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brain and functional MRI. The latter has been informative due to 
its superb localizing power and its exquisite capability to record the 
dynamics of neuronal population activity across the entire brain 
and to hence capture large-scale functional connectivity patterns. 
Yet, for instance when addressing temporal properties as below, 
limitations of hemodynamic signals will lead us to also discuss elec-
trophysiological findings as well as observations relying on invasive 
procedures that cannot usually be applied in human subjects.

The Temporal sTrucTure of ongoing brain acTiviTy
One of the most prominent features of ongoing activity is the fact 
that it fluctuates over time. This in itself can give rise to interest-
ing speculations regarding function. If one thinks of a car engine, 
where such behavior would be functionally deleterious, one might 
wonder whether, and if so how, such fluctuations can be associated 
with a functional benefit (McDonnell and Abbott, 2009). Let us first 
consider the formal properties of these temporal fluctuations.

Ongoing human brain activity recorded by local electrocorti-
cography (Freeman et al., 2000) shows a power law scaling but also 
an embedding of discrete peaks reflecting band-limited oscillatory 
activity. Interestingly, power in these distinct frequency bands is in 
turn also modulated over time with a predominance of very slow 

inTroducTion
Our review is based on the premise that – just as man-made architec-
tures (and probably even more so) – the nature of biological systems 
is best understood by jointly considering their form and function. 
We will attempt to apply this view to ongoing brain activity. Our 
review of the form of ongoing or “spontaneous” brain activity will 
cover its temporal and spatial structure. Instead of attempting to 
be exhaustive in this respect, we will selectively emphasize some 
aspects mainly for two reasons; first, because we feel they may be 
under-represented in a field that is currently dominated by the 
notion of “resting state networks”; second, because we feel that 
these aspects are helpful when pondering the function of ongoing 
activity. In the second part of our review, function will then be the 
theme developed in more detail. We will focus on cognitive conse-
quences of ongoing activity fluctuations, for the simple reason that 
they permit the most direct probes of functional significance for 
a phenomenon that is no longer fully “spontaneous” when bound 
into a context so as to measure function. Across this analysis of form 
and function we will then discuss how one theoretical framework, 
that of “free energy” introduced by one of us (Friston, 2005), may 
provide important clues for understanding the nature of ongoing 
brain activity. Our review will mainly concentrate on the human 
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also focused on the only paradigm which permits an apparently 
unambiguous assignment of signal variations to ongoing brain activ-
ity; namely, the “resting state”. Despite concerns about contributions 
from technical and physiological noise, the rationale of these so-
called resting-state functional connectivity studies has been validated 
by concurrent electrophysiological recordings. In particular, it has 
been established that slow fluctuations in power of band-limited 
oscillations can be directly linked to the ongoing activity fluctuations 
observed with fMRI (Shmuel and Leopold, 2008) and involve similar 
distributed spatial structures (Laufs et al., 2003).

With this functional imaging approach, it is now well established 
that spontaneous brain activity fluctuations are spatially organized 
into a largely reproducible structure. The emphasis in a (large) lit-
erature, whose review is beyond the scope of this article, has been 
to define anatomically such resting-state or intrinsic functional 
connectivity networks (ICNs). We will adopt the latter terminology 
because there is reason to believe that similar correlational structures 
persist even when subjects are exposed to vivid sensory stimulation 
(Golland et al., 2007). The definition of ICNs revolves essentially 
around two issues, that of constituent regions and that of boundaries. 
And this definition has relied on two approaches, one hypothesis-
driven as exemplified in analysis of functional connectivity with a 
so-called seed region (e.g., Biswal et al., 1997; Greicius et al., 2003), 
the other data-driven as exemplified by independent component 
analyses (e.g., Beckmann et al., 2005). The ultimate goal of these 
analyses is to derive an anatomical segregation from the recordings of 
ongoing brain activity fluctuations. Notwithstanding a great degree 
of convergence and robustness across many different laboratories, 
both of these approaches have proven to be heavily influenced by 
user-dependent settings. What such settings usually express is the 
user’s expectation regarding the degree of modularity in ongoing 
brain activity. While some laboratories emphasize big dichotomies 
(e.g., Fox et al., 2006b; Golland et al., 2008), others seek to establish 
a fine-grained differentiation (e.g., Margulies et al., 2007).

In this context, we would like to emphasize that the actual data 
structure does not suggest clear-cut modularity but only a gradual 
differentiation. The reason for such graded modularity is that the 
correlational structure of ongoing activity is bound together in a 
hierarchy. This structure is probably best thought of as a tree with 
the underlying activity correlations displaying a hierarchy from glo-
bal to local levels (Ferrarini et al., 2009). These levels of organization 
range from the entirety of gray matter as the trunk, over systems 
of regions as the branches to within-region correlations as the foli-
age (Marrelec et al., 2008; Meunier et al., 2009). In fact, the strong 
presence of variance shared across all local levels and reflected in 
global gray matter (Schölvinck et al., 2010) correlation has led to 
considerable confusion regarding the degree of diversification or 
antagonism that can be observed across different ICNs (Fox et al., 
2009; Murphy et al., 2009). ICNs can be considered a mid-level 
cross-section of this hierarchical tree where regions within an ICN 
share a lot of variance and where this variance is sufficiently distinct 
from that expressed in other ICNs to draw a separating line. As 
a function of whether one emphasizes similarity or distinctness 
of local variations in ongoing activity, data-driven analyses will 
produce quite different numbers of ICNs (e.g., Varoquaux et al., 
2010). In our metaphor, this corresponds to the distance of the 
cross-section from the ground.

frequencies (Leopold et al., 2003; Nir et al., 2008). Descriptively, it 
has been shown that there is a coupling or nesting of the higher-
frequency electrical activity into the infra-slow (usually defined as 
<0.1 Hz) fluctuations (Vanhatalo et al., 2004; He et al., 2010) but 
the  mechanisms and directionality of this relation are not yet fully 
understood. Studies comparing invasive electrophysiological record-
ings with functional neuroimaging results have obtained evidence 
of coupling between hemodynamic signals and both slow cortical 
potentials (He et al., 2008) as well as power of high-frequency band-
limited activity, both evoked and spontaneous (Nir et al., 2007; Shmuel 
and Leopold, 2008).

We conclude from these observations that the temporal proper-
ties of ongoing activity can serve to warn us against a preoccupa-
tion with the “millisecond range” when studying brain function. 
Yet, assuming a conservative stance, we also conclude that there 
is currently no reason for a rebound into a view where infra-slow 
fluctuations in a specific frequency range could be considered a 
distinct entity of neural processes, other than those active in the 
processing of, for instance, sensory events. Studies using fMRI 
have established an apparent predominance of slow fluctuations 
in ongoing brain activity but there are several caveats to be borne in 
mind. First, the issue of whether the actual neural activity reflected 
in the hemodynamic signals shows power law scaling as in electri-
cal recordings is still being debated (Cole et al., 2010). It is certain 
that the low pass filter characteristics of hemodynamic signals only 
permit tracking of slow neural activity modulations, cutting off 
little above the range of the infra-slow frequencies. And there are 
additional concerns related to the fact that – in spite of quantitative 
differences – even “BOLD signal” variations from a water phantom 
can readily manifest power law scaling due to properties of the 
MRI scanner (Zarahn et al., 1997; but see also Fox et al., 2007). It 
has also not been established that the spatial pattern of functional 
connectivity depends on the temporal scale under consideration, 
other than obvious effects related to signal power.

Together, we suggest thinking of the presently available evidence 
as an indication that brain activity over time may display at least 
partially scale-invariant characteristics. Such pink noise or power 
law scaling is not a privilege of the brain or even of biological systems 
but a feature of many if not all complex systems (Mandelbrot, 1998). 
Its ubiquitous presence does not denigrate its importance though. 
Regarding the brain, several researchers have emphasized the impor-
tance of this temporal structure for endowing neural processes with 
an inherent long-term memory (Linkenkaer-Hansen et al., 2001; 
Buzsáki, 2006). The memory function in this view does not reside in 
a specific frequency range but merely has a holistic pattern. However, 
for an alternative opinion and a more differentiated discussion of 
these issues we refer readers to a recent review by Raichle (2010).

The spaTial sTrucTure of ongoing brain acTiviTy
Our main point in the previous section was to review the literature 
that safeguards us against a temporal “segregationist” view. We believe 
that there is a similar danger in the spatial domain. The reason why 
many laboratories have focused on infra-slow fluctuations is that 
due to their power and their at least partial distinctness from other, 
namely “noise” signal sources in functional neuroimaging, these 
fluctuations have proven useful for studying the spatial structure 
of ongoing brain activity. Such functional connectivity studies have 
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similar to what we emphasized in the temporal domain, ongoing 
activity variations also show a nested structure in the spatial domain 
that expresses an embedding of modularity into a hierarchy.

The funcTion of ongoing brain acTiviTy
funcTional connecTiviTy, sTrucTural connecTiviTy and 
cogniTive conTexT
The difficulties in adequately capturing the spatiotemporal form 
of intrinsic brain activity that we have discussed in the previous 
section should not be thought of as mere empty battles of nomen-
clature. This form is important when pondering the function of 
intrinsic activity, and any proposal with respect to this function 
will be benchmarked against its potential for accounting for this 
spatiotemporal structure. The perspective that we have proposed 
in the previous section for functional connectivity is reminiscent 
of descriptions of structural brain connectivity and we have already 
appealed to these similarities in the tree metaphor (Bullmore and 
Sporns, 2009). A hypothesis about what determines the form of 
ongoing brain activity that ensues is that intrinsic functional con-
nectivity simply reflects some neural “noise” that plays out on a 
non-random structural connectivity; and therefore takes on the 
shape of a limited set of spatial patterns (i.e., dynamics on struc-
ture). Indeed, computational simulations of functional connec-
tivity using noisy input generate functional covariance patterns 
that reflect underlying structural circuitry (Sporns et al., 2000). 
And empirical evidence has been reported showing strong cor-
respondence of intrinsic functional and anatomical connectivity 
(Skudlarski et al., 2008; Greicius et al., 2009). In more comprehen-
sive investigations, at the level of the entire brain, this match has 
been confirmed but systematic quantitative analysis also revealed 
that it is not perfect. In other words, structural connectivity permit-
ted only a partial prediction of the empirically observed functional 
connectivity (Honey et al., 2009). Of course, the imperfection in 
predicting functional from structural connectivity could simply 
reflect limitations in the methods applied for data acquisition and 
analysis. Yet, an important alternative hypothesis is that with under-
lying structural connectivity as a backbone functional connectivity 
is shaped by additional context-dependent modulation.

At first glance, this hypothesis seems to be at odds with the per-
sistence of spatial ICN patterns across different levels of context and 
consciousness, from task- and stimulus-induced active states (Fair 
et al., 2007; Golland et al., 2007; Eckert et al., 2008), over resting wake-
fulness (Greicius et al., 2003; Fox et al., 2005; Fransson, 2005), light 
and deep sleep (Horovitz et al., 2007, 2009; Nir et al., 2008), light seda-
tion (Greicius et al., 2008), to deep anesthesia in monkeys (Vincent 
et al., 2007) and severe disorders of consciousness as in vegetative state 
patients (Boly et al., 2009). Furthermore, the finding of robust intrinsic 
activity patterns in the absence of consciousness also suggests that 
intrinsic activity fluctuations cannot be considered merely or entirely 
the neural correlates of conscious, mentation or mind-wandering that 
in the absence of an explicit task paradigm simply remains experi-
mentally uncontrolled (Buckner and Vincent, 2007).

However, evidence in favor of the hypothesis that ongoing brain 
activity is in fact context-sensitive has now been accumulated by a 
range of studies. Although functional connectivity patterns persist 
qualitatively across wide ranges of different functional contexts, 
as mentioned above, they do nonetheless express quantitative 

As a consequence of the hierarchical organization of ongoing 
activity, raising the level of cross-section higher from the ground 
will yield more fine-grained subdivisions of networks both at 
anatomical and functional connectivity levels. As an example, 
the postero-medial part of the most extensively studied ICN, the 
default-mode network, has recently been subdivided into three pre-
cuneus parts and a posterior cingulate part on the basis of distinct 
large-scale intrinsic connectivity patterns, each of which suggest 
different functional roles (Margulies et al., 2009). Another example 
involves the difficulty in anatomical and functional definition of 
the so-called “task-positive” system. An initially useful step was 
to distinguish the “task-negative” default-mode ICN from “task-
positive” regions, the latter referring to a large set of regions showing 
activation in most types of cognitive paradigms (Fox et al., 2005). 
Using seed regions in the dorsal attention network, the resulting 
intrinsic connectivity system was not confined to the dorsal atten-
tion system as defined in paradigm-based studies (Corbetta and 
Shulman, 2002) but due to shared variance also included anterior 
insula/frontal operculum, anterior prefrontal cortex, and infero-
lateral parietal and frontal areas. These additional areas partially 
overlap with an added ICN, termed the fronto-parietal control 
system conceptualized to serve cognitive control (Vincent et al., 
2008). Conversely, other studies dissected cognitive control func-
tions into two distinct ICNs, a cingulo-insular-thalamic and a lat-
eral parieto-frontal network for sustained vs. adaptive/executive 
cognitive control, respectively (Dosenbach et al., 2006, 2007; Seeley 
et al., 2007). These findings clarify that the hierarchically embedded 
levels of spatial structure in intrinsic connectivity range down to 
sub-network and ultimately sub-region correlations. In fact, albeit 
on a different temporal scale, such patterns can even be recovered 
within single areas, and align with their mesoscopic functional 
architecture (Kenet et al., 2003).

Over and above the issue of modularity, defining ICNs in terms 
of anatomical boundaries has also proven difficult. This difficulty 
is largely due to the fact that “networks” are not clear-cut and rigid 
sets of constituent regions. Rather, the term “network” should be 
thought of as a gradual clustering according to a similar activity 
profile. As such, this term can of course help to interpret, commu-
nicate and compare experimental results but should not mislead 
to consider networks as strictly segregated. The spatial patterns 
are susceptible to precise positioning of seed regions and it has for 
instance been demonstrated that there are fairly smooth transi-
tional zones between ICNs (Cohen et al., 2008). Even though some 
of these difficulties may be due to the intrinsic spatial smoothness 
of hemodynamic signals rather than underlying neural architecture, 
such observations may account for observed discrepancies. With 
respect to the task-positive regions however, these difficulties also 
stem from the existence of an ensemble of several interconnected 
task-positive ICNs. Accordingly, the labeling issue becomes most 
critical for connection hubs such as the anterior insula (Sterzer and 
Kleinschmidt, 2010) which has been suggested to orchestrate activ-
ity across different ICNs (Sridharan et al., 2008). In addition to the 
ICNs discussed above, the anterior insula has also been character-
ized as a major node in a right-lateralized ventral attention system 
(Eckert et al., 2008). This latter system (Fox et al., 2006b) in turn 
widely overlaps with the aforementioned control systems, especially 
the lateral fronto-parietal subsystem. Together, we conclude that 
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in ongoing activity can account for behavioral variability. From the 
previous sections we can derive the following predictions for such 
an account: (1) ongoing activity should affect behavior with a time 
constant that is sufficiently slow to be captured by  hemodynamic 
signals. (2) The spatial pattern within which ongoing activity affects 
behavior should be context-dependent and should be detectable 
precisely at that position within a hierarchical structure that best 
matches the functional demands of a given context. In the fol-
lowing, we review evidence for both predictions from recent neu-
roimaging studies.

Two lines of earlier research suggested that there might indeed 
be a link between ongoing activity fluctuations and behavioral vari-
ability. One is that behavioral performance when repeating the same 
task over and over again shows fluctuations with a qualitatively 
similar temporal profile as ongoing activity, i.e., high power at 
low frequencies (Gilden, 2001). The other is that neural responses 
evoked by identical stimuli fluctuate over time. The latter effect 
has been very explicitly tied to ongoing activity fluctuations by 
examining the dependence of evoked response variations on trial-
by-trial fluctuations of pre-stimulus activity levels. In an influential 
study, Arieli et al. (1996) investigated ongoing and stimulus-evoked 
activity with concurrent optical and electrophysiological methods 
in anesthetized cats. They found that variability of evoked responses 
could be largely accounted for by the initial level of ongoing activ-
ity just prior to stimulus onset. Their data show a linear relation-
ship between ongoing activity immediately before stimulation 
and evoked activity levels. Simply adding the averaged stimulus-
related activity increment to the pattern of ongoing activity in an 
individual trial provided an excellent prediction of the actually 
measured activity level during the evoked response in that trial. 
Recently, several functional neuroimaging studies have not only 
revisited this issue but also established links between neural and 
behavioral variability.

Functional imaging findings
At a very different spatial and temporal resolution than Arieli 
et al., Fox et al. (2006a) made a similar observation using fMRI. 
They found that trial-to-trial variability of finger movement-
related activity in motor cortex could be largely accounted for 
by ongoing activity fluctuations measured in the contralateral 
motor cortex, the one ipsilateral to the finger that was moved 
(Figure 1). Their clever approach tackled the problem that the 
relative contribution of ongoing and task-related activity can-
not be separated by analyzing activity in the task-relevant region 
during the evoked response. By removing trial by trial the simul-
taneously recorded activity level in a region that belongs to the 
same ICN but was not engaged by the task from the signal in the 
task-relevant region they “cleaned away” the ongoing and retained 
the evoked component.

From the perspective of data analysis in functional imaging, 
this procedure is very attractive. It suggests that averaging across 
trials provides a good way for estimating a veridical evoked activity 
change, the response, and that the latter shows little if any variability. 
And removing the variability related to ongoing activity and hence 
tightening the residual variability of the evoked response estimate 
yields a clear-cut gain in statistical sensitivity. Yet, the same group 
established in a subsequent study that the trial-by-trial variability 

changes. They differ for instance quantitatively between the healthy 
awake brain and the brain in a state of pathological unconscious-
ness, where functional connectivity within the so-called default-
mode network decreases with the degree of consciousness; across 
minimally  conscious state, vegetative state and ultimately coma 
(Vanhaudenhuyse et al., 2010). They also differ quantitatively in 
the healthy brain between wakefulness and deep (slow-wave) sleep, 
a state of physiological unconsciousness (Horovitz et al., 2009). It 
is noteworthy that the reduction in connectivity between posterior 
and frontal areas of the default-mode network during sleep is ana-
tomically selective, and that fluctuation amplitudes within regions 
remain unchanged. This result makes it unlikely that modulations 
in intrinsic connectivity simply reflect a change of noise levels 
propagating through an anatomically connected system.

And even during the state of wakefulness (and on a shorter time 
scale) intrinsic connectivity patterns express differences that can 
be related to recent cognitive experience. Over the course of one 
scanning session, i.e., a time span that in all likelihood does not 
involve gross structural connectivity changes, adaptive modulation 
of intrinsic functional connectivity has been reported after visuo-
motor learning (Albert et al., 2009), episodic memory (Tambini 
et al., 2010) and language tasks (Waites et al., 2005; Hasson et al., 
2009). These findings show that functional context interacts 
with the expression of intrinsic activity and thus motivates fur-
ther experimental investigation of the functional significance of 
 intrinsic activity.

A common critique of these latter studies is that they might 
collapse “true intrinsic” activity with reverberating traces of previ-
ous cognitive experience. Of course, the same critique holds for 
“pure” resting-state studies during wakefulness, because they at 
least include task-unrelated mind-wandering that constitutes an 
ongoing cognitive content (Mason et al., 2007; Christoff et al., 
2009) and by its very nature cannot be considered to lack context. 
The only way to dissociate “true intrinsic” activity from more spe-
cifically context-related neural processes would be if there were 
spatiotemporal hallmarks selectively tagging intrinsic activity. Our 
review of its temporal and spatial form, however, suggests, at least 
to us, that no such properties can currently be identified with 
confidence. Alternatively, one may question whether such disso-
ciation is inevitably justified and necessary and this leads one to 
consider the actual function of ongoing activity. We propose that 
its function is intimately related to cognition, and this relation is 
inherent to the brain, be it in a “resting” or active state. This pro-
posal could seem at odds with the studies that we have discussed 
above and that show qualitative spatial correspondence between 
ICNs across very different functional brain states. But it is as true 
that ICNs strongly resemble spatial patterns with sets of regions 
that typically co-activate (or deactivate) in cognitive activation 
studies as a function of the paradigm (Smith et al., 2009). We 
therefore argue that function cannot be assigned purely on the 
basis of spatial patterns.

cogniTive consequences of sponTaneous acTiviTy 
flucTuaTions
In this section, we review a different way of addressing the function 
of ongoing activity. In this approach, the functional consequences 
of ongoing activity are assessed by studying whether fluctuations 
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“task-positive” behavior in a wide range of cognitive task settings 
(Corbetta et al., 2002; Smith et al., 2009). Conversely, on trials 
where subjects missed the threshold stimulus, pre-stimulus activity 
levels were higher in posterior cingulate (PCC), parahippocampal 
and lateral parietal components of the default-mode network. This 
latter network is known to show deactivation or “task-negative” 
behavior in most task settings (Gusnard and Raichle, 2001).

Taken together, these observations could further support a sim-
ple dichotomy in which higher ongoing activity in “task-positive” 
brain networks would facilitate perceptual performance whereas 
higher activity levels in the default-mode network would degrade 
performance. A recent study speaks against the generality of this 
scenario by showing that functional context determines in which 
brain regions ongoing activity will affect perceptual perform-
ance and whether this will be a facilitating or detrimental effect 
(Sadaghiani et al., 2009). In a free-response, auditory detection task, 
we presented broad-band noise stimuli in unpredictable intervals 
of 20–40 s and at individual detection threshold. Subjects pressed a 
button whenever they perceived the target sound. Successful detec-
tion as compared to misses was preceded by significantly higher 
pre-stimulus activity in early auditory cortex (Figure 3A) as well 
as in two ICNs. Perceptual performance was better with higher 
pre-stimulus activity in a network comprising thalamus, anterior 
insula and dACC, which suggests a role for this ICN in maintain-
ing alertness and task-set (Figure 2A). Conversely, and counter 
to common intuition, higher baseline activity in the dorsal atten-
tion system of parietal and frontal areas biased towards misses 
(Figure 2B) presumably expressing the lack of spatial connotation 
in our stimulus and task. The observation of opposite effects in 
these two task-positive ICNs shows that in spite of shared variance, 
the networks are sufficiently segregated to exert independent influ-
ences on perceptual outcome. And finally, higher baseline activity in 

in task-related motor cortex activation was functionally meaningful 
and translated into behavioral variability as measured by the force 
that subjects applied in different trials when pressing a response 
button (Fox et al., 2007). In other words, the aforementioned 
 procedure of removing inter-trial variability, albeit attractive from 
a signal processing perspective, is far less tempting for that line of 
research which seeks to establish neural correlates of behavior.

From a methodological point of view, a limitation of the afore-
mentioned approach is that it is grounded in the assumption that 
motor cortex ipsilateral to the moving finger is silent in this para-
digm. Indeed, distal upper limb movements are represented almost 
exclusively contralaterally but with greater force they involve co-
innervation of more proximal musculature, which in turn is repre-
sented more bilaterally in motor cortex (reviewed in Kleinschmidt 
and Toni, 2004). Other groups have therefore explored alternative 
approaches to the issue of whether ongoing activity fluctuations 
are functionally relevant. Instead of using simultaneously recorded 
signal in a region that belongs to the same ICN but is silent in a 
task context, several groups have taken pre-stimulus signal in the 
same region that will subsequently respond to a given stimulus as a 
measure of ongoing activity. This approach is hence similar to the 
one adopted by Arieli et al. (1996) but on a different time scale.

Boly et al. (2007) investigated the perceptual impact of pre-
stimulus activity fluctuations in a somatosensory detection task. For 
somatosensory stimuli close to perceptual threshold pre-stimulus 
activity levels in large distributed systems resembling ICNs indicated 
whether or not a stimulus was perceived on a given trial. The system 
biasing towards perceiving the stimulus comprised the thalamus, 
dorsal anterior cingulate cortex (dACC) and anterior insula/infe-
rior frontal gyrus, as well as parieto-frontal areas including intra-
parietal sulcus and dorso-lateral prefrontal cortex. As discussed 
in the previous section, these areas commonly show activation or 

FIguRe 1 | Ongoing activity fluctuations account for variability in 
trial-to-trial evoked responses. Subjects pressed a response button with their 
right hand at long intervals (>14 s) in response to visual indication. (A) Left, i.e., 
task-invoked motor cortex; (B) right motor cortex; (C) left motor cortex after 
removal of activity from right motor cortex. Each curve corresponds to the raw 
time course of one trial for the same individual subject. The thick orange line 

represents the respective best-fit gamma function. The event-related activity in 
left motor cortex showed high trial-to-trial variability. Strong variability was 
likewise observed in the spontaneous activity in the other, i.e., right hemisphere 
and could account for a major portion of variance of the left hemispheric evoked 
responses on a trial-by-trial basis. Reprinted from Fox et al. (2006a) with 
permission from Nature Publishing Group.
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between two closely matched alternatives, generic contributions 
from ICNs become less important and that a pre-stimulus effect 
might only be detectable in a single task-relevant region (rather 
than throughout the entire network to which this region belongs). 
In this case, it would be purely local variations in activity and not 
those throughout a distributed system that would exert an influence 
(cf. previous section on hierarchical structure of ongoing activity). 
Such a mechanism would make it mandatory to estimate ongoing 
activity from pre-stimulus signal in the task-relevant region instead 
of from simultaneous signal in a reference region of the same ICN. 
Evidence for such a scenario has been provided by two separate but 
closely related experiments.

In a perceptual decision task on Rubin’s ambiguous vase-faces 
figure, subjects had to report on each trial whether they perceived 
the vase or the two faces in profile. The presentation of the stimuli 
was sparse at long and variable intervals (range 20–50 s), and the 
stimuli were presented only briefly (Hesselmann et al., 2008b). 
Subjects reported face percepts on approximately half of the trials 
and vase percepts on the other trials. Higher pre-stimulus activ-
ity levels in the right fusiform face area (FFA), a region special-
ized for face processing, were found to bias towards the percept 
of faces rather than a vase (Figure 3B). This finding was later rep-
licated in the domain of visual motion perception (Hesselmann 
et al., 2008a). In this study, short events of random dot motion 
with near-threshold coherence levels were presented, and subjects 
indicated on each trial whether they perceived coherent or ran-
dom motion. Here, subjects’ perceptual decisions were biased by 

the precuneus/PCC region of the default-mode network preceded 
hits, which in turn yielded a biphasic response with a “task-positive” 
activation component preceding the typical but delayed deactiva-
tion (Figure 2C). At first glance, this finding might appear at odds 
with the existing literature but it probably reflects the importance 
of retrieving a memory template of the target for successful per-
formance on the continuous sensory input (Shannon and Buckner, 
2004; Daselaar et al., 2009).

Thus, in the context of a non-localized and non-semantic 
auditory stimulus and a task that depends on recognition mem-
ory but not spatial attention, the usual effects from activity in 
default-mode and dorsal spatial attention systems were reversed. 
Of note, the time courses of pre-stimulus effects in these two 
networks were very distinct, making it unlikely that signal change 
in one was simply (epiphenomenally) mirrored by that in the 
other. In other words, these opposite effects were presumably 
independent of one another rather than reflecting a hard-wired 
antagonism between these two ICNs that others have claimed 
based on the observation of intrinsic anticorrelation (Fox et al., 
2005). These findings highlight that context determines the influ-
ence ongoing fluctuations exert on stimulus processing and ulti-
mately perception.

It seems fair to posit that where and how ongoing activity fluc-
tuations impact on perceptual decisions depends on which sen-
sory features and cognitive faculties are relevant in a given context. 
Accordingly, one might expect that in perceptual decisions, which 
do not involve an all-or-none success of detection but a choice 

FIguRe 2 | Distributed ongoing activity fluctuations in large-scale ICNs 
impact perceptual performance. (A–C) Subjects performed a free-response 
auditory detection task (cf. Figure 3A). The pre-stimulus BOLD signal (dotted 
vertical line marking stimulus onset) from three ICNs (rendered on a canonical 
inflated cortical surface) was examined as a function of perceptual outcome. Hits 
were preceded by significantly higher pre-stimulus activity in the tonic alertness 

ICN (A) as well as the default-mode ICN (C) while higher pre-stimulus activity in 
the dorsal attention ICN (B) foreshadowed misses. Error bars represent standard 
error across subjects. Adapted with permission from Sadaghiani et al. (2009). For 
comparison with a somatosensory threshold detection task please cf. Figure 2 in 
Boly et al. (2008). This figure was not reprinted here due to fees requested by the 
publisher John Wiley and Sons for reprint permission.
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ing such observations in EEG frequency bands to the infra-slow 
frequency range covered by imaging studies comes from work by 
Palva and colleagues. They investigated pre-stimulus power fluc-
tuations using full-band EEG sensitive to infra-slow fluctuations 
(<0.1 Hz) in a somatosensory threshold detection task within a 
free-response setting. They found highest detection rates and short-
est reaction times to be associated with intermediate power levels 
(inverse u-shaped relation) of α, β and γ band oscillations over 
sensorimotor cortices, and with highest power of these bands over 
parietal electrodes (Linkenkaer-Hansen et al., 2004). Interestingly, 
in this task setting the phase of infra-slow fluctuations was found to 
be strongly correlated to the power of higher frequencies (1–40 Hz) 
and to be highly predictive of hits and misses on a trial-by-trial basis 
(Monto et al., 2008). Recently, electrophysiological studies have 
not only shown power but also phase of band-limited oscillatory 
activity to affect perceptual performance. For example, trial-to-trial 
variability in perceptual outcome has been related to the phase of 
EEG α and θ band oscillations in visual threshold detection tasks 
(Busch et al., 2009; Mathewson et al., 2009).

The relaTion of ongoing and evoked neural acTiviTy
The above findings are important because they show that across many 
temporal scales variability in ongoing activity – which is commonly 
obscured by normalization to pre-stimulus baseline – contributes to 
the way in which the brain (and ultimately, the observer) responds 
to sensory stimuli. The imaging studies show that the topography of 

pre-stimulus activity levels in right middle temporal cortex (V5/
hMT+), a region crucially involved in the analysis and perception 
of wide-field coherent motion. Specifically, perception of coherent 
motion was preceded by significantly higher ongoing activity in 
V5/hMT+ (Figure 3C). In both experiments, no other task-related 
cortical regions showed a significant link between pre-stimulus 
activity and perceptual outcome.

Electro- and magnetoencephalographic findings
Electro- (EEG) and magnetoencephalography (MEG) studies 
have also established links between ongoing activity and behav-
ior. While less informative in terms of spatial localization, these 
studies have identified distinct oscillation bands that carry signals, 
which predict perceptual performance. Using MEG, Jensen and col-
leagues observed that visual discriminability of a threshold stimu-
lus decreased with an increase in pre-stimulus occipito-parietal α 
band power (van Dijk et al., 2008). Likewise, they reported that 
in a go no-go task false alarms were preceded by higher levels of 
α band power in the occipital cortex and bilateral somatosensory 
cortices (μ rhythm) as compared to correct withholds on no-go 
trials (Mazaheri et al., 2009). Not only responses to natural stimuli 
but also to artificial direct cortical stimulation are influenced by the 
power of ongoing oscillations: Using transcranial magnetic stimu-
lation, phosphene-perception was only induced following lower 
pre-stimulation α amplitudes (Romei et al., 2008), suggesting that 
occipital alpha power indexes cortical excitability. Evidence link-

FIguRe 3 | Local spontaneous variations in ongoing activity of specialized 
sensory regions impact perception. The upper part illustrates the paradigm: 
(A) auditory detection experiment: in a free-response setting subjects detected 
an auditory target stimulus presented at perceptual threshold. (B) Perceptual 
decision on an ambiguous figure: subjects reported either faces or vase 
perception in response to flashes of the faces-vase ambiguous figure.  
(C) Motion decision experiment: random dot motion was presented at motion 
coherence threshold and subjects decided trial by trial whether motion was 
coherent or random. In all experiments, trials followed at long and unpredictable 

intervals. In each experiment, the pre-stimulus BOLD signal (dotted vertical line 
marking stimulus onset) was examined as a function of perceptual outcome and 
sampled from accordingly specialized sensory areas. The corresponding regions 
of interest (early auditory cortex, FFA and hMT+, respectively) are presented on 
a canonical inflated cortical surface of the right hemisphere. In all experiments, 
higher pre-stimulus time course in the respective sensory region biased towards 
perceiving stimulus properties for which these regions are particularly sensitive. 
Error bars represent standard error across subjects. For more details see 
Hesselmann et al. (2008a,b); Sadaghiani et al. (2009).
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variability of evoked neural and perceptual responses to a single 
stimulus (or a group of equivalent stimuli) (Super et al., 2003; Sapir 
et al., 2005; Thut et al., 2006; Wyart and Tallon-Baudry, 2009). 
Typically, in these paradigms, a cue will appear that can indicate a 
task-relevant location or feature for a stimulus that will be presented 
after a brief but often variable delay. These studies in general try 
to understand which neural mechanisms underpin selective atten-
tion. As behavior and evoked responses are modulated by atten-
tion, variability in a cue-induced anticipatory signal that correlates 
with perceptual performance on the subsequent stimulus can be 
considered a neural signature of preparatory attention. Of course, 
this interpretation does not speak to the mechanism that generates 
this variability in the first place but only suggests that attentional 
preparation is subject to a variability of an unknown origin that is 
behaviorally relevant. The similarity of this conclusion with that 
from the aforementioned studies on spontaneous fluctuations sug-
gests a need for closer examination and comparison.

From our perspective, variability in cortical activity following 
an orientating cue presents a special case and currently remains 
ambiguous. One interpretation could be that this variability is the 
same as that seen in ongoing activity and that the cue will hence be 
more or less efficient, both neurally and perceptually, as a function of 
the state of the system prior to cueing. Another view could be that the 
neural response elicited by the cue could in itself be variable and that 
this variability translates into perceptual performance. As we have 
discussed previously, simply removing the effects of pre-cue baseline 
would not permit arbitrating between these two scenarios, since the 
amplitude of the cue response may be subject to interactions with 
pre-cue activity levels. However, analyses as those reviewed above 
that preserve pre-cue “baseline” signal fluctuations could be used 
to disambiguate the functional nature of cued settings.

Another line of comparison regards the interpretation of 
the cortical signal. If the pre-stimulus signal expresses a level of 
preparatory attention in studies using cues, does this permit the 
conclusion that in studies without cues fluctuations of ongoing 
activity can be thought of as fluctuations in attention? If one were 
to make this claim it would have to survive a couple of benchmark 
checks. The most important one is that evoked responses to tar-
get stimuli should be enhanced by attention. This enhancement 
could reflect anything between a true response gain as implied in 
earlier studies (Chawla et al., 1999) and a simple additive effect of 
fixed stimulus-driven increment in the presence of an increased 
background activity (Sylvester et al., 2009). In both our studies 
addressing signal variations in the absence of cues, however, the 
opposite behavior was found. The higher pre-stimulus signal was, 
the smaller the actual incremental evoked response amplitude in 
regions that were critical to the percept on those trials, i.e., V5/
hMT+ for motion coherence detection (Figures 4A,B) and the 
FFA for face perception (Figures 4C,D).

Predictive coding and free-energy formulations
So how can these observations about intrinsic fluctuations be under-
stood functionally? We will address this under a predictive coding 
account of neuronal activity, given that cues furnish exogenous and 
explicit predictions. In what follows, it is important to realize that 
optimal predictions or expectations rest on two distinct processes. 
The first is predicting the content of a percept (e.g., what caused 

these effects is compatible with a hierarchical view on intrinsic brain 
activity and depends on context. In the two experiments discussed 
above, which involve fairly subtle perceptual decisions, we targeted 
areas that we considered likely to respond more strongly during 
one of the two possible perceptual interpretations of the ambigu-
ous stimuli used. Despite identical sensory input in each experi-
ment, we indeed confirmed that face-percept trials using the Rubin 
stimulus yielded higher evoked FFA responses and coherent-percept 
trials using the dot motion stimulus higher evoked hMT+ responses 
(Figures 3B,C). Together with the aforementioned effects observed 
in pre-stimulus signal these findings could be believed to confirm 
a behavior equivalent to the one in the study by Arieli et al. (1996) 
that we discussed above. In other words, a single stimulus would, 
on each trial, evoke a fixed activity increment which would add to 
the level of ongoing activity encountered on that trial. Variations in 
ongoing activity would then determine perceptual outcome by yield-
ing variations in peak activity that would, or not, pass a threshold 
required for a perceptual decision. By such a mechanism, even a 
simple additive relationship between ongoing and evoked activity 
could become functionally significant (note that we have to call on a 
threshold mechanism – which is by definition non-linear – to make 
a linear effect of ongoing activity functionally interesting).

The important consequence from such a mechanism – that also 
provides an easily testable hypothesis – would be that the relation 
between ongoing and evoked activity should not depend on per-
ceptual outcome because the latter would be determined solely by 
the peak activity of the response. We could reject this hypothesis 
in both experiments by showing a significant interaction between 
evoked and ongoing activity when predicting perceptual outcome. 
Specifically, peak and pre-stimulus activity levels in hMT+ correlated 
less when dot motion was perceived as coherent rather than random 
(Figures 4A,B). Likewise, peak activity levels in FFA were signifi-
cantly less correlated with pre-stimulus signal when subjects per-
ceived faces than when they reported a vase (Figures 4C,D). These 
observations show that the mechanism by which ongoing activity 
affects subsequent perception is independent from the one that can 
be observed during stimulus processing. In other words, the latter 
does not result from a mere passive propagation of effects preceding 
stimulus presentation. The theoretical implications of these findings 
for models of perceptual decision-making have been discussed in 
the respective publications (Hesselmann et al., 2008a,b). Yet, there is 
reason to believe that both linear (e.g., under anesthesia, Arieli et al., 
1996, or in passive viewing, Bianciardi et al., 2009) and non-linear 
interactions can be observed and future work will need to clarify 
which parameters determine the regime under which ongoing and 
evoked activity interact (see Kisley and Gerstein, 1999, for a study 
on changes in linearity as a function of depth of anesthesia).

The naTure of ongoing brain acTiviTy
Comparing spontaneous fluctuations and variability after cueing
We have argued above that ongoing activity is modulated by cog-
nitive context and that spontaneous activity fluctuations can be 
thought of as fluctuations of an internal and predictive contextual 
representation. It therefore appears sensible to compare results from 
such studies with those where context has been explicitly modu-
lated by introducing cues that prepare for an upcoming cognitive 
challenge. Several studies have employed such cues to study the 
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FIguRe 4 | Percept-dependent and non-linear interaction of evoked 
responses with pre-stimulus baseline activity. Percept-dependent linear 
regression was performed between trial-by-trial pre-stimulus activity at −1.5 s 
and peak activity at 6 s relative to stimulus onset. For two independent 
experiments, the regression is illustrated for one representative single subject 
and the regression coefficient is given for the group. (A,B) The motion decision 
experiment (for stimuli cf. Figure 3C): coefficients were significantly larger than 
0 when motion was perceived as coherent (t11 = 3.55, p < 0.01) but not when it 

was perceived as random (t11 = 1.7, n.s.) and significantly different between the 
two perceptual outcomes (t11 = 3.24, p < 0.01, paired). Adapted with permission 
from Hesselmann et al. (2008a). (C,D) The face-vase decision experiment (cf. 
Figure 3B): likewise, coefficients showed a trend >0 when faces were 
perceived (t11 = 1.88, p = 0.087) but not when the vase was perceived 
(t11 = –1.06, n.s.). Importantly, they were significantly different between the two 
perceptual outcomes (t11 = 2.31, p < 0.05, paired). Dataset from Hesselmann et 
al. (2008b). All tests are two-sided t statistics.

the stimulus) and the second is properly inferring the  uncertainty 
or precision of that prediction (e.g., the probabilistic context in 
which a stimulus appears). This difference is illustrated nicely by 
the difference between the effects of cueing and priming.

Cues are usually employed in attentional paradigms to guide 
predictions about task-relevant locations or features (context) but 
not about the actual target (content). In other words, knowing that 
a target will appear at a given location within the next couple of 

seconds does not provide any information about the content of 
the target’s features; e.g., whether a grating will be slanted to the 
left or right. Cues call for allocation of attentional resources to the 
appropriate sensory channels, without biasing to one outcome in 
these channels, or another. In what follows, we consider this in 
terms of optimizing the synaptic gain of selected channels. This may 
also help understand the electrophysiological correlates of non-
spatial attentional or perceptual processes; e.g., related to the feature 
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intrinsic fluctuations have been proposed as mathematical models 
of short-term memory (Bick and Rabinovich, 2009) and have been 
discussed explicitly in terms of free-energy minimization (Kiebel 
et al., 2009b).

It is important to realize that this interpretation does not restrict 
the role of ongoing activity to brain states that are accessible to 
introspection. The most basic version of this mechanism might be 
seen during the perception of music and speech, where, mathemati-
cally, the itinerant dynamics conform to stable heteroclinic channels 
that show winner-less competition (Seliger et al., 2003; Kiebel et al., 
2009a). However, these dynamics also manifest in the absence of 
sensory information – just because sensory inputs are not currently 
available does not mean that the brain models the world as having 
stopped. Important examples here include optimization (consoli-
dation) of synaptic strengths during sleep (Vyazovskiy et al., 2008; 
Diekelmann and Born, 2010). Another example is optimization or 
selection of competing internal models, using itinerant searches 
over different hypotheses (models) about the world. This view links 
itinerant (wandering) dynamics to “mind wandering” often invoked 
to explain resting-state fluctuations. This link provides a formal and 
precise role for ongoing itinerant activity that has been exploited in 
perception (e.g., Kiebel et al., 2009a) and planning (e.g., Namikawa 
and Tani, 2010). In machine learning and robotics, the itinerancy 
mandated by sensitivity to initial conditions and some forms of 
chaotic dynamics is now one of the main candidates for explaining 
how trajectories into the future are explored and selected. This fits 
comfortably with the notion that brain activity can be formulated 
in terms of itinerant dynamics (e.g., Tsuda, 2001). One important 
feature of itinerancy is that it enables ongoing activity to express 
fluctuations that ensure transitions between different (meta)stable 
neuronal states (Deco et al., 2009). Itinerant fluctuations of this 
activity reflect the dynamic nature of the underlying internal model 
that does not remain locked in a stationary mode but remains 
malleable by continuously exploring hypotheses regarding future 
experience and action. It is for this reason that functional connectiv-
ity measures, which describe the extent of wandering activity (and 
not stationary activity levels), provide such an informative descrip-
tion. Similar neural population behavior has also been observed 
on shorter temporal and smaller spatial scales (Wackermann et al., 
1993; Kenet et al., 2003).

Ongoing activity and precision
In free-energy formulations of predictive coding, a major contribu-
tor to measured neuronal activity is precision-weighted prediction 
error. This precision weighting is implemented by increases in syn-
aptic gain (cf. attentional modulation) so that prediction errors are 
boosted selectively according to the context established by predictions 
or cues). This means that fluctuating activity levels may reflect not 
just itinerant optimization of predictions but fluctuations in their 
precision. Evidence for this interpretation of ongoing activity fluc-
tuations (as a modulation in precision or gain afforded to afferent 
information) comes from investigations of false vs. correct perceptual 
inference. Intrinsic brain activity (as indexed by fMRI signal) could be 
interpreted as a correlate of sensory evidence in random walk or race 
models (in essence an extension of signal detection theory over time 
Smith and Ratcliff, 2004; Gold and Shadlen, 2007) or as a proxy for 
precision in free-energy formulations of predictive coding (Friston, 

class, in contrast to spatial attention (Wyart and Tallon-Baudry, 
2009). Conversely, sensory priming induces expectations about 
the content of sensory input, which we will assume is mediated by 
priming–dependent changes in synaptic activity and efficacy. In 
accord with this view, priming effects are associated with reduced 
evoked response amplitudes and are, of course, readily embraced 
by predictive coding accounts (Henson, 2003).

Recently, it has been proposed that a single fundamental prin-
ciple might govern brain activity underlying action, perception, 
attention and learning (Friston, 2005, 2009, 2010). In its most 
simple form, the free-energy principle states that the brain seeks 
to minimize surprise (more formally, the negative log-probability 
of a sensory outcome). This is achieved by continuously updating 
an internal model that generates top-down predictions of sensory 
input. Unexpected sensory inputs that cannot be “explained away” 
by an internal model of the current states of the world emerge 
as bottom-up prediction errors (hence predictive coding). These 
prediction errors are accumulated or assimilated by higher cortical 
areas to update the model and optimize its predictions. Perception 
rests on the optimization of top-down predictions (or, model) to 
best explain away the bottom-up prediction error caused by incom-
ing sensory information, a notion embraced by Bayesian formu-
lations (Kersten et al., 2004; Hohwy et al., 2008). In the present 
context, the free-energy formulation is of interest because it covers 
many observations about evoked responses but it is not confined to 
them. When applied to the specific issue of ongoing cortical activity 
and its relation to evoked responses (and subsequent perception), 
the free-energy principle can account for many reported empirical 
findings and yields further testable predictions.

The free-energy formulation (Friston, 2009) requires the brain 
to represent the causes of sensory input (by optimizing synaptic 
activity; i.e., perceptual inference), and its internal model of con-
textual and causal regularities (by optimizing short and long-term 
changes in synaptic gain and efficacy; i.e, attention and peceptual 
learning). Crucially, all changes in synaptic activity, gain and effi-
cacy minimize the same thing; namely free energy, which under 
some simplifying assumptions is just the amount of prediction 
error. In line with this view, Lewis et al. (2009) observed that inten-
sive training shapes intrinsic connectivity between visual areas and 
higher order frontal and parietal regions that presumably gener-
ate visuospatial top-down predictions. In terms of the distinction 
above, synaptic (neuronal) activity encodes the content percepts, 
while synaptic gain encodes contextual precision (cf. attentional 
gain). In what follows, we will consider ongoing activity as reflect-
ing neuronal activity that predicts the causes of sensory inputs 
and then turn to interpretations that cover fluctuations in synaptic 
gain or precision.

Ongoing activity and predictions
Perceptual inference and learning speaks to a general principle, 
according to which past experiences inform predictions of the 
future to optimize behavior. The idea that ongoing activity patterns 
reflect a historically informed internal model of causal dynamics 
in the world (that serves to generate predictions of future sen-
sory input) fits nicely with the role of neural “replay” in memory 
formation (Jeffery, 2004; Foster and Wilson, 2006). Indeed, the 
itinerant (wandering or searching) dynamics that characterize 
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attractive theoretical framework for a unified approach to a diver-
sity of neurophysiological observations, including those related to 
ongoing activity fluctuations.

summary
In the recent years, intrinsic brain activity has become a new and entic-
ing focus of interest and research into brain function (Fox and Raichle, 
2007). In spite of conceptual concerns about studying unconstrained 
brain activity (Morcom and Fletcher, 2007a,b) studies of intrinsic 
brain activity during rest as well as in paradigm settings have proven 
very fruitful in understanding the functional role of ongoing activity 
and its relation to cognitive processes (Buckner et al., 2008; Greicius, 
2008; Hesselmann et al., 2008b; Sadaghiani et al., 2009).

Ongoing activity is organized in a functional architecture at 
various temporal and spatial scales (Kenet et al., 2003; Bassett 
et al., 2006; Meunier et al., 2009). It has been established that 
evoked neural responses are embedded into this underlying 
functional architecture (Tsodyks et al., 1999) and cannot be fully 
understood in isolation from the context established by ongoing 
activity. Therefore, trial-to-trial variability in evoked responses is 
not just noise but a non-random function of network fluctuations 
(Fontanini and Katz, 2008). For this reason the current review of 
ongoing activity considered its spatiotemporal structure in relation 
to moment-to-moment variability in cognition.

2008). Crucially, these two accounts can be tested against findings in 
threshold detection paradigms discussed above (Hesselmann et al., 
2008a; Sadaghiani et al., 2009). The former (evidence accumulation) 
framework suggests high pre-stimulus activity (i.e., a high starting 
level for the random walk) will bias towards subsequent stimulus 
detection (true hits or false alarms). Conversely, the latter (predictive 
coding) framework suggests that high ongoing activity (i.e., precise 
prediction errors) will bias towards subsequently correct inference 
(hits or correct rejections). In two independent datasets, we recently 
found that pre-stimulus activity levels were associated with the lat-
ter perceptual outcome and hence support the interpretation of 
ongoing activity as reflecting the precision of perceptual inference 
(Hesselmann et al., 2010) (Figure 5).

The implementation of precision in the predictive coding frame-
work is necessitated by the presence of noise in environmental states 
or sensory input and plays a key role in regulating the reliability or 
relative weighting of bottom-up prediction errors against top-down 
predictions. Thus, this gain could represent a mechanism that is 
very suitable for mediating selective attention (Friston, 2009). Of 
note however, a shared final common neural pathway does not 
imply that fluctuations in ongoing activity necessarily reflect fluc-
tuations in attention (cf. the discussion of cueing paradigms in the 
previous section and itinerant optimization of neuronal activity 
above). In conclusion, the free-energy formulation presents an 

FIguRe 5 | Baseline activity levels in false vs. correct inferences are 
captured by the predictive coding framework. (A) Peristimulus fMRI signal 
time courses from the motion decision experiment: for stimuli and region of 
interest cf. Figure 3C. Hits and misses correspond to trials at threshold motion 
coherence level (on average 13%), while correct rejections and false alarms 
correspond to occasional trails with a quasi-random coherence level (1%). 
Pre-stimulus activity showed a main effect of accuracy, correct vs. incorrect 
(consistent with predictive coding), but no main effect of percept, coherent vs. 
incoherent (predicted by evidence accumulation). Pre-stimulus activity prior to 
hits was significantly greater than misses; and pre-stimulus activity in false 
alarms were significantly less than in correct rejects. (B) Peristimulus time 
courses from the auditory detection experiment: for stimuli and region of 

interest cf. Figure 3A. False alarms occurred occasionally when subjects 
reported to hear the target stimulus in the absence of stimulation. As assumed 
by predictive coding, false inference (false alarms and misses) were each 
preceded by significantly lower levels of activity in auditory cortex than 
veridical hits. Note that this free-response paradigm does not furnish correct 
rejection trials (i.e., subjects are not required to indicate the stimulus is 
absent). The gray ellipse covers the pre-stimulus period submitted to statistical 
testing. The time courses for hits and misses correspond to the respective 
time courses in Figure 3. However, note that only a subset of subjects that 
had a sufficient number of wrong inferences was included in this analysis. 
Error bars represent standard error across subjects. Adapted with permission 
from Hesselmann et al. (2010).
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With respect to structure, we emphasized that behaviorally 
relevant ongoing activity is hierarchically organized and does 
not seem restricted to clear-cut temporal or spatial scales. The 
spatial patterns of ICNs and the membership of constituent 
regions are gradual and display a global-to-local connectivity, 
reminiscent of small-world topologies (Bullmore and Sporns, 
2009). We further discussed that the strength of these correla-
tions is constrained by structural connectivity but is modu-
lated by mental states and current context, strongly suggesting 
a functional component to intrinsic activity fluctuations (i.e., 
dynamics on structure).

We have tried to substantiate the role of intrinsic fluctua-
tions in terms of the necessarily itinerant dynamics entailed by 
internal (generative) models of the world the brain might use to 
make predictions about its sensorium. In doing this, we hoped 
to establish a formal link between the notion of mind wandering 
and itinerancy (wandering dynamics) in computational accounts 
of perceptual learning and inference. Furthermore, we extended 
this account to include the modulation of prediction error sig-
nals by their precision and suggested that measured fluctuations 
in neuronal activity may reflect modulations in synaptic gain; 
of the sort seen in fast synchronized neuronal exchanges and 
attentional modulation.
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