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Glossary

[Kullback-Leibler] divergence: information divergence, information gain, cross

or relative entropy is a non-commutative measure of the difference between

two probability distributions.

Bayesian surprise: a measure of salience based on the divergence between the

recognition and prior densities. It measures the information in the data that can

be recognised.

Conditional density: or posterior density is the probability distribution of

causes or model parameters, given some data; i.e., a probabilistic mapping

from observed data to causes.

Empirical priors: priors that are induced by hierarchical models; they provide

constraints on the recognition density is the usual way but depend on the data.

Entropy: the average surprise of outcomes sampled from a probability

distribution or density. A density with low entropy means, on average, the

outcome is relatively predictable.

Ergodic: a process is ergodic if its long term time-average converges to its

ensemble average. Ergodic processes that evolve for a long time forget their

initial states.

Free-energy: an information theory measure that bounds (is greater than) the

surprise on sampling some data, given a generative model.

Generalised coordinates: of motion cover the value of a variable, its motion,

acceleration, jerk and higher orders of motion. A point in generalised

coordinates corresponds to a path or trajectory over time.

Generative model: or forward model is a probabilistic mapping from causes to

observed consequences (data). It is usually specified in terms of the likelihood

of getting some data given their causes (parameters of a model) and priors on

the parameters

Gradient descent: an optimisation scheme that finds a minimum of a function

by changing its arguments in proportion to the negative of the gradient of the

function at the current value.

Helmholtz machine: device or scheme that uses a generative model to furnish

a recognition density. They learn hidden structure in data by optimising the

parameters of generative models.

Prior: the probability distribution or density on the causes of data that encode

beliefs about those causes prior to observing the data.

Recognition density: or approximating conditional density is an approximate

probability distribution of the causes of data. It is the product of inference or

inverting a generative model.

Stochastic: the successive states of stochastic processes are governed by

random effects.

Sufficient statistics: quantities which are sufficient to parameterise a

probability density (e.g., mean and covariance of a Gaussian density).

Surprise: or self-information is the negative log-probability of an outcome. An
This article reviews a free-energy formulation that
advances Helmholtz’s agenda to find principles of brain
function based on conservation laws and neuronal
energy. It rests on advances in statistical physics, theor-
etical biology and machine learning to explain a remark-
able range of facts about brain structure and function. We
could have just scratched the surface of what this formu-
lation offers; for example, it is becoming clear that the
Bayesian brain is just one facetof the free-energy principle
and that perception is an inevitable consequence of active
exchange with the environment. Furthermore, one can
see easily how constructs like memory, attention, value,
reinforcement and salience might disclose their simple
relationships within this framework.

Introduction
The free-energy (see Glossary) principle is a simple pos-
tulate with complicated implications. It says that any
adaptive change in the brain will minimize free-energy.
This minimisation could be over evolutionary time (during
natural selection) or milliseconds (during perceptual syn-
thesis). In fact, the principle applies to any biological
system that resists a tendency to disorder; from single-cell
organisms to social networks.

The free-energy principle is an attempt to explain the
structure and function of the brain, starting from the very
fact that we exist: this fact places constraints on our
interactions with the world, which have been studied for
years in evolutionary biology and systems theory. How-
ever, recent advances in statistical physics and machine
learning point to a simple scheme that enables biological
systems to comply with these constraints. If one looks at
the brain as implementing this scheme (minimising a
variational bound on disorder), nearly every aspect of its
anatomy and physiology starts to make sense. What fol-
lows is a review of this new perspective on old ideas.

Free-energy and self-organization
So what is free-energy? Free-energy is an information
theory quantity that bounds the evidence for a model of
data [1–3]. Here, the data are sensory inputs and themodel
is encoded by the brain. More precisely, free-energy is
greater than the negative log-evidence or ‘surprise’ in
sensory data, given a model of how they were generated.
Crucially, unlike surprise itself, free-energy can be eval-
uated because it is a function of sensory data and brain
states. In fact, under simplifying assumptions (see later), it
is just the amount of prediction error.
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The motivation for the free-energy principle is again
simple but fundamental. It rests upon the fact that self-
organising biological agents resist a tendency to disorder
and therefore minimize the entropy of their sensory states
[4]. Under ergodic assumptions, this entropy is:

HðyÞ ¼ �
Z

pðyjmÞlnpðyjmÞdy

¼ lim
T!1

1

T

ZT
0

� lnpðyjmÞdt (Equation 1)

See Box 1 for an explanation of the variables and Ref. [5]
for details. This equation (Equation 1) means that mini-
improbable outcome is therefore surprising.
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Box 1. The free-energy principle

Free-energy is a function of a recognition density and sensory input. It

comprises two terms; the energy expected under this density and its

entropy. The energy is simply the surprise about the joint occurrence

of sensory input y and its causes #. The free-energy depends on two

densities; one that generates sensory samples and their causes,

pðy ; #Þ and a recognition density on the causes, qð#;mÞ. This density

is specified by its sufficient statistics, m, which we assume are

encoded by the brain. This means free-energy induces a generative

model m for any system and a recognition density over the causes or

parameters of that model. Given the functional form of these

densities, the free energy can always be evaluated because it is a

function of sensory input and the sufficient statistics. The free-energy

principle states that all quantities that can change (sufficient statistics,

m and action, a) minimise free-energy (Figure I).

Optimising sufficient statistics

It is easy to show that optimizing the recognition density renders it the

conditional density on environmental causes, given the sensory data.

This can be seen by expressing the free-energy as surprise �lnpðyjmÞ
plus a [Kullback Leibler] divergence between the recognition and

conditional densities. Because this divergence is always positive,

minimising free-energy makes the recognition density an approxima-

tion to the true posterior probability. This means the system implicitly

infers or represents the causes of its sensory samples in a Bayes

optimal fashion. At the same time, the free-energy becomes a tight

bound on surprise, which is minimised through action.

Optimising action

Acting on the environment by minimising free-energy through

action enforces a sampling of sensory data that is consistent

with the current representation. This can be seen with a second

rearrangement of the free-energy as a mixture of accuracy and

complexity. Crucially, action can only affect accuracy. This means

the brain will reconfigure its sensory epithelia to sample inputs that

are predicted by its representations; in other words, to minimise

prediction error.

Figure I. Upper panel: schematic detailing the quantities that define free-energy. These include states of the brain m and quantities describing exchange with the

environment; sensory input y ¼ gð#;aÞ þ z and action a that changes the way the environment is sampled. The environment is described by equations of motion,

#̇ ¼ f ð#;aÞ þw , which specify the dynamics of environmental causes #. Brain states and action both change to minimise free-energy, which is a function of sensory

input and a probabilistic representation (recognition density) qð#;mÞ encoded by m. Lower panel: alternative expressions for the free-energy that show what its

minimisation entails. For action, free-energy can only be suppressed by increasing the accuracy of sensory data (i.e. selectively sampling data that are predicted by the

representation). Conversely, optimising brain states make the representation an approximate conditional density on the causes of sensory input. This optimisation

makes the free-energy bound on surprise tighter and enables action to avoid surprising sensory encounters.
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mizing entropy corresponds to suppressing surprise over
time. In brief, for a well-defined agent to exist it must
occupy a limited repertoire of states; for example, a fish in
water. This means the equilibrium density of an ensemble
of agents, describing the probability of finding an agent in a
particular state, must have low entropy: a distribution
with low entropy just means a small number of states
are occupied most of the time. Because entropy is the
long-term average of surprise, agents must avoid surpris-
ing states (e.g. a fish out of water). But there is a problem;
agents cannot evaluate surprise directly; this would entail
knowing all the hidden states of the world causing sensory
input. However, an agent can avoid surprising exchanges
with the world if it minimises its free-energy because free-
energy is always bigger than surprise.
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The Bayesian brain

Mathematically, the difference between free-energy and
surprise is the divergence between a probabilistic repres-
entation (recognition density) encoded by the agent and the
true conditional distribution of the causes of sensory input
(Box1).This representationenables thebrain to reduce free-
energy by changing its representation, which makes the
recognition density an approximate conditional density.
This corresponds to Bayesian inference on unknown states
of the world causing sensory data [6]. In short, the free-
energy principle subsumes the Bayesian brain hypothesis;
or the notion that the brain is an inference or Helmholtz
machine [7–11]. Note that we have effectively shown that
biological agents must engage in some form of Bayesian
perception to avoid surprising exchanges with the world.
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However, perception is only half the story; it makes free-
energy a good proxy for surprise but it does not change the
sensations themselves or their surprise.

Beyond Bayes to active inference

To reduce surprise we have to change sensory input. This is
where the free-energy principle comes into its own: it says
that our actions should also minimize free-energy [5,12].
We are open systems in exchange with the environment;
the environment acts on us to produce sensory impressions
and we act on the environment to change its states. This
exchange rests upon sensory and effector organs (like
photoreceptors and oculomotor muscles). If we change
the environment or our relationship to it, sensory input
changes. Therefore, action can reduce free-energy (i.e.
prediction errors) by changing sensory input, whereas
perception reduces free-energy by changing predictions.

Mathematically, the free-energy principle requires us to
sample sensory information that conforms to our expec-
tations (Box 1). This does not mean we can simply shut
down sensory channels to avoid surprise; we can only
change sensory signals through action. For example, we
cannot avoid pain unless we remove the noxious stimulus.
In short, we sample the world to ensure our predictions
become a self-fulfilling prophecy and surprises are avoided.
In this view, perception is enslaved by action to provide
veridical predictions (more formally, to make the free-
energy a tight bound on surprise) that guides active
sampling of the sensorium [5,12].

In summary, (i) agents resist a natural tendency to
disorder by minimising a free-energy bound on surprise;
(ii) this entails acting on the environment to avoid sur-
prises, which (iii) rests on making Bayesian inferences
about the world. In this view, the Bayesian brain ceases
to be a hypothesis, it is mandated by the free-energy
principle; free-energy is not used to finesse perception,
perceptual inference is necessary to minimise free-energy
(Box 1). This provides a principled explanation for action
and perception that serve jointly to suppress surprise or
prediction error; but it does not explain how the brain does
this or how it encodes the representations that are opti-
mised.

Neuronal implementation

The free-energy principle requires the brain to represent
the causes of sensory input. The nature of this representa-
tion is dictated by physiological and anatomical con-
straints. Irrespective of its form, the brain has to encode
a recognition density with its physical attributes (e.g.
synaptic activity and efficacy). These have the role of
sufficient statistics, which are just numbers that specify
a distribution, like mean and dispersion.

Clearly, the causes of sensory data can change at differ-
ent timescales. For example, environmental states could be
encoded by neuronal dynamics on a millisecond timescale,
whereas causal regularities or parameters that change
slowly could be encoded in connection strengths. These
quantities (states and parameters) pertain to deterministic
dynamics in the world. However, it is also necessary to
represent random effects; for example, the amplitude of
random fluctuations on states. This induces a third class of
quantities (precisions or inverse variances) that generate
uncertainty about states. The sufficient statistics of pre-
cision could be encoded in post-synaptic sensitivity or gain
[13]; through the activity of classical neuromodulatory
neurotransmitter systems (e.g. acetylcholine or dopamine;
cf Ref. [14]) or synchronous interactions among neighbour-
ing populations [15]. Precisions are an important class of
representation that are induced by randomness in the
world and are the focus of later sections.

According to the free-energy principle, the sufficient
statistics representing all three sorts of quantities will
change to minimise free-energy. This provides a principled
explanation for perception, memory and attention; it
accounts for perceptual inference (optimisation of synaptic
activity to encode the states of the environment); percep-
tual learning and memory (optimisation of synaptic con-
nections that encode contingencies and causal regularities)
and attention (neuromodulatory optimisation of synaptic
gain that encodes the precision of states) (Box 2).

This optimisation can be formulated as a gradient
descent on free-energy to furnish differential equations,
which prescribe recognition dynamics for synaptic
activity, efficacy and gain. These dynamics depends on
the form of the generative model employed by the brain
and the sufficient statistics it encodes. If we assume the
recognition density is a high-dimensional Gaussian
density (the Laplace approximation), then recognition
dynamics adopt plausible neuronal forms: optimising
the sufficient statistics of the states looks exactly like
predictive coding [10], which involves recurrent
message-passing between populations encoding predic-
tions and prediction errors. Optimising the sufficient stat-
istics of the parameters is formally identical to associative
plasticity and optimising the sufficient statistics of pre-
cision is similar to the assimilation of prediction error in
reinforcement learning schemes [16].

Under the Laplace assumption, recognition dynamics
become evidence accumulation schemes [17], in which
changes in neuronal activity accumulate evidence (predic-
tion error) [18]. Furthermore, one can understand the
hierarchical deployment of cortical areas and the nature
of message passing among cortical levels in terms of mini-
mising prediction error under hierarchical dynamicmodels
of the world [19,20] (Box 3). Hierarchical models are
important because they are formally equivalent to empiri-
cal Bayesian models [21], in which higher levels provide
empirical priors or constraints on lower levels. This allows
one to interpret top-down effects in the brain as instantiat-
ing empirical priors. Under this perspective, suppressing
free-energy means that each level is trying to explain away
prediction errors at its own level and in the level below;
leading to recurrent self-organized dynamics that converge
on a self-consistent representation of sensory causes, at
multiple levels of description. Recent advances in Bayesian
filtering (that rest on generalised coordinates of motion)
have extended the notion of empirical priors in hierarchal
models to temporal hierarchies, which provide a plausible
account of how we categorise sensory streams and
sequences [19,22].

In summary, the free-energy principle prescribes recog-
nition dynamics if we specify (i) the form of the generative
295



Box 2. Neurobiological implementation

Generative models in the brain: to suppress free-energy one needs a

probabilistic generative model of how the sensorium is caused. These

models pðy ; #Þ ¼ pðy j#Þpð#Þ entail the likelihood, pðy j#Þ of getting

some data, y, given their causes #�fxðtÞ; u; lg and prior beliefs pð#Þ.
The models employed by the brain have to explain a world with

complex dynamics on continuous states. Hierarchical dynamic

models provide a general form and specify sensory data as a mixture

of predictions (based on causes) and random effects:

yðtÞ ¼ gðx ð1Þ;v ð1Þ; uð1ÞÞ þ zð1Þ

x ð1Þ ¼ f ðx ð1Þ; v ð1Þ; uð1ÞÞ þw ð1Þ

..

.

v ði�1Þ ¼ gðx ðiÞ; v ðiÞ; uðiÞÞ þ zðiÞ

x ðiÞ ¼ f ðx ðiÞ; v ðiÞ; uðiÞÞ þw ð1Þ

..

.

v ðmÞ ¼ hþ zðmþ1Þ

zðiÞ

w ðiÞ

" #
�Nð0;PðlðiÞÞ�1Þ

(Equation I)

Here (Equation I), gðiÞ and f ðiÞ are continuous nonlinear functions of

(hidden and causal) states, parameterised by uðiÞ. Independent random

fluctuations zðtÞðiÞ and wðtÞðiÞ have the role of observation noise at the

first level and state-noise at higher levels. Causal states ðtÞðiÞ link levels,

whereas hidden states xðtÞðiÞ link dynamics over time and endow the

model with memory. In hierarchical form, the output of one level acts

as an input to the next. Top-down causes can enter the equations

nonlinearly to produce quite complicated generalised convolutions of

high-level causes with ‘deep’ (hierarchical) structure.

Hierarchies and empirical priors

Gaussian assumptions about the fluctuations specify the likelihood.

Similarly, Gaussian assumptions about state-noise furnish empirical

priors in terms of predicted motion. These assumptions are encoded

by their or precision, PðlÞ, which depends on precision parameters l.

The conditional independence of the fluctuations means that these

models have a Markov property over levels, which simplifies the

architecture of attending inference schemes. In short; a hierarchical

form allows models to construct their own priors. This feature is

central to many inference procedures, ranging from mixed-effects

analyses in classical statistics to automatic relevance determination in

machine learning.

Recognition dynamics

Given a generative model it is relatively easy to compute the free-

energy and derivatives with respect to the sufficient statistics. This

enables one to write down recognition dynamics in terms of a

gradient descent on the free-energy F or its path-integral, A (Action).

Note that only time-dependent representations (i.e. expected states)

minimise free-energy; all the others minimise Action. This means the

recognition dynamics for states reduce to first-order differential

equations of motion (evidence accumulation schemes). However,

the dynamics for parameters (syntactic efficacy) and precisions

(synaptic gain) are second-order and driven by terms that them-

selves accumulate gradients (synaptic traces or tags). Box 3 shows

the form of recognition dynamics, under hierarchical dynamic

models (Figure I).

Figure I. The sufficient statistics representing a hierarchical dynamic model of the world and their recognition dynamics under the free-energy principle. The

recognition density is encoded in terms of its sufficient statistics; m�fmx ;mv ;mu ;mlg. These representations or statistics change to minimise free-energy or its path-

integral (i.e. Action, A). Here, we consider three sorts of representations pertaining to the states; {x,v}, parameters; u and precisions; l of a hierarchical dynamic model.

We suppose these are encoded by neural activity, synaptic connectivity and gain respectively. Crucially, the optimisation of any one representation depends on the

others. The differential equations associated with this partition represent a gradient descent on free-energy and correspond to (i) perceptual inference on states of the

world (i.e. optimising synaptic activity); (ii) perceptual learning of the parameters underlying causal regularities (i.e. optimising synaptic efficacy) and (iii) attention or

optimising the expected precision of states in the face of random fluctuations and uncertainty (i.e. optimising synaptic gain).
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model used by the brain, (ii) the form of the recognition
density and (iii) how its sufficient statistics are optimised.
The list in Table 1 assumes that (i) the brain uses
a hierarchical dynamic model in generalised coordinates
of motion, (ii) the recognition density is Gaussian and (iii)
its expectation is optimised using gradient descent.
These assumptions enable one to write down equations
that predict the dynamics of synaptic activity (encoding
expected states), synaptic efficacy (encoding expected
parameters) and neuromodulation of synaptic gain (encod-
ing expected precision). In Ref. [19] we consider each of
these assumptions, in relation to their alternatives.
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New perspectives?
We have tried to substantiate the aforementioned formu-
lation by explaining many empirical aspects of anatomy
andphysiology in terms of optimising free-energy.One can
explain a remarkable range of facts; for example, the
hierarchical arrangement of cortical areas, functional
asymmetries between forward and backward connections,
explaining away effects and many psychophysical and
cognitive phenomena; see Ref. [19] and Table 1. However,
we now focus on prospective issues that could offer new
and possibly contentious views of constructs in neuro-
science. These examples highlight the importance of



Box 3. Recognition dynamics

Recognition dynamics and prediction error

If we assume that pre-synaptic activity encodes the conditional

expectation of states, then a gradient descent on free-energy prescribes

neuronal dynamics entailed by perception. Under the Laplace assump-

tion (Table 2), these recognition dynamics can be expressed compactly

in terms prediction errors e(i) on the causal states and motion of hidden

states. The ensuing equations suggest two neuronal populations that

exchange messages; causal or hidden ‘state-units’ whose activity

encodes the expected or predicted state and ‘error-units’ encoding

precision-weighted prediction error (Figure I).

Hierarchical message passing

Under hierarchical models, error-units receive messages from the

states in the same level and the level above; whereas state-units are

driven by error-units in the same level and the level below. Crucially,

inference requires only the error from the lower level jðiÞ ¼ PðiÞeðiÞ ¼
eðiÞ �LðiÞjðiÞ and the level in question, jðiþ1Þ. These provide bottom-up

and lateral messages that drive conditional expectations m(i) towards

better predictions to explain away prediction error. These top-down

and lateral predictions correspond to g(i) and f (i). This is the essence of

recurrent message passing between hierarchical levels that sup-

presses free-energy or prediction error. This scheme suggests that

connections between error and state-units are reciprocal; the only

connections that link levels are forward connections conveying

prediction error to state-units and reciprocal backward connections

that mediate predictions

Functional asymmetries

We can identify error-units with superficial pyramidal cells because

the only messages that are passed up the hierarchy are prediction

errors and superficial pyramidal cells originate forward connec-

tions in the brain. This is useful because these cells are primarily

responsible for electroencephalographic (EEG) signals. Similarly,

the only messages that are passed down the hierarchy are the

predictions from state-units. The sources of backward connections

are deep pyramidal cells and one might deduce that these encode

the expected causes of sensory states [20]. Crucially, state-units

receive a linear mixture of prediction error. This is what is

observed physiologically; bottom-up driving inputs elicit obligatory

responses that do not depend on other bottom-up inputs. The

prediction error depends on predictions conveyed by backward

connections. These embody nonlinearities in the generative model.

Again, this is entirely consistent with the modulatory character-

istics of backward connections.

Figure I. Schematic detailing the neuronal architectures that might encode a density on the states of a hierarchical dynamic model. This shows the speculative cells of

origin of forward driving connections that convey prediction error from a lower area to a higher area and the backward connections that construct predictions [11,20].

These predictions try to explain away prediction error in lower levels. In this scheme, the sources of forward and backward connections are superficial and deep

pyramidal cells, respectively. The equations represent a gradient descent on free-energy under the hierarchical dynamic models of Box 2 (see Ref. [19] for details). State-

units are in black and error-units in red. Here, neuronal populations are deployed hierarchically within three cortical areas (or macro-columns). Within each area, the

cells are shown in relation to cortical layers: supra-granular (SG) granular (L4) and infra-granular (IG) layers. In this figure, subscripts denote derivatives.
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representing precision (uncertainty) through neuromodu-
lation.

The neural code, gain and precision

A key implementational issue is how the brain encodes the
recognition density. The free-energy principle induces this
density, which has to be represented by its sufficient
statistics. It is therefore a given that the brain represents
probability distributions over sensory causes [23]. But
what is the form of this distribution and what are the
sufficient statistics that constitute the brain’s probabilistic
code? There are two putative forms; free-form and fixed-
form. Proposals for free-form approximations include
particle filtering [9] and probabilistic population codes
[24]. In particle filtering, the recognition density is
represented by the sample density of neuronal ensembles;
whose activity encodes the location of particles in state-
space. In convolution and probabilistic gain population
codes [6], neuronal activity encodes the amplitude of fixed
basis functions (Table 2). Fixed-form approximations are
usually multinomial or Gaussian. Multinomial forms
assume the world is in one of several discrete states and
are usually associated with hiddenMarkov models [18,25].
Conversely, theGaussian or Laplace assumption allows for
continuous and correlated states.

Any scheme that optimises the sufficient statistics of
these forms must conform to the free-energy principle. So
why have we focussed on the Laplace approximation?
297



Table 1. Structural and functional aspects of the brain that can be explained under a free-energy formulation (see Ref, [19] for details
and references)

Domain Predictions

Anatomy and connectivity:

Explains the hierarchical deployment of cortical areas,

recurrent architectures with functionally asymmetric

forward and backward connections

Hierarchical cortical organization

Distinct neuronal subpopulations, encoding expected states of the world and

prediction error

Extrinsic forward connections convey prediction error (from superficial pyramidal

cells) and backward connections mediate predictions (from deep pyramidal cells)

Functional asymmetries in forwards (linear) and backwards (nonlinear) connections

are mandated by nonlinearities in the generative model encoded by backward

connections

Principal cells elaborating predictions (e.g. deep pyramidal cells) could show

distinct (low-pass) dynamics, relative to those encoding error (e.g. superficial

pyramidal cells)

Recurrent dynamics are intrinsically stable because they suppress prediction error

(cf no strong loops)

Synaptic physiology:

Explains both (short-term) neuromodulatory

gain-control and (long-term) associative plasticity

Scaling of prediction errors, in proportion to their precision, affords the cortical bias

or gain control seen in attention

Short-term modulation of synaptic gain encoding precision or uncertainty (which

optimises a path-integral) must be slower than neuronal dynamics (which optimise

free-energy per se)

Long-term plasticity that is formally identical to Hebbian or associative plasticity

Neuromodulatory factors could have a dual role in modulating postsynaptic

responsiveness (e.g. through after-hyperpolarising currents) and synaptic plasticity

Electrophysiology:

Accounts for (extra)-classical receptive field effects and

long-latency (endogenous) components of evoked

cortical responses

Event-related responses are self-limiting transients, where late components rest

on top-down suppression of prediction error

Sensory responses are greater for surprising, unpredictable or incoherent stimuli

The attenuation of responses encoding prediction error, with perceptual learning,

explains repetition suppression (e.g. mismatch negativity in electroencephalography)

Psychophysiology:

Accounts for the behavioural correlates of these

physiological phenomena

For example, priming and global precedence. In cognitive terms, it furnishes a

framework in which to model and understand things like perceptual categorisation,

temporal sequencing and attention
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First, free-form approximations do not scale. For example,
to represent a face with thirty or so attributes, we would
need to populate a thirty-dimensional perceptual state-
space with more neurons (i.e. particles or basis functions)
than are in the brain. The argument for free-form approxi-
mations is that they can encode complicated (e.g. multi-
modal) recognition densities. However, it is trivial to
represent non-Gaussian forms under the Laplace approxi-
mation by using a nonlinear transformation of variables.
For example, scale-parameters (e.g. precisions or rate
constants) can be modelled with a log-normal distribution
(this is generalised to w-normal forms in Table 2). Further-
more, there is no electrophysiological or psychophysical
evidence to suggest that the brain can encode multimodal
approximations: indeed, with ambiguous figures, the fact
that percepts are bistable (as opposed to bimodal and
Table 2. Probabilistic neuronal codes, based on Box 2 in Ref. [23]

Code Forma C

Free-form

population

codes

Particle continuous
R
ðs-cÞnqðsÞds ¼ 1

N

P
i ðmi � cÞn T

o

Convolution continuous qðsÞ ¼ 1
ZðmÞ

P
i mi’i ðSÞ q

fi

Probabilistic continuous qðsÞ ¼ 1
ZðmÞ

Q
i

expð’i ðsÞÞ’i ðsÞmi

mi !
T

a

Fixed-form Explicit discrete qðs ¼ siÞ ¼ 1
ZðmÞ ðmi þ ci Þ M

t

Logarithmic discrete qðs ¼ siÞ ¼ 1
ZðmÞ ðexpðmiÞ þ ciÞ M

l

w - Normal or Laplace

continuous

qð’ðsÞÞ ¼ 1
ZðmÞexpð� 1

2
mT PðmÞmÞ T

i
aNeuronal activity encodes an approximate conditional or recognition density, qðsÞ, on

function or normalising constant, w(s) is some analytic nonlinear function of the states
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stable) suggests the recognition density is unimodal.
Althoughmultinomial approximations and hiddenMarkov
models have an appealing simplicity (andmap to empirical
studies of categorization and decisions [17]) they cannot
represent dependencies among states [26]. By contrast, the
Laplace approximation can handle continuous and corre-
lated states efficiently; it is particularly efficient because
the recognition density is specified completely by its mean:
the only other sufficient statistic (the conditional precision)
can be derived from the mean and does not need to be
encoded explicitly [27].

Having said this, there are some nice formal conver-
gences among recognition schemes under different distri-
butional approximations. For example, in hierarchical
Bayesian models based upon hidden Markov models
[25], belief propagation appeals to predictive coding. In
omments Refs

he moments of q(s) are encoded by the sample moments

f N ‘particles’ or neurons.

[9,48]

(s) is encoded as a mixture of basis functions ’iðsÞ with

xed location and form (cf, tuning curves).

[6,49]

his example of a PPC or probabilistic population code

ssumes neuronal variability is independent and Poisson.

[24,26,50]

ultinomial code, where neuronal states are proportional

o the probability of the cause encoded by each state.

[51]

ultinomial code, where neuronal states represent the

og-probability; this subsumes log-likelihood ratio codes.

[17,25,52]

he mean is encoded explicitly and the precision PðmÞ
mplicitly, as a function of the mean.

[10,11,19]

states of the world s ¼ fx ; vg, in terms of sufficient statistics, m. Z(m) is a partition

and c is a constant.
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probabilistic population codes [24] precision is encoded by
gain, through Poisson-like neuronal activity; whereas it is
encoded by synaptic gain under the Laplace approxi-
mation [11].

Attention and precision

Under hierarchical models of perception, it is necessary to
optimise the relative precision of empirical (top-down)
priors and (bottom-up) sensory evidence. Neurobiologi-
cally, this corresponds to modulating the gain of error-
units (Box 3); in other words, synaptic gain control of the
sort invoked for attention. This optimisation is crucial for
inference and is like estimating the standard error (inverse
precision) in a t-test: the importance of representing pre-
cision is even more crucial in hierarchical inference
because it controls the relative influence of prior expec-
tations at different levels. This seems a natural way to
understand attention and accounts for attentional modu-
lation of local competition [28] and contrast gain [29]. In a
hierarchical context, it also accommodates functionalist
perceptiveness such as feature integration [30]. Mechan-
istically, the role of cholinergic neurotransmission in mod-
ulating post-synaptic gain (and encoding precision) fits
comfortably with its role in attention [14,31,32].

When I hear attention is ‘taking possession by the mind,
in clear and vivid form, . . .’ [33], I think ‘No it’s not; attention
is simply the process of optimising precision during hier-
archical inference’. This might not have the poetry of Jame-
sian formulations but it helps understand the simplicity of
attention and its necessary role in perception.

In short; attention might not be the ‘selection’ of sensory
channels but an emergent property of ‘prediction’; where
high-precision prediction-errors enjoy greater gain.

Value-learning, motivational salience and precision

Many treatments of behaviour and choice under uncer-
tainty borrow from behavioural economics, control
theory and dynamic programming (e.g. Refs [34–39]) to
model optimal decision making and reinforcement learn-
ing. These formulations are united by the notion of loss,
reward or utility that guides behaviour to maximise
Box 4. Questions for further research

What is the computational role of neuromodulation?

Previous treatments suggest that modulatory neurotransmitters have

distinct roles; for example. ‘dopamine signals the error in reward

prediction, serotonin controls the time scale of reward prediction,

noradrenalin controls the randomness in action selection, and

acetylcholine controls the speed of memory update’ [53]. This

contrasts with a single role in encoding precision above. Can the

apparently diverse functions of these neurotransmitters be under-

stood in terms of one role (encoding precision) in different parts of the

brain?

Can we entertain ambiguous percepts?

Although not an integral part of the free-energy principle, we claim

the brain uses unimodal recognition densities to represent one thing

at a time. Although, there is compelling evidence for bimodal ‘priors’

in sensorimotor learning [54], people usually assume the ‘recogni-

tion’ density collapses to a single percept, when sensory information

becomes available. The implicit challenge here is to find any

electrophysiological or psychophysical evidence for multimodal

recognition densities.
value or expected reward in the future. The biological
substrates of value-learning have focussed on the dopa-
minergic system [40]. So what does free-energy bring to
the table? It brings something quite fundamental; it says
that loss is surprise (or a free-energy that bounds sur-
prise) and that expected loss is expected surprise or
entropy (or a path-integral of free-energy that bounds
entropy). This is important because the quantities opti-
mised by action under value-learning are exactly the
same as those optimised by active sampling under the
free-energy principle. This means the notion of value per
se is redundant and that much of reinforcement and
procedural learning can be recast in terms of active
inference.

Recent developments provide compelling proof-of-prin-
ciple that active sampling can be used to solve quite
complicated problems in optimum control, without the
use of value-learning (e.g. the mountain car problem
[5]). The basic idea is to replace value-functions with prior
expectations about sensory trajectories. Action then
ensures prior expectations are met and desired states
are frequented. Optimal priors are induced by perpetual
learning in a training environment. This resolves two key
problems with value-learning: it enables optimal control
without access to hidden states of the world and circum-
vents the (intractable) problem of solving for the value-
function. Crucially, this approach points to a central role
for dopamine in both learning and prosecuting optimum
behaviour. This is because action is only called on to
explain away prediction errors, when predictions are pre-
cise; the absence of precise priors (low dopamine) leads to
small prediction errors and poverty of action (bradykinesia
seen in Parkinson’s disease and with neuroleptics). (See
Ref. [5] for details.)

This perspective could call for a reappraisal of the role of
dopamine. If dopamine encodes precision through its clas-
sical neuromodulatory actions, how can this be reconciled
with the conventional view [37,40] that it encodes predic-
tion error on reward? The answer could be that dopamine
might not encode the ‘prediction error on value’ but the
‘value of prediction error’ (the learning rate in Rescorla-
Does avoiding surprise suppress salient information?

No; a careful analysis of visual search and attention suggests that:

‘only data observations which substantially affect the observer’s

beliefs yield (Bayesian) surprise, irrespectively of how rare or

informative in Shannon’s sense these observations are’ [55]. This is

consistent with active sampling of things we recognize (to reduce

free-energy). However, it remains an interesting challenge to formally

relate Bayesian surprise to the free-energy bound on (Shannon)

surprise. A key issue here is whether saliency can be shown to depend

on top-down perceptual expectations (P. König, personal commu-

nication).

Which optimisation schemes does the brain use?

We have assumed that the brain uses a deterministic gradient descent

on free-energy to optimise action and perception. However, it might

also use stochastic searches; sampling the sensorium randomly for a

percept with low free-energy. Indeed, there is compelling evidence that

our eye movements implement an optimal stochastic strategy [56]. This

raises interesting questions about the role of stochastic searches; from

visual search to foraging, in both perception and action.
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Wagner models); where value ‘is’ precision or incentive
salience [41,42].

In short; goal-directed behaviourmight not be the ‘selec-
tion’ of responses but an emergent property of ‘prediction’;
in which high-precision predictions seem to have greater
motivational salience and control over action.

If these ideas are right (Box 4), they speak to a pleasing
symmetry between the role of dopamine in optimising
precision in anterior (e.g. mesocortical and mesolimbic)
systems trying to predict proprioceptive and interoceptive
sensations (i.e. value-learning) and the role of acetyl-
choline in optimising hierarchical inference on extrocep-
tive input in posterior (e.g. paralimbic and parietal)
systems (i.e. attention) [43–45]. Furthermore, they sit
comfortably with a gating role for dopamine [46] in select-
ing the percepts that guide action [47].

Conclusion
In conclusion, the free-energy principle might provide a
comprehensive account of how we represent the world and
come to sample it adaptively. Furthermore, it provides a
mathematical specification of ‘what’ the brain is doing; it is
suppressing free-energy. If this uses gradient descent, one
can derive differential equations that prescribe recognition
dynamics that specify ‘how’ the brain might operate. The
ensuing representations are used to elaborate prediction
errors, which action tries to suppress by moving sensory
epithelia to sample expected input. In this way, changes in
synaptic activity, connectivity and gain can be understood
as perceptual inference, learning and attention. The form
of this optimisation suggests some specific attributes of
neuronal responses, which look very much like empirically
evoked responses, plasticity and neuromodulation.
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