discount them by effec-
tively setting their associated eigenvalues to infinity.
This corresponds to making the prior density (in the
subspace spanned by the major modes) “flat” or uni-
form with zero precision (i.e., an infinitely wide Gauss-
ian density function in this subspace is essentially
“flat”). Because their precision is 0 they do not enter
into Eq. (12) (i.e., their associated hyperparameter
is 0).

We now describe the constraints used in our simula-
tions, starting with spatial and moving to temporal
constraints.

2.3.2. Spatial Constraints

The orientation and location of the dipoles are em-
bodied in the lead field matrix L. The gray matter
density at each dipole location and the spatial coher-
ence imposed among the dipoles can be represented by
a diagonal matrix Gs and a covariance matrix Ds. With
these matrices Gs and Ds a set of “spatially informed
basis functions” (sIBF) Bs can be constructed (as in
Section 2.3.1 above), such that

B s
t j � ks f j̃ � Bsks, (15)

where ks is the vector of size Nks � 1 with Nks � Nd. By
substituting Eq. (15) into Eq. (5), the unknowns be-
come ks and the size of the solution space is reduced
from Nd to Nks.

In the simulations presented below 2 degrees of spa-
tial coherence between the sources were modeled in Ds

by using two different Gaussians, � � 10 mm and � �
5 mm, of the geodesic distance between the dipoles as
described in Phillips et al. (2002). The solutions ob-
tained using Eqs. (8) and (15) will be referred to as the
“informed basis functions” (IBF) solutions of kernel 10
mm (IBF10) or 5 mm (IBF5), with Nks � 621 and Nks �
1903, respectively.

Further soft constraints are embodied in the matrix
H of the WMN solution, Eq. (5). Through relation (11),
it is possible to render some sources more (or less)
probable by scaling their a priori variance. First, in
order to ensure that sources are likely to influence the
electrical potential equally at the electrodes irrespec-
tive of their depth (Ioannides et al., 1990; Grave de
Peralta Menendez and Gonzalez Andino, 1998; Pas-
cual-Marqui, 1999), deeper sources are given a larger a
priori variance than superficial sources. The depth is
indexed by the norm of the lead field for each source
and the covariance component of this constraint is the
diagonal matrix (diag(LtL))�1. Using this form for Cj is
equivalent to normalizing the column of the lead field
matrix in an Euclidian sense.

A second important constraint can be derived from
fMRI indices of activation that enter as �, a leading
diagonal matrix with elements that reflect the prior
probability of whether the source is active (here we
allow only values of 0, the variance is left unchanged,
or 1, the variance is increased according to the value of
a hyperparameter). Combining these components, we
can form the following expression:

C j
�1 � � 2�H tH� � �2diag�L tL��INj

� 	���1. (16)

In principle we could estimate both hyperparameters �
and 	 (or their ratio with �). Generally one would take
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any arbitrary expression like Eq. (16) for the prior
precision and reduce it to the form of Eq. (12) using a
Taylor expansion with respect to the hyperparameters.
Algorithms for finding ReML estimates of multiple pa-
rameters are readily available. However, to simplify
the ReML demonstration we will assume fixed values
for 	 and focus on estimating � (or � � �/�).

We chose three values for 	, 0, 3, and 24, correspond-
ing to “no,” “weak,” and “strong” (fMRI) location priors.
By taking 	 equal to 3 or 24, we are assuming that the
a priori variance of the activity is 4 or 25 times larger
than the other locations (if the depth constraint was
discounted).

2.3.3. Temporal Constraints

The temporal constraints are derived in the same
way as the spatial basis functions and are based on
knowledge of the evoked EEG response. The time win-
dow that encompassed the evoked response was mod-
eled by the leading diagonal matrix Gt (size Nt � Nt).
The ith diagonal element of Gt takes a value between 0,
zero probability of evoked activity at the ith time in-
stant, and 1, possible activity at the ith time instant.
Temporal coherence is modeled by the matrix Dt of size
Nt � Nt. The matrix Dt can be defined, for example, as
a convolution matrix comprising Gaussian kernels. By
choosing kernels of different sizes throughout the ep-
och, it would be possible, for example, to allow higher
frequencies at the beginning of the epoch than at the
end.

As for the sIBF, a set of “temporally informed basis
functions” (tIBF) Bt can be constructed (Section 2.3.1),
such that the “temporal domain” is reduced from Nt to
Nkt. With Bs and Bt, the Nd � Nt source matrix J can be
modeled as

B s
tJBt � Kst f J̃ � KtB t

t � BsKstB t
t, (17)

where Kst is a Nks � Nkt matrix and Bt is a Nt � Nkt

matrix.
In this paper the prestimulus period was chosen to

last 400 ms from �400 to 0 ms (100 time samples), thus
the window of stimulus-related activity ranged from 0
to 1600 ms (400 time samples). Rise and fall periods, 40
ms each, at the extremities of the window of activity
were modeled as the ascending and descending part of
a Hanning window to give the constraint matrix Gt.
The temporal coherence matrix Dt was modeled by a
Gaussian convolution matrix, the kernel of the Gauss-
ian function was �t � 16 ms wide (4 points) and was
kept constant throughout the whole epoch.

2.4. Noise Regularization Procedure

The WMN solution, presented in Section 2.2, de-
pends on the hyperparameter �. The hyperparameter �

balances the relative contribution of fitting the model
C�

�1/2(Lj � v) and the priors on the solution Hj. As �
varies, the regularized solution j� changes in a way
that depends strongly on �. Therefore the choice of � is
crucial. As a general rule, the degree of regularization
(�) should increase with the level of noise in the data,
i.e., the importance of the priors should increase as the
model fit decreases, but this rule is not sufficient to
estimate �.

A heuristic way to display and understand the prop-
erties of j� is to plot the (weighted) norm of the regu-
larized solution �Hj��2 versus the norm of the residual
vector �C�

�1/2(LJ� � v)�2 for different values of �. The
curve obtained usually has an L shape (in ordinary or
double logarithmic scale), hence its name “L-curve.” A
satisfactory � would lie close to the inflection of the
L-curve (Hansen, 1992). But Engl and Grever (1994)
showed that hyperparameter choice strategies, based
on this plot alone, e.g., on the corner of the L-curve, are
independent of the norm of the difference between the
true noise-free signal and the measured (and noise
contaminated) signal. Another disadvantage of the L-
curve approach is that the solution must be calculated
for a large number of values of � to find an appropriate
regularization level.

Fortunately there are other ways to simultaneously
estimate the hyperparameter � and its associated so-
lution j� in an optimal way. The ReML approach is a
variation of the classic “maximum likelihood” solution,
in which the hyperparameters are estimated in alter-
nation with the (parameters of the) solution itself. The
mathematical details of the approach are presented in
the Appendix.

The least-square expressions of the WMN problem,
see Eqs. (6) and (9), are formally identical to those used
by the “simple ReML” solution, Eqs. (29) and (35) in the
Appendix, with the following substitutions:

A1 � C �
�1/2LB, (18a)

A2 � HB, (18b)

x � k �or X � Kst�, (18c)

b1 � C �
�1/2v �or B1 � C �

�1/2VB�, (18d)

b2 � 0 �or B2 � 0�, (18e)


1 � �, (18f)


2 � �, (18g)
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where relations (15) and (17) are used and Bs and Bt

are combined with L, H, and V: LB � LBs, HB � HBs,
and VB � VBt.

By considering �2 as the ratio between the variance
�2 of the whitened residuals of the model C�

�1/2(LBk �
v) and the variance �2 of the weighted solution HBk,
then it is possible to apply the iterative procedure
described in the Appendix to estimate both k and � �
�/� in

k̂ � arg min
k

��� �1INe
0

0 � �1INj
�

(19)

� ��C �
�1/2LB
HB

�k � �C �
�1/2v
0 ���2

.

This approach can be understood as (i) reformulat-
ing a linear Bayesian (or WMN) estimation as an
augmented least-squares problem and (ii) the hyper-
parameters of the variance components of this prob-
lem are estimated using an EM algorithm to find
their ReML estimate. The use of scalar variance
hyperparameter �2 for the residuals of the model and
�2 for the constraint is appropriate. This is because
the residuals of the model LBk � v are premultiplied
by C�

�1/ 2, the inverse of the square root of its corre-
lation (or its estimator); therefore the residuals are
“whitened” and the resulting covariance can be ap-
proximated by a scaled identity matrix �2INe. Simi-
larly, the matrix HB can be interpreted as the in-
verse of the square root of the scaled a priori
correlation of the sources, as shown in Eq. (11), thus
the variance of the weighted solution HBk can be
modeled by �2INj.

It can be seen that the ReML estimation actually
estimates two hyperparameters, the variance of the
noise �2 and the prior variance of the parameters �2.
The WMN perspective requires only their ratio (�2),
which is generally specified directly. The reason we
framed the introduction in terms of a single hyperpa-
rameter was to establish the connection between clas-
sical regularization approaches in linear estimation
theory and variance component estimation using
ReML in the context of conditional or Bayesian estima-
tion. As will be shown later, simply assuming a fixed
and apparently sensible value for � may be suboptimal,
especially when the influence of noise can change
markedly with source geometry and other measure-
ment configurations.

To incorporate multiple priors (see Eq. (12)), one
simply augments Eq. (19) to

k̂ � arg min
k 	 


� �1INe
0 · · · 0

0 � 1
�1INj

0

···
· · ·

···

0 0 · · ·� N
�1INj

�
(20)

� �

C �

�1/2LB

H1,B

···

HN,B

�k � 

C �

�1/2v

0

···

0

�	
2

,

which can be solved through a minimization of Eq. (28)
in the Appendix. This generalization of simple “noise”
regularization to balance different classes of con-
straints will be the subject of a subsequent paper.

2.5. Comparison Methods

The IBF approach described here was compared with
two other commonly employed approaches: a WMN
solution and a maximum smoothness (MS) solution.

The WMN solution is simply the solution of the prob-
lem formulated in Eq. (5) given by Eq. (8) discounting
the sIBF Bs (i.e., Bs � INd). In the version of the method
employed here, the orientation of the dipoles was fixed
as with the IBF method, so that only the amplitudes
were unknown. The weighting matrix H was defined as
in Eq. (16): it incorporated depth weighting and prior
knowledge (or not) of the location of active sources. The
WMN was used here to calculate three different solu-
tions with the same range of 	: without priors, with
weak priors, or with strong priors.

The MS solution is also a particular case of Eqs. (5)
and (8). No sIBF are used and the orientations of the
dipoles are left free. The weighting matrix H was de-
fined as a weighted three-dimensional Laplacian, H �
MW. W is a leading diagonal matrix defined by w V

[1 1 1]t, where w � [(INj V [1 1 1])diag(LtL)]1/2, which is
equivalent to the depth weighting used for the IBF and
WMN solutions. The operator V denotes the Kronecker
product and L is the Ne � N3Nj lead field matrix corre-
sponding to the orientation-free sources vector j, as
described in Section 2.1. The Laplacian matrix M is a
regularized discrete three-dimensional second-order
derivative operator defined as in Pascual-Marqui
(1999). A single value ji for the amplitude of the elec-
trical activity at each source location i was then ob-
tained by calculating the norm of the resulting dipole
ji � �jx,i

2 � jy,i
2 � jz,i

2 . This “classic” implementation of
the MS solution does not provide means to indepen-
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dently include different priors other than the maxi-
mum smoothness constraint.

No temporal basis functions were used for the sim-
ulations with the WMN and MS solutions but the hy-
perparameter � was still obtained through the ReML
algorithm. The main objective of these simulations was
to establish the face and construct validity of the ReML
hyperparameter estimates. We hoped to show that the
ReML estimate was sensitive to different levels of
noise variance and behaved adaptively and appropri-
ately. Furthermore we wanted to establish this face
validity using a series of qualitatively different priors.
Differences among priors are implicit in the IBF,
WMN, and MS approaches. A secondary aim was to
ensure our IBF still performed well, in relation to
WMN and MS, when using empirical estimates of �.

3. SIMULATIONS

3.1. Methods

Spontaneous brain activity was recorded from a vol-
unteer with 61 approximately equidistant electrodes.
The head model adopted in Section 2.1 used the same
distribution of electrodes. The EEG background activ-
ity (and noise) was sampled at 250 Hz over epochs of
2 s, thus containing Nt � 500 time samples. Each epoch
was bandpass filtered between 0.05 and 20 Hz by a
third-order digital Chebychev filter. Finally 150 epochs
were averaged to produce a realistic noise time series �
at each electrode site.

A set of 100 locations were randomly selected to
assess the efficiency of the methods presented in Sec-
tions 2.3 and 2.5. At each of these locations, an instan-
taneous distributed source set jo was generated as a set
of anatomically connected dipoles within a 7-mm ra-
dius of a “central” dipole. Simulated fMRI information
about prior location was provided as a sphere of 12 mm
radius around this “central” dipole, and dipoles within
this volume were defined as being a priori active
sources, i.e., the corresponding diagonal elements of �
(see Section 2.3.2) were set to 1.

Each source jo was modulated over time to generate
a time-extended Nd � Nt data set Jo. The time course
adopted for all the sources is shown in Fig. 1. The data
with realistic noise were obtained using Eq. (4). The
averaged spontaneous brain activity � was scaled to
achieve two different levels of signal-to-noise ratio
(SNR). The SNR was defined as the ratio between the
power of the potential V over the scalp, i.e., at the
electrodes, and the average power of � over the scalp.
In one case, the SNR was low at 1.5, and in the other,
it was high at 6. The potentials at one electrode, over
time, with these two SNRs are shown in Fig. 1.

The IBF10 and IBF5 solutions were calculated for
each data set V with the tIBF and the ReML hyperpa-
rameter estimate. For the WMN and MS solutions no

basis functions (spatial or temporal) were employed
but the hyperparameter � was still obtained through
the ReML algorithm. In the literature (Pascual-Marqui
et al., 1994; Pascual-Marqui, 1999), the MS solution is
usually implemented in the LORETA software (Pas-
cual-Marqui, 1998) for the ideal noise-free case, using

FIG. 1. Time course of the sources and example of data with
realistic noise. Free brain activity was added to the noise-free signal
at one electrode (top), and all the sources had the same time course.
The noise was scaled at two different levels in order to produce two
data sets with signal-to-noise ratios (SNRs): SNR � 1.5 (middle) and
SNR � 6 (bottom).
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Eq. (8) with � 3 0 (although Pascual-Marqui (1995)
has suggested employing noise regularization by tak-
ing �  0). We reproduced this � � 0 analysis in
our simulations and refer to it as “MS with no regu-
larization.” The IBF10, IBF5, and WMN were tested
without location priors and with weak and strong lo-
cation priors.

Two criteria were used to assess and compare the
performance of the different methods (IBF10, IBF5,
WMN, and MS): “locational error” (LE) and “root mean
square error” (RMSE) (see also Phillips et al., 2002).
The LE is defined as the distance between the location
r� r of the maximum (absolute value) of the recon-
structed source jr and the location r�o of the original
source set jo. In order to obtain a single value of LE for
the estimated and actual distributed source (Jo, Jr),
the following procedure was adopted: Given jr,max, the
amplitude of the largest (absolute value) dipole in Jr,
only reconstructed sources jr,i with at least one dipole of
amplitude (absolute value) greater than 85% of jr,max

were considered. For this subset of reconstructions jr,i,
the LEi was calculated. The largest value of LEi was
retained as the “worst case LE” for (Jo, Jr). The RMSE
is defined as the Frobenius norm of the difference of the
scaled distributions,

RMSE � �J*r � J*o�Fro, (21)

where J*r � Jr /jr,max and J*o � Jo/jo,max. This ensures that
the root mean square error measures the discrepancy
between the original and the reconstructed source dis-
tributions without any the effect of global scaling ef-
fect.

The LE provides a measure of the localization accu-
racy of the reconstruction method; a small value of LE
indicates that the location of the original source was
recovered well. The RMSE measures the “goodness of
fit” of the reconstruction. A small value of RMSE indi-
cates a small discrepancy between the original and the
reconstructed source distributions. The RMSE is use-
ful only to further compare two solutions that have
approximately the same LE. Indeed, if both solutions
have almost the same LE, the one with the smaller
RMSE would be preferred, as the reconstructed source
is then more focal. A very focal reconstructed source
with a large LE will have a smaller RMSE than a
blurred reconstructed source with a small LE, but the
latter solution, although oversmoothed, provides at
least some location information.

To assess the influence of the level of noise, the LE
and RMSE were also calculated with all the methods in
the ideal case in which the data are noise free, i.e., the
SNR was infinite. These results have been presented in
Phillips et al. (2002).

FIG. 2. Localization error (LE), left, and log10 �, right, for the four solutions (IBF10, IBF5, WMN, and MS with and without noise
regularization) for two levels of signal-to-noise ratio (SNR), low SNR (top), and high SNR (bottom), applied to the simple source simulated
data with realistic noise.
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FIG. 3. Location error (LE) and log10 � for the three solutions in which location priors can be incorporated (IBF10, IBF5, WMN) for two
levels of SNR and two levels of location priors, applied to the simple source simulated data with realistic noise.
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3.1.1. Solutions without Location Priors

Here the solutions were calculated without prior
knowledge about the location of active sources. For
each distributed source, the hyperparameter � was
estimated for the two levels of noise (low and high
SNR). The LE and the estimated � are shown in Fig. 2.
As the values of � vary over a large range, its logarithm
in base 10 (log10 �) is displayed. For some simulations,
when the SNR was high, the value of � tended to 0.
These values of � were not included in the histogram.

A “maximum LE” (maxLE) was calculated from the
LE of all the simulations, such that at least 80% of the
sources were recovered within this bound. The maxLE,
mean value of RMSE, and mean value of log10 � are
summarized in the top (Priors: None) of Tables 1, 2,
and 3 for the two levels of SNR. When the value of �
tended to 0, these values were not entered into the
mean of log10 �. In Table 3, the percentage of cases in
which � was greater than 0 is given in brackets.

Considering the LE, the IBF10, IBF5, and MS solu-
tions, with noise regularization, gave estimates that
were only slightly worse than in the noise-free case.
The noise could thus be appropriately accommodated.

In contrast, the MS solution without regularization
was clearly inefficient for low SNR and performed only
slightly better for high SNR. The WMN solution, with-
out location priors, remained sensitive to noise even
with the inclusion of noise regularization and its per-
formance was much worse than that in the noise-free
simulations. The WMN solution without location pri-
ors was unable to localize the source of the signal.

The hyperparameter � was on average smaller for
the high SNR than the low SNR. As would be expected,
with higher SNR, the constraints have less influence
on the solution. At high SNR, in 26 to 30% of cases no
noise regularization was required (�3 0) and the data
were treated as effectively noise free. The main differ-
ence between the IBF10, the IBF5, and the WMN
solutions is the relative level of spatial coherence im-
posed a priori: large, small, and none, respectively. On
average the estimated hyperparameter � was smaller
for the IBF5 solution than for the WMN solution and
smaller for the IBF10 solution than for the IBF5 solu-
tion. With its more restricted solution subspace, the
IBF10 is less sensitive to noise, therefore less noise
regularization was required. The values of � obtained

TABLE 1

Maximum Localization Error (LE) of the IBF10, IBF5, WMN, and MS (with and without Noise Regularization) Solutions

fMRI priors SNR IBF10 IBF5 WMN MS with regul. MS w/o regul.

None Infinite 20 (86%) 20 (85%) 44 (85%) — 20 (91%)
High 20 (81%) 28 (88%) 116 (82%) 20 (86%) 52 (81%)
Low 28 (87%) 28 (83%) 116 (84%) 28 (89%) 116 (82%)

Weak Infinite 4 (90%) 4 (95%) 28 (85%) — —
High 12 (89%) 4 (96%) 116 (83%) — —
Low 12 (90%) 4 (96%) 100 (82%) — —

Strong Infinite 4 (97%) 4 (100%) 4 (82%) — —
High 4 (89%) 4 (100%) 4 (82%) — —
Low 4 (89%) 4 (100%) 112 (99%) — —

Note. The simulations were performed with two levels of SNR (low and high) and two levels of priors (weak and strong). The LE is expressed
as the maximum LE allowed to recover at least 80% of the sources within this bound; the actual percentage of sources recovered within this
“max LE” is in parentheses.

TABLE 2

Mean Values of the Root Mean Square Error of the IBF10, IBF5, WMN, and MS
(with and without Noise Regularization) Solutions

fMRI priors SNR IBF10 IBF5 WMN MS with regul. MS w/o regul.

None Infinite 146.8 128.1 48.0 — 216.2
High 167.9 150.3 54.3 241.8 250.9
Low 191.6 177.3 62.7 284.9 288.4

Weak Infinite 109.4 66.7 62.7 — —
High 121.1 75.6 52.8 — —
Low 133.6 85.7 60.1 — —

Strong Infinite 86.8 36.0 50.7 — —
High 93.4 37.9 48.9 — —
Low 98.2 39.4 49.3 — —

Note. The simulations were performed with two levels of SNR (low and high) and two levels of priors (weak and strong).
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for the MS solution cannot be directly compared to
those of the IBF and WMN solutions because the con-
straints imposed on the solutions are defined in com-
pletely different ways.

The mean RMSE was larger for the low SNR than
the high SNR, indicating a more accurate reconstruc-
tion with higher SNR. As for the noise-free case, the
RMSE was proportional to the level of smoothness
imposed on the solution.

3.1.2. Solution with Accurate Location Priors

In this section, the solutions were calculated with
accurate fMRI priors about the location of active
sources. The IBF10, IBF5, and WMN solutions were
assessed for three levels of noise, low, high, and infinite
SNR, and two level of priors, weak and strong priors.
The values obtained for LE and log10 � are shown in
Fig. 3. The maxLE and mean RMSE and log10 � for
each solution and each condition are summarized in
the bottom (Priors: Weak and Strong) of Tables 1, 2,
and 3.

The inclusion of location priors improved the accu-
racy of the reconstruction greatly. With strong priors,
the LE of the IBF10, IBF5, and WMN solutions was
approximately equivalent to the LE observed with the
noise-free simulations. However, with weak priors,
only the IBF5 solution performed as well as in the
noise-free simulations. With weak priors, the LE of the
IBF10 solution was reduced compared to the results
obtained without priors but remained larger than that
of the noise-free case. In the case of the WMN solution,
the inclusion of the weak priors did not improve the
accuracy of the solution.

The values of the hyperparameter � were on average
similar to (or slightly larger than) those obtained with-
out priors and followed the same proportions: larger
values for low levels of a priori smoothness and/or low
SNR and smaller values with large amounts of a priori
smoothness and/or high SNR. The percentage of cases
in which the data were treated as noise free (� 3 0)
was reduced by the introduction of priors. This indi-
cates that, even at high SNR, when location priors are

included the constraint has a stronger influence on the
solution than when no location priors are employed:
when location priors are included, a larger component
of the data V can be considered noise and the solution
relies more on the constraints.

With the inclusion of priors, the RMSE was reduced
in all cases. Nevertheless, the RMSE remained larger
for the data with low SNR than with high SNR. The
IBF5 solution with strong location priors and high SNR
data provided the most accurate and focal solution.

3.2. Summary of Results

With realistic noise, the performance of the IBF so-
lutions deteriorated slightly relative to simulations
with noise-free data. The noise regularization adapted
to the SNR of the data, i.e., the hyperparameter �
increased with noise level. As in the noise-free simula-
tions, when no location priors were provided, the best
localization (on average) was achieved with relatively
large a priori smoothness constraints. Less smoothness
was required, however, if location priors were pro-
vided.

With noise regularization the MS solution behaved
like the IBF solutions without location priors: its per-
formance was slightly reduced by the noise component
and the noise regularization adapted to the SNR. On
the other hand, if no noise regularization was applied,
the LE of the MS solution increased dramatically, even
for a high SNR. The WMN was also strongly affected
by noise and capable of localizing sources only when
strong location priors were embodied in the solution.

3.3. Discussion

One way to overcome the intrinsic limitations (on
temporal or spatial resolution) of individual brain im-
aging modalities is to combine data obtained from dif-
ferent techniques within the same mathematical
framework. Such integration should provide an opti-
mal solution that harnesses the strengths of each tech-
nique. In this paper we have outlined a way in which
structural and functional data are used as priors in the

TABLE 3

Mean Values of the Log10 � of the IBF10, IBF5, WMN, and MS (with Noise Regularization) Solutions

fMRI priors SNR IBF10 IBF5 WMN MS

None High 0.53 (74%) 0.65 (70%) 0.81 (71%) 2.75 (100%)
Low 1.43 (100%) 1.57 (100%) 1.71 (100%) 4.08 (100%)

Weak High 0.54 (80%) 0.66 (72%) 0.76 (73%) —
Low 1.44 (100%) 1.59 (100%) 1.73 (100%) —

Strong High 0.52 (86%) 0.69 (89%) 0.82 (99%) —
Low 1.46 (100%) 1.64 (100%) 1.84 (100%) —

Note. The simulations were performed with two levels of SNR (low and high) and two levels of priors (weak and strong). Simulations with
no noise correspond to � � 0. The mean of log10 � takes into account only nonzero values of �, the percentage of cases in which �  0 is in
parentheses.
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estimation of EEG sources. Crucially, we have illus-
trated the role of ReML hyperparameter estimates in
modeling the relative contributions of EEG residuals
and MRI-based priors to the estimation.

The approach adopted in this work does not strictly
follow the scheme of a distributed linear reconstruc-
tion. The spatial IBF, obtained from the anatomical
information, and temporal IBF, specified by our knowl-
edge of EEG ERP, allow constraints on the source
localization to enter in two separable steps. First the
dimensionality of the problem is reduced by projecting
the solution space onto a subspace spanned by the
spatial and temporal IBF. Second the subspace prob-
lem is solved using a regularized or Bayesian estima-
tor.

The extraction of spatial and temporal IBFs is a key
element in the approach presented here. Although an
important step (see below), it can be time consuming
and computationally demanding. Fortunately, the spa-
tial IBFs need be calculated only once for a particular
head and source model. Afterward, various hypotheses
about the prior location of activation using different
EEG time series can be studied with the same spatial
IBF set but different “soft” constraints. The introduc-
tion of the spatial IBF offers a clear separation be-
tween the “hard” constraints relying on anatomy and
other “soft” constraints that have intermediate preci-
sion. Temporal IBFs allow a more efficient character-
ization of the dynamics of the EEG over time and
provide a way to constrain this estimate.

Hard constraints correspond here to a bipartition of
the solution space into a subspace (spanned by the
basis set) with “flat priors” (i.e., infinite variance) and
its complement that has infinite precision (i.e., prior
variance is 0). Soft constraints are specified, in the
linear estimation scheme above, by prior densities in
terms of their covariances or precisions that lie be-
tween zero and infinity.

General approaches to noise are usually empirical
and proceed on a trial-and-error basis: The level of
regularization is manually adapted such that the re-
sulting solution and assumed noise component seem
reasonable. Here, in contrast to these approaches, the
ReML procedure was successfully applied to control
the noise regularization by systematically estimating a
regularization hyperparameter �. With noise regular-
ization, the IBF, MS, and MWN solutions behaved
almost as they did with noise-free data. If no noise
regularization was applied, i.e., �3 0, the MS solution
was strongly affected by noise and was unable to pro-
vide any proper localization, even for a high SNR. The
maximum smoothing constraint alone is thus not
enough to control the effect of the noise.

Even at constant SNR and for the same levels of
location priors, the values of � vary over a wide range.
As the noise component � was the same for all the
simulations, the value of � depends on the source con-

figuration and the distribution of potentials it gener-
ates over the scalp, therefore any fixed value of � can
lead to suboptimal solutions. For example, some
sources may arise in cortical regions where priors may
be specified very precisely leading to high values of �.
In other regions priors may be less informative, ren-
dering a smaller value of � more appropriate. The
flexibility afforded by parameterizing the priors in
terms of hyperparameters lies in being able to specify
the form of the covariances (C� and (Hi

tHi)
�1) without

fixing the exact values. These forms are scaled by the
hyperparameters, which we estimated by ReML. The
advantage of this approach is that the relative impor-
tance of the likelihood of, and priors on, the solution
can be determined empirically. This affords the prior
constraints the latitude to shape themselves in relation
to observation error and each other.

It may seem intuitively implausible that both the
model’s parameters and the hyperparameters can be
estimated from the data. A heuristic understanding is
suggested by the iterative approach adopted in most
ReML procedures. If one knew the hyperparameters,
the posterior or conditional distribution of the param-
eters is readily estimated. Conversely, if the distribu-
tion of the model parameters was known, the hyperpa-
rameters could be estimated using the variance
component estimation after augmenting the model as
described in the Appendix. This is equivalent to taking
the average value of the hyperparameters, integrated
over the conditional distribution of the parameters. By
estimating the parameters given the current value of
the hyperparameters and then the hyperparameters
given the new conditional density of the parameters,
one converges on the ReML estimate for the hyperpa-
rameters and the conditional distribution of the pa-
rameters of interest. This a powerful approach that
calls on an iterative scheme. A fundamental advantage
of using the spatial and temporal IBF is that the iter-
ative ReML algorithm is rendered much more tracta-
ble. Indeed, at each iteration a problem of size Nks � Nkt

is solved instead of Nd � Nt, where Nks � Nd and Nkt �
Nt. This requires much less memory and computa-
tional time.

APPENDIX: RESTRICTED MAXIMUM
LIKELIHOOD ESTIMATES

Maximum Likelihood Solution

Consider a linear stochastic model of the form

b � Ax � r, (22)

where A, the model or design matrix, is of size m � n;
x, the unknown vector, is of size n � 1; b, the data
vector, and r, the residual or error vector, are of size
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m � 1; and C, the covariance matrix of r � �(0, C), is
of size m � m. The normal equations of this model are

�A tC �1A�x � A tC �1b. (23)

By solving the normal equations, the “best linear un-
biased estimate” is obtained,

x̂ � �A tC �1A��A tC �1b, (24)

where, for any matrix B, B� denotes an arbitrary gen-
eralized inverse of B, i.e., any solution to BB�B � B.

This is equivalent to maximizing the objective like-
lihood function (Patterson and Thompson, 1971)

p�b�x���C��1/2e �1/2�b�Ax� tC �1�b�Ax�, (25)

which is equivalent to minimizing the function

F�b; x� � �2 log�p�b�x��

� log�C� � �b � Ax� tC �1�b � Ax� � const.
(26)

The variance–covariance matrix C is necessary to
weight the observations b according to their variance
and to account for their covariance. There may be a
model for this matrix, depending on hyperparameters
� � [
1, 
2, . . .], but its exact value is not necessarily
known a priori and needs to be estimated as well as x.

ReML Solution

Assume that the variance–covariance matrix C is a
function of the unknown hyperparameters 
i, C � C(�)
and � � [
1, 
2, . . .]. There is a scheme that allows the
simultaneous estimation of x and C(�), which properly
takes into account the loss of degrees of freedom in the
model incurred from estimating x (Patterson and
Thompson, 1971) when C(�) is calculated.

Starting estimates are initially assigned to �. With
the current estimate �̂, x̂ is estimated by maximizing
the first likelihood function (Eq. (25)). Then an updated
estimate of � is calculated from the current value x̂.
The procedure is repeated until convergence of both
x̂ and �̂.

Harville (1974) showed that this iterative procedure
maximizes the following function, which has subse-
quently been named restricted maximum likelihood
objective function:

p�b�x, �� � � �A tA�

�2��m�n�C���� �A tC����1A�

� e�1/2�b�Ax� tC��� �1�b�Ax�.

(27)

Maximizing Eq. (27) is equivalent to minimizing

F�b; x, �� � �2 log�p�b�x, ���
(28)

� log�A tC����1A� � log�C����

� �b � Ax� tC����1�b � Ax� � const.

There exists a general iterative approach for estimat-
ing x and � but a linear parameterization of C, i.e.,
C(�) � ¥ 
iGi where Gi are n � n symmetric matrices
whose elements are known, leads to a much simpler
and less computationally demanding approach (Har-
ville, 1977).

Simple ReML Solution

One such case of linear parameterization of C in-
volves a diagonal covariance matrix with each element
parameterized by only one element of �. With only two
hyperparameters � � [
1

2 
2
2], the matrices and vectors

of Eq. (22) can be separated into two parts,

�b1
b2
� � �A1

A2
�x � �r1

r2
� (29)

and

var��r1
r2�� � �
 1

2Im1
0

0 
 2
2Im2

� � C���, (30)

with m1, the number of rows in A1 and b1, and m2, the
number of rows in A2 and b2, such that m1 � m2 � m.

The iterative scheme involves assigning (nonzero)
starting estimates for � and estimating x with relation
(24):

x̂ � �
1
�2A 1

t A1 � 
 2
�2A 2

t A2�
�1�
 1

�2A 1
t b1 � 
 2

�2A 2
t b2�.

(31)

Updated values of the hyperparameters are then ob-
tained from the residuals,

r � �r1
r2
� � b � Ax̂, (32)

and take into account the loss of degrees of freedom
resulting from the estimation of x̂:

p1 � trace��
1
�2A 1

t A1 � 
 2
�2A 2

t A2�
�1
 1

�2A 1
t A1� (33a)

p2 � trace��
1
�2A 1

t A1 � 
 2
�2A 2

t A2�
�1
 2

�2A 2
t A2� � n � p1.

(33b)
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The new estimates of � are


̂ 1
2 �

r 1
t r1

m1 � p1
, (34a)


̂ 2
2 �

r 2
t r2

m2 � p2
. (34b)

The iterative procedure continues by using these new
hyperparameter estimates to reestimate x and then
from the updated x̂, a new set of �. Eventually the
algorithm converges to a stable solution.

The hyperparameters 
1
2 and 
2

2 are the variance
components of each subproblem. If the algorithm is
started with strictly positive values, then at no point
can the values of � even become negative and, in fact,
will never reach 0. Obviously the algorithm should not
be started with 0 or negative starting estimates.

Simple ReML Solution in a Noninstantaneous Problem

Consider the case of the linear stochastic model Eq.
(22) with noninstantaneous data, i.e., the m � 1 data
vector b (resp. residual vector r) is replaced by a m �
q matrix B (resp. R) and the n � 1 vector x by a n � q
matrix X:

B � AX � R7 �B1
B2

� � �A1
A2

�X � �R1
R2

� . (35)

If the covariance matrix C of the residuals R
still depends linearly on two hyperparameters � �
[
1

2 
2
2] as in Eq. (30), then a similar iterative scheme

can be applied to estimate both X and �. With starting
estimates for �, a first solution for X is calculated with
Eq. (31):

X̂ � �
1
�2A 1

t A1 � 
 2
�2A 2

t A2�
�1�
 1

�2A 1
t B1 � 
 2

�2A 2
t B2�.

(36)

The values of � are then updated from the residuals,

R � �R1
R2

� � �r1,1 r1,2 · · · r1,q
r2,1 r2,2 · · · r2,q

� � B � AX̂,

(37)

using relations similar to Eq. (34),


̂ 1
2 �

¥ i�1
q r 1,i

t r1,i

q�m1 � p1�
(38a)


̂ 2
2 �

¥ i�1
q r 2,i

t r2,i

q�m2 � p2�
, (38b)

where p1 and p2 are calculated with Eqs. (33). The
iterative procedure continues, as under Simple ReML
Solution, by reestimating X with these new values of �.
The process is repeated until convergence of the values
of X and �.
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Hämäläinen, M. S., and Ilmoniemi, R. J. 1994. Interpreting magnetic
fields of the brain: Minimum norm estimates. Med. Biol. Eng.
Comput. 32: 35–42.
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