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Abstract-Many forms of learning depend on the ability of an organism to sense and react to the adaptive 
value of its behavior. Such value, if reflected in the activity of specific neural structures (neural value 
systems), can selectively increase the probability of adaptive behaviors by modulating synaptic changes 
in the circuits relevant to those behaviors. Neuromodulatory systems in the brain are well suited to carry 
out this process since they respond to evolutionarily important cues (innate value), broadcast their 
responses to widely distributed areas of the brain through diffuse projections, and release substances that 
can modulate changes in synaptic strength. 

The main aim of this paper is to show that, if value-dependent modulation is extended to the inputs 
of neural value systems themselves, initially neutral cues can acquire value. This process has important 
implications for the acquisition of behavioral sequences. We have used a synthetic neural model to 
illustrate value-dependent acquisition of a simple foveation response to a visual stimulus. We then examine 
the improvement that ensues when the connections to the value system are themselves plastic and thus 
become able to mediate acquired value. Using a second-order conditioning paradigm, we demonstrate that 
auditory discrimination can occur in the model in the absence of direct positive reinforcement and even 
in the presence of slight negative reinforcement. The discriminative responses are accompanied by 
value-dependent plasticity of receptive fields, as reflected in the selective augmentation of unit responses 
to valuable sensory cues. We then consider the time-course during learning of the responses of the value 
system and the transfer of these responses from one sensory modality to another. Finally, we discuss the 
relation of value-dependent learning to models of reinforcement learning. The results obtained from these 
simulations can be directly related to various reported experimental findings and provide additional 
support for the application of selectional principles to the analysis of brain and behavior. 

Evolution has endowed certain organisms with 
several means to sense the adaptive value of their 
behavior. According to the theory of neuronal group 
selection,1’~12~‘4 evolutionarily selected value systems 
modulate synaptic changes in multiple brain regions 
to provide various constraints for the selection of 
adaptive behaviors in somatic time. In this article, we 
use a synthetic neural model to extend our previous 
work on value and value systems as they relate to the 
brain.12,38,48 Our main goal here is to address in detail 
how value systems themselves can be modified and 
extended by experience. 

The central idea of the theory of neuronal group 
selection is that selective processes operate in the 
nervous systems of individuals to enhance adaptive 
behavior despite the absence of predetermined cat- 
egories and fixed rewards in the environment. The 
main principles governing these somatic selective 
processes are conceptually similar to those that oper- 

$To whom correspondence should be addressed. 
Abbreviations: Al, auditory area; Ace, central nucleus of 

the amygdala; Ain, auditory input; CS, conditioned 
stimulus; CR, conditioned response; LHA, lateral hypo- 
thalamic area; SC, oculomotor map; TD, temporal 
differen$e; US, unconditioned stimulus; VAL, value 
system; Vin, visual input; Vl, visual area. 

ate in evolution, but their substrate (developmentally 
established repertoires of interconnected neuronal 
groups) and basic mechanisms (modification of 
synaptic strengths) differ from those of evolution. 
Specifically, the theory proposes that brain function 
is mediated by: (i) selectional events occurring among 
interacting cells in the developing embryo to form 
large repertoires of variant neural circuits; (ii) further 
selectional events occurring among populations of 
synapses to enhance those neuronal responses having 
adaptive value for the organism; and (iii) re-entrant 
signals, exchanged via parallel and reciprocal 
connections, that serve through synaptic selection to 
integrate response patterns among functionally segre- 
gated brain areas in an adaptive fashion. These 
processes are said to be sufficient to account for a 
variety of brain functions ranging from perception to 
intricate motor responses.14 

Inasmuch as somatic selectional systems do not 
operate according to a predefined program or syntax, 
they must be constrained by evolutionarily selected 
biases (innate values) incorporated in the phenotype. 
While a full discussion of the concept of values is 
beyond the scope of this paper, some crucial proper- 
ties of candidate value systems are considered here in 
detail. In this paper, we use the word “value” with 
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reference to neuronal responses in the following 
sense. The value of a global pattern of neuronal 
responses to a particular environmental situation 
(stimulus) is reflected in the capacity of that response 
pattern to increase the likelihood that it will recur in 

the same context. In this respect, value is analogous 
to “adaptive fitness” in evolutionary selection, where 
the adaptive fitness of a phenotype is defined in terms 
of its propensity to be represented in subsequent 
generations. Thus, value plays a role in neuronal 
selection similar to that which adaptive fitness plays 
in evolutionary selection. Inasmuch as value systems 
themselves are subject to evolutionary constraints, 
the relationship between value and adaptive fitness is 
complex. Value is subject to the overall constraint 

that it must, ex post facto, act to increase adaptive 
fitness. Although evolutionary processes cannot se- 
lect for valuable neuronal responses in somatic time, 
they can select for mechanisms that subserve such 
neuronal selection. In this paper, we discuss the 
relationship between value and adaptive fitness 
specifically in terms of the interaction between 
acquired and innate value. 

We propose that the increased probability of valu- 
able neuronal responses is mediated by particular 
structures in the nervous system that we call “value 
systems,” which operate through selective consolida- 
tion of synaptic changes. The value of a neuronal 
event can be operationally defined in terms of the 
activity it effectively evokes in such value systems. 
For neural value systems to constrain somatic 
selection, they should possess a number of structural 
and functional properties. They should be responsive 
to evolutionarily or experientially salient cues. 
They should broadcast their responses to wide areas 
of the brain and release substances that can 
modulate changes in synaptic strength. In addition, 
value systems should be capable of a transient re- 
sponse to sustained input, inasmuch as it is changes 
in circumstances (environmental or phenotypic) that 
are important for successful adaptation. There is 
substantial evidence’6~24~27~29.35~50~5’ to indicate that the 
aminergic and cholinergic neuromodulatory systems 
possess such properties. 

In our previous theoretical work,‘3,39.48 value took 
the form of a global signal that modulated changes in 
synaptic strength to reinforce adaptive behaviors. It 
was assumed that the neural systems subserving value 
had been selected during evolution to signal auto- 
nomic consequences of behaviors relevant for the 
homeostasis of the organism. In these simulations, 
the sensory inputs eliciting value were fixed; i.e. the 
modeled value systems specified only innate value. In 
the present paper, we present a theoretical analysis of 
how value itself may be acquired. We hypothesize 
that acquired value arises from value-dependent and 
experience-dependent plasticity in the afferents to 
value systems themselves. As a result, whenever an 
adaptive behavior is acquired through value-depen- 
dent modulation of synaptic changes, certain neur- 

onal activity patterns that reliably precede this 
behavior become themselves capable of eliciting 
value. In this way, such activity patterns can reinforce 
or stabilize other antecedent patterns. Through this 
“bootstrap into the past”, successive patterns of 
neuronal activity can be linked together and assem- 
bled into complicated, adaptive behavioral sequences. 

Using a synthetic neural modek3’ we explore the 
role of innate and acquired value in the acquisition of 
adaptive and convergent behavior and extend our 
previous work on visual tracking”.” and operant 
conditioning in the context of visual integration4’ We 
simulate a simple organism having neural circuits 
constituting a visual area, an auditory area, and 
oculomotor connections and explore foveation of a 
visual stimulus and the acquisition of discriminative 
eye movements to different auditory tones. After 
experience, the simulated organism acquired 

foveation through value-dependent plasticity in sen- 
sorimotor maps. Addition of value-dependent plas- 
ticity in the connections from the sensorimotor maps 
to the value system itself was shown to significantly 
improve behavioral performance. This plasticity also 
allowed learning of a simulated auditory discrimi- 
nation task when a visual stimulus was used as a 
secondary reinforcer, even when the visual stimulus 
proper did not elicit any intrinsic or innate value. On 
the basis of these results, we then examined the 
transfer of value system responses between stimuli 
during learning. (Although we use the term “learn- 
ing” for the acquisition of simple behaviors in the 
model, true learning involves mechanisms and inter- 
actions at all levels of the system.) In interpreting the 
results, we make some experimental predictions, con- 
sider brain structures and transmitter systems that 
could mediate value-dependent learning, and review 
our findings in the light of comparable experiments in 
animals. Finally, using a formal analysis, we relate 
value-dependent learning to temporal difference 
models of reinforcement learning. 

SIMULATIONS 

The synthetic neural models and simulations were 
chosen to provide a clear illustration of how value 
systems and value-dependent learning might be im- 
plemented in the brain. They were also designed to 
relate various theoretical predictions to findings in 
the experimental literature. To distinguish between 
real brain areas and simulated areas, the names of the 
latter appear in bold characters. 

The model 

A two-dimensional visual input (Vin, a model 
retina 16 x 16 pixels in size, where 1 pixel corre- 
sponds to 1” of visual angle) was relayed to a visual 
area (Vl, Fig. 1) consisting of 16 x 16 units represent- 
ing local neuronal groups rather than single neurons. 
An auditory area (Al) received an ordered mapping 
from a one-dimensional input (Ah), which rep- 
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Fig. 1. Schematic layout of simulated areas and connections. Thin boxes enclose sensory inputs and motor 
outputs; heavier boxes enclose neural areas. Triangles represent neurons or groups of neurons; solid lines 
ending in filled circles represent tracts of excitatory connections and their synaptic terminals. Dashed lines 
represent efferents from VAL responsible for modulating changes in strength of encircled connections. The 
visual array corresponds to a bounded visual scene (32 x 32 pixels in size). The visual input area, Vin, 
is a model retina which receives stimulation from a (16 x 16) portion of the full visual array. This sampling 
of the visual scene changes in accord with simulated oculomotor output (from SC). Heavy arrow (upper 
right) indicates pathway by which motor cells in SC (U = up, R = right, D = down, L = left) cause Vin 
to move. Heavy arrow (bottom) indicates pathway by which simulated inputs triggering innate values 

excite area LHA. See text for names of areas and Table 1 for other details. 

resented auditory input in frequency space. Receptive 
fields of the 16 Al units were initially Gaussian with 
a full width at half maximum of 3.29 units and a 
maximum response of 0.6 to the preferred frequency 
presented with unit intensity. All visual (Vl) and 
auditory (Al) units projected to a simple motor map 
(SC) responsible for generating horizontal and verti- 
cal eye movements3’ Behaviors leading to innately 
valuable changes elicited activity in a unit called LHA 
designed to represent the lateral hypothalamic area or 
equivalent nuclei. These behaviors can be thought of 
as fixed action patterns’ emitted in response to a 
releasing stimulus. 6,20 Alternatively, in an experimen- 
tal setting, these behaviors are equivalent to uncondi- 
tioned responses to unconditioned stimuli (US; e.g., 
food or juice rewards). The areas LHA, Vl, and Al 
sent efferents to a structure called Ace, correspond- 
ing to the central nucleus of the amygdala. Ace, 
which acted as a site of convergence for both innate 
and potentially acquired values, in turn projected to 
a unit called VAL, whose activity was able to affect 
the plasticity of all the connections in the simulated 
brain. The VAL unit can be thought of as modelling 
the activity of cells of origin of the cholinergic system 
(substantia innominata, nucleus basalis of Meynert), 

or of the meso-corticolimbic dopaminergic system 
(ventral tegmental area and nucleus accumbens). See 
Fig. 1 for further details. 

In the actual simulations, the model was tested in 
two stages. The first stage proceeded along the lines 
of our previous work’3,39 and addressed the role of 
innate and acquired value in the acquisition of an 
orienting response to a spot of light presented in the 
periphery of the visual field. If successful foveation 
occurred within 2” of the center of the stimulus, LHA 
was activated. Shortly after foveation, the spot disap- 
peared and then reappeared in the periphery of 
vision. The second stage was explicitly designed to 
model a number of relevant second order operant 
conditioning experiments in rats and non-human 
primates. 8~18,28,40 This involved presenting a simulated 
high, middle, or low frequency tone for 16 iterations. 
If, by the time the tone was over, a discriminative 
oculomotor response (moving the eye upwards for 
high tones and downwards for low tones) had oc- 
curred, the visual stimulus appeared in the periphery 
of vision and could then be foveated to obtain the 
primary reward. No response, or an incorrect 
response, resulted in a new trial in which tones 
were presented, which began after a short inter-trial 
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Table 1. Stimulation parameters 

Dynamics 
LY 

Area Number of units mean, SD. tc) p Functional description 

Vin 512 (16 x 16) 0,O 0 0 Visual input (1 unit = 1”) 
Ain 16 0,O 0 0 Auditory input 
Vl 512 (16 x 16) 0,O 0 0.01 Visual retinotopic map 
Al 16 030 0 0.01 Auditory tonotopic map 
SC 4 0,0.04 0.4 0.06 Oculomotor map 
LHA 1 0,O 0.92 0 Inputs with innate value 
ACe 1 0.5,o 0 0 Limbic structure 
VAL 1 030 0 0 Diffuse ascending system 

Connectivity 
Number 

Connection per unit 6 1 Initial c,, g, Description 

Vin-+Vl I 0 0.1 1 1 Retinotopic mapping 
Ain-+Al 16 1 0.1 0.6 1 Tonotopic mapping (FWHM = 3.29) 
VI-+X 256 1 0.1 0.2 0.1 Complete and non-ordered 
Al-+SC 16 1 0.1 0.2 0.1 Complete and non-ordered 
Vl + ACe 256 0.2 0.1 0.01 0.1 Complete and non-ordered 
AI + ACe I6 0.2 0.1 0.01 0.1 Complete and non-ordered 
LHA+ACe 1 0 0.1 1 0.16 No plasticity 
ACe -+ VAL 1 0 0.1 1 1 No plasticity 

interval. Finally, to test its robustness, the correct 
discriminative response was confronted with negative 
reinforcement (simulated by using negative value; see 
below), and the second stage was repeated. 

Dynamics 

We used Cortical Network Simulator3’ to simulate 
the ne’uronal system. Each unit was taken to corre- 
spond to a neuronal group of hundreds to thousands 
of densely interconnected neurons,“,” and each iter- 
ation corresponded to about 100ms of simulated 
time. The response (s,) of each unit (i) to its inputs 
was calculated as: 

si(t + 1) = $ {Cg,Cj,. Sj(t) + C+(t) 

+wsi(t )} ’ 0 iDi( 

Di(t+l)-Di(t)=~[~i(t)-Di(t)]. (Eqn 1.1) 

sj is the activity of unit j connected to unit i with 
connection strength, ci, and g, is a constant, common 
to all connections between one area and another. k is 
a subscript that identifies the set of all connections 
between any two areas. ui is spontaneous activity or 
noise-an independent random number uncorrelated 
over time which is selected for each unit from a 
Gaussian distribution with a constant mean and 
variance in a given area (see Table 1). w is a co- 
efficient of persistence which is a constant for all cells 
in a given area-see Table 1. + { } is a piecewise 
linear approximation to an increasing sigmoidal func- 
tion that limits si to the range [0, 1] (this approxi- 
mation was chosen simply for computational 
expediency). Q { . } is a polynomial approximation to 
a decreasing sigmoidal function of the form 
g(x}= 1 -2x2+x4 when O<x < 1 and 1 (x ~0) 
or 0 (x > 1) otherwise. Di is a depression term that 
simulates adaptation during sustained periods of 

activity. The rate of adaptation is determined by p, 
which is constant for all cells in a given area. See 
Table 1 for values of all parameters used in the 
simulations. 

The sensory units (Vin, Ain, and LHA) all re- 
sponded according to Eqn 1.1 except that the afferent 
input term Zg, . ci, . sj (t ) was simply replaced by an 
appropriate sensory input, with values in the range 
[0, 11. While inputs to Vin and Ain represented visual 
and auditory sensory input, respectively, the activity 
of LHA (xLHA) was designed to simulate responses to 
signals that would result from a reward following a 
certain behavior. Whenever such behavior was emit- 

ted in the model, sLHA was set to unity. sLtiA decay was 
set so that it would fall to negligible levels after about 
60 iterations or 6 s of simulated time (i.e. mLHA = 0.92 
in Eqn 1.1 giving a half-life t,,* = 8.66 iterations). The 

latency of actually evoked LHA responses from 
mechanoreceptor stimulation in the proximal 
stomach was found to be about 370ms.j* 

The activity of VAL (modeling a simple value 
system) reflected the change in afferent input from 
Ace. 

&AL (l) = SACe (t)-sAC,(t - 1). (Eqn 1.2) 

This time derivative of ACe activity was meant to 
emulate the phasic responses of dopaminergic and 
cholinergic neurons to external stimuli (e.g., those 
predicting appetitive reward); such responses are 
phasic and transient, with time-courses of the order 
of 10&200 ms.‘0,28*40 It should be noted that both the 
response dynamics of the VAL unit and the postsyn- 
aptic effects of VAL activity (viz. the modulation of 
changes in synaptic strength in other model areas) are 
specific for this unit. They may be thought of as the 
result of evolutionary adaptations giving rise to neu- 
ral value systems with such properties. 
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Fig. 2. “Learning” curves for acquisition of the foveation response to a visual stimulus. Performance is 
expressed as the mean and standard error (over six runs) of the number of foveations per 1000 iterations 
of the neural model (100 s of simulated time). The solid curve is for the intact system with adaptive or 
acquired value. The dashed curve was obtained with Vl disconnected from Ace. Convergence is essentially 

complete after about 10,000 iterations. 

Value-dependent changes in synaptic strength took 
the following form: 

h,(t+l)-h,(t)=6,‘a(Cij(t)}‘Si(t).Sj(t) 

- rlkhijCt )> 

and 

Clj(t + l)-Cij(t)=SVAL’hij(t + 1). (Eqn 1.3) 

Intact system 
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h, is an associative term that represents a trace of the 
product of pre- and postsynaptic activity. Q { . } is the 
same sigmoid function as in Eqn 1.1. 6, is a parameter 
controlling the rate of synaptic change and qk is the 
decay rate, where k again denotes all the connections 
from one area to another. The connections given the 
greatest plasticity were: (i) those mediating sensori- 
motor integration (Vl -+ SC, Ain -+ Al, Al + SC) 

Vl - ACe disconnection 

Fig. 3. Connection strengths (averaged over six runs) between the visual system (Vl) and SC units after 
15,000 training iterations. Connections within each box, each represented by a single pixel, are mapped 
according to the location of the source of the connection in Vl. Top box in each array displays connection 
strengths to up unit minus connections strengths to down unit, bottom box displays complementary 
connections strengths to down unit minus those to up unit, and similarly for left and right units. 
Connection strength differences are displayed on a gray scale in which positive differences are light and 
negative differences are dark. Left array: intact system. Right array: Vl + ACe disconnected during 
training. The ordered gradient-like mappings result in appropriate saccade-like movements according to 

the position of the stimulus in retinotopic space. 
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Fig. 4. Left: connection strengths (averaged over six runs) established by value-dependent learning from 
visual area Vl to ACe using the conventions of Fig. 3. These connections define which retinotopic positions 
have acquired the potential to elicit value. Right: black dot indicates positions in retinotopic space that 
are associated with a priori or innate value. Note that learned value does not develop in the central region 
associated with innate value. The circles in both diagrams are at 2” (delineating the region where innate 

value is present) and 6” (indicating the initial positions of visual targets). 

and (ii) those mediating acquired value (Vl - Ace, 
Al -+ Ace). Connections defining innate value 
(LHA- ACe and Ace- VAL) were not plastic. 
Table 1 contains the actual parameters used. 

In each cycle of the simulation, the variables were 
computed in the order in which the equations are 
presented above. First the si including sVAL were 
updated synchronously, and then the new depression 
term (Dl) was computed using Eqns 1.1 and 1.2. 
Following this, hi, was updated and then cij using 
Eqn 1.3. 

EXPERIMENTS AND RESULTS 

Stage 1: roles of innate and acquired value 

Acquisition offoveation behavior. These simulations 
used a circular visual stimulus with a Gaussian 
luminance profile (2.35” full width at half maximum). 
Whenever the initially random, spontaneous stochas- 
tic activity of SC units caused foveation to within 2” 
or less, sLHA was set to unity and eight iterations later 
the stimulus was removed. Following an inter-trial 
interval of eight iterations, the stimulus was again 

0.161 

Fig. 5. Adaptation in the activity level of the value unit, svAL, designated VAL responses, at the time of 
foveation. Note that these data are expressed as a function of trials, rather than iterations. The iterations 
(time) required for each trial decreases with learning as fewer iterations of the model are required for 
foveation to occur. Individual data points are from six separate runs; each point represents the mean 
response over 10 consecutive trials. The decline in svAL illustrates the learning-dependent decrease of the 

value response. 
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presented at a random location 6” from the center of 

retinotopic space. Eye movements were scaled such 

that maximal activity in a SC unit resulted in an 
angular velocity of lo per iteration, in the appropriate 
direction. This meant that no movement could 
foveate a peripheral stimulus in a single iteration. 
Despite this constraint, and despite the fact that only 
those visual stimuli located within the central 2” 
elicited innate value, the frequency of foveations 
increased rapidly with the emergence of serial eye 
movements that brought the stimulus progressively 
closer to the fovea. Figure 2 shows the improvement 
of performance expressed as the number of 
foveations per 1000 iterations. These data were 
obtained from six runs of 15,000 iterations each. 
To obtain the lower curve in Fig. 2, ACe was 
disconnected from Vl and thus the curve reflected the 
action of innate value alone. The quantitative im- 
provement with innate plus acquired value over 
innate value alone is clearly evident. Nevertheless, the 
results also show that, under certain circumstances, 
innate value is sufficient for some degree of adaptive 
behavior. As shown in stage 2 below, in certain 
experimental paradigms there is a more profound 
dissociation in the qualitative aspects of acquisition 
of such behavior with and without acquired value. 

Value -dependent plasticity in sensorimotor 
mappings. Successful foveation of an arbitrarily 
positioned stimulus requires the formation of an 
ordered sensorimotor mapping under the constraint 
of value. In the model, this requires functional 
specialization of SC units with respect to luminance 
contrast and retinotopic position. The pattern of 
connection strengths from Vl to SC units that 
emerges during value-dependent learning is presented 
in Fig. 3. It is this change that mediates the adaptive 
behavior depicted in Fig. 2 and it ensures that the 

output of SC units is a nonlinear but monotonic 
function of stimulus position. After we disconnected 

Vl and Ace, changes in connection strengths were 
smaller and were limited to the immediate pericentral 
region. 

Value-dependent plasticity of the connections to the 
value system itseIf (acquired value). In the model, the 
acquisition of value depends on value-dependent 
associative changes in afferents to the value system 
itself. These changes are shown in Fig. 4. Connections 
from Vl to ACe are progressively enhanced, first 
around the fovea and then in the periphery. Through 
these enhanced connections, stimulus positions that 
elicit saccade-like movements to the center, or to 
retinotopic locations with established connections 
to ACe (those that have already acquired value), 
come themselves to activate ACe and thus they 
acquire the potential to elicit value. As the activity of 
VAL depends on an increase in ACe activity, value- 
dependent modulation of plasticity is greatest when 
an eye movement trajectory passes from a position 
that has no Vl - ACe connections to a region that 
does. For the most part, this is what occurs when 
an adaptive movement occurs by chance. In this 
way, value becomes most effective at the point at 
which movement is incorporated into a learned 
sequence. 

Decrease of value responses during learning. The 
transfer (see below) of value system responses to 
earlier components of a behavioral sequence means 
that late components progressively lose the capacity 
to elicit value. Figure 5 demonstrates this point: as 
the acquisition of foveation behavior proceeds, svAL, 
determined at the point of foveating the stimulus, 
decreases. Empirical evidence** for the progressive 
loss of dopaminergic neuron responses is reviewed in 
the Discussion. 
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Fig. 6. Discrimination learning using a visual stimulus to reinforce a correct oculomotor response to a 
simulated high or low tone. Performance is expressed as the mean and standard error (over six runs) of 
the fraction of correct responses (averaged over 32 consecutive trials of each individual run). Solid line: 

simulation with intact nervous system. Broken line: Vl + ACe connections cut. 
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Fig. 7. Transfer of value response from visual stimulus onset 
to auditory stimulus onset. The activity of the value unit, 
$vAL (VAL response), is plotted as a function of iterations 
(time), locked to tone onset in each trial (from eight 
iterations before tone onset to four iterations after the 
appearance of the visual stimulus). All data were taken from 
trials giving a correct discrimination. Before: traces from the 
first eight correct discriminations; during: traces from eight 
correct trials halfway through the simulation; after: traces 
from the last eight trials. CS, marks the tone onset and CS, 
marks the appearance of the visual stimulus. The tone 
progressively acquires value as indicated by the increasing 

VAL response. 

Stage 2: Second order conditioning 

Learning a discrimination task without direct re- 
inforcement. After the system had acquired foveation 
behavior, the simulated equivalent of a pure high, 

BEFORE 

middle, or low frequency tone was presented for 16 
iterations (1.6 s of simulated time). If, at the end of 
that time, the oculomotor system had generated an 
upwards or downwards eye movement through 2’ or 
greater when exposed to high or low tones, respect- 
ively (“correct” responses), the visual stimulus ap- 
peared at a random position 6” from the center of the 
fovea. After foveation, or after an incorrect discrim- 

inative response, there was an inter-trial interval of 
eight iterations and a new trial presenting the tones 
began. This was repeated for 15,000 iterations. Note 
that the visual stimulus is presented only after a 
correct discriminative response. 

One can consider this task to be a second-order 

conditioning experiment in learning in which the 
peripheral spot is the CS, , foveation is the CR,, and 
the tone the CS, which cues a discriminative eye 
movement (CR2). The results show that, by virtue of 
its associated acquired value, the peripheral visual 
stimulus was able to reinforce a correct auditory 
discrimination (despite the fact that initially eye 
movements were emitted by chance). The learning 
curves depicting probability of a correct discrimi- 
nation as a function of trials for the intact system 
and after disconnection of ACe from Vl are shown 
in Fig. 6. Clearly, disconnecting ACe from Vl elimi- 
nated both acquired value and discrimination learn- 
ing. The results of this simulated lesion study are 
similar to the experimental findings of Gaffan and 
Harrison’* reviewed below. 

Transfer of value responses during learning. During 

discrimination learning, we observed the transfer of 
value-system responses from the CS, (appearance of 
the visual stimulus) to the CS, (tones) that predicted 
the CS, and acquired the capacity to elicit discrimina- 
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Fig. 8. Top: receptive field plasticity of Al units expressed as strength of response to pure tones of unit 
amplitude. The curves show shifts, as predicted, in center frequency and peak response from before (left) 
to after (right) value-dependent learning. The vertical lines indicate the low and high (-.-.-, CS,) and 
middle (. . . , neutral or control) frequencies used in the experiments. Bottom: Equivalent tuning curves 
for ACe showing that only those tones (high and low) which are predictive of value have established 

significant connections to Ace. 
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tive eye movements. Figure 7 shows the activity 

profile of sVAL before, during, and after discrimi- 
nation learning. Before learning, sVAL responses are 
highest at the appearance of the CS, ; after learning 

the SVAL response has been transferred to the earlier 
occurrence of the CSr . The mechanism of this trans- 
fer is straightforward: initially the appearance of the 
visual stimulus causes increased activity in ACe and 
a value system response. Such activity modifies con- 
nections (i) Ain+ Al, (ii) Al + SC and (iii) 
Al - Ace. This results in: (i) a plastic change in the 
receptive field properties of Al units (see below); (ii) 
synaptic change in the appropriate auditory-motor 
connections; and (iii) a potential for the tones to elicit 
value. By the time the visual stimulus appears, ACe 
has already been excited by the tone and the value 
(reflected by an increase in rAce) that is elicited by the 
visual stimulus is attenuated. 

Value-dependent receptivejeld plasticity. An inter- 
esting consequence of value-dependent plasticity in 
afferents to sensory units in the model is that recep- 
tive field properties can change preferentially to 
sample cues having potential value. This can be 
shown in the simulations in terms of the tuning curves 
of Al and ACe units. In the discrimination learning 
experiment, both high and low tones are potentially 
valuable in the sense that they both predict the visual 
stimulus, given the correct response. As the middle 
tone does not specify any valuable response, it 
serves as a control. The results show that Al and 
ACe units preferentially respond to either the high 
or low tones but not to the middle tone. Figure 8 
shows the tuning curves of Al units before and after 
learning. Both a shift in tuning curves and a sharp- 
ening of frequency selectivity are evident. The equiv- 
alent tuning curves for ACe demonstrate that only 
the high and low tones have acquired the potential 

to elicit value. Receptive field plasticity of this sort 

has been studied by Weinberger and colleagues in cat 
auditory cortex.“B5’ 

Learning a discrimination task despite negative re- 

inforcement. To test the robustness of these responses, 
the second stage of simulated training was repeated, 
but with the discriminative response receiving mild 
negative reinforcement. This was reflected in negative 
value: if discrimination occurred, ACe received an 
input that mirrored LHA input but was negative in 
sign (sLnA set to -0.3, exponential decay tliz = 4.95 
iterations). This value was chosen to be substantially 
less than the input to ACe on foveating the spot 

(s LHA = 1.0) but not to be trivially low. Under this 
paradigm, the system could in principle show two 
kinds of behavior. It could (i) passively avoid an 
aversive discriminative response and thus forgo the 
potential value of foveating the visual stimulus or, (ii) 
perform the auditory discrimination despite its tem- 
porary aversive effect in order to get to the potentially 
valuable visual stimulus. The actual solution ob- 
tained depends on acquired value: aversion after 
discrimination is easily offset by the acquired value of 
a peripheral visual stimulus and learning proceeds 
normally, if a little slowly. If acquired value is 
abolished and ACe is disconnected from Vl, this is 
not possible and what is learned is determined by the 
immediate (and innately specified) consequences of 
an action. Figure 9 demonstrates this dissociation by 
comparing discrimination learning with and without 
Vl - ACe disconnection. 

DISCUSSION 

The present simulations have been concerned with 
several important aspects of neural value systems, in 
particular their role in constraining and accelerating 
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the selection of adaptive behaviors in somatic time. 
As in our previous theoretical work, we have shown 
that value-dependent learning can account for the 
development of adaptive behavior by modulating 
synaptic changes in sensory-motor mappings and 
sensory receptive fields. The main contribution of the 
present paper is the further demonstration that, 
without any additional assumptions, value-dependent 
learning can be usefully applied to the afferent con- 
nections to value systems themselves. Value itself 
thereby becomes adaptive in somatic time, with sev- 
eral important consequences. 

In this discussion, we first consider the most criti- 
cally salient features of value systems in the present 
model as well as some possible neurobiological sub- 
strates for value systems. We then review the results 
of the simulations and relate them to the experimen- 
tal literature. Finally, we analyse the relationship of 
value-dependent learning to temporal difference 
models of reinforcement learning. 

Value, value-dependent learning, and value systems 

From a selectionist perspective, there are in general 
no programs, sets of instructions, or teachers explic- 
itly controlling synaptic changes in neuronal sys- 
tems.“.r2 There are, however, structures or 
constraints in the phenotype that reflect prior evol- 
utionary selection for what we have called innate 
values.39 Certain neural or behavioral events may 
acquire value if they predict events with innate value 
and therefore contribute to adaptive behavior and 
phenotypic fitness. In the present simulations, for 
instance, foveation (i.e. the behavior itself and the 
neuronal activity that brings it about) reflects ac- 
quired value, because foveation is likely to be fol- 
lowed by favorable consequences (i.e. reward, food 
ingestion). 

Value-dependent learning refers to the way in 
which local synaptic changes in the nervous system 
can be influenced by global modulatory signals that 
are triggered by events associated with value, either 
innate or acquired. In general, these changes will be 
such that there is convergence towards adaptive 
behavior. For instance, in this and previous simu- 
lations (c.f. Fig. 19 in Ref. 39; Fig. 3 in Ref. 13) 
acquiring the ability to foveate an arbitrarily posi- 
tioned stimulus requires the value-dependent for- 
mation of ordered sensorimotor maps. Similarly, in 
the present work, auditory discrimination learning 
requires appropriate connections from Ain to Al and 
from Al to SC. A consequence of broadcasting a 
global value signal to a large number of brain areas 
is that receptive field properties in sensory areas may 
change so as to preferentially sample cues with value. 
In the present simulations, this property appeared as 
adaptive changes in the tuning curves of Al units and 
it closely corresponded to experimental results ob- 
tained by Weinberger et aL5’ Their experiments 
demonstrate a CS-specific modification of frequency 
receptive fields in auditory cortex during condition- 

ing. Tuning curves shift so that the new “best fre- 
quency” becomes that of the CS. Moreover, pairing 
of exogenous acetylcholine and a single tone results 
in a similar shift, with maximal change at the fre- 
quency paired with acetylcholine.32 

We consider neural value systems to be brain 
structures that are particularly suited to mediate 
value-dependent learning (we discuss several candi- 
dates below). Such systems possess some important 
structural and functional characteristics, many of 
which are represented in a schematic way in the 
present model. Through diffuse projections, the value 
system VAL modulates synaptic changes in most 
areas of the simulated brain. VAL shows a transient 
response to sustained stimuli and it signals salient 
events, specified at first innately and then by progress- 
ive adaptation to the environment. Its afferent con- 
nections are subject to two selective mechanisms: (i) 
overall patterns of connections that are specified 
epigenetically during development can be selected by 
evolution over generations and mediate intrinsic or 
innate value; and (ii) particular connections can be 
selected by value-dependent synaptic changes within 
the organism’s lifetime and mediate adaptive or ac- 
quired value. 

Innate and acquired value 

As shown in our previous work, innate value 
(related to various protective reflexes, consummatory 
activities, and homeostatic needsi2) is both necessary 
and sufficient to account for a significant degree of 
behavioral adaptation, both in complete simu- 
lations’9.48 and in a real-world device.r3 Being evolu- 
tionarily determined, however, innate value cannot 
be precisely tuned to a particular environment or 
to the individual needs of a specific phenotype in 
somatic time. Such tuning could be achieved, how- 
ever, by the evolution of means that enable the 
acquisition of value in somatic time. In the present 
study, we demonstrate that allowing value-dependent 
plasticity in the inputs to the value system itself 
effectively represents one such means. The result is 
acquired value, i.e. value systems come to respond to 
an increasing variety of neural and behavioral events, 
events that reliably precede others that are innately 
valuable or have already acquired value. 

The simulations carried out here reveal several 
advantageous properties of acquired value. First, 
when value-dependent synaptic changes were allowed 
in the connections to the value system itself, foveating 
behavior was acquired earlier and more reliably. 
Second, the simulations show that acquired value can 
be important for high-order conditioning. For 
example, the model was able to learn a discrimination 
task without direct reinforcement: when the periph- 
eral visual stimulus that had acquired value in the 
first stage was used to reinforce discriminative re- 
sponses to acoustic stimuli of different frequencies, 
acquired value was manifested by the connections 
from units in Vl to Ace. Disconnecting ACe from 
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Vl eliminated both acquired value and discrimi- 
nation learning. This simulated lesion study paral- 
lels an experiment in monkeys by Gaffan and 
Harrison” in which a visual discrimination task was 

reinforced using an auditory secondary reinforcer. 
Disconnection of the amygdala from the modality 
of the secondary reinforcer severely impaired dis- 
crimination. Third, the simulations show that, under 
certain circumstances, acquired value enables the 
model to override a temporary aversive stimulus in 
order to get to a potentially valuable situation. If 
the relevant afferents to the value system are elimi- 
nated or rendered not plastic, this is not possible. 
In the example above, if Vl is disconnected from 
Ace, discrimination learning is determined only by 
the immediate and innately specified consequences 
of an action. 

Candidate neural substrates for value systems 

Neuromodulatory systems in the brain23~3’~35 are 
natural candidates for acting as value systems. While 
we do not suggest that any particular neurotransmit- 
ter system is the value system or is exclusively con- 
cerned with value, both cholinergic and aminergic 
systems seem to satisfy the major requirements. Con- 
siderable evidence suggests that monoaminergic and 
cholinergic neurotransmission can modulate endur- 
ing changes in synaptic strength.22 There is evidence 
for the modulation of (i) experience-dependent 
changes in synaptic strength,3~5~25~37 (ii) behavioral 
p]asticity,29,30.45.49 and (iii) long term potentiation of 

synaptic strength. 2’,26 Cholinergic and monoaminer- 
gic systems have very diffuse projections.3’.35 Cholin- 
ergic and aminergic neurons respond to stimuli that 
have behavioral significance.24z28 

Areas which project directly or indirectly to these 
neuromodulatory systems (e.g. LHA4’ and the amyg- 
dala2’) can respond to stimuli coming from many 
sensory modalities. 36,42,43 In particular, there is evi- 
dence that the amygdala acts as a gateway through 
which salient events, both innate and learned,27*34 may 
gain access to cholinergic” and dopaminergic cell 
groups and thereby influence learning.8,15,24.27.29,34 
In the model, ACe receives inputs not only from 
visual and auditory areas, but also from the LHA, 
which is implicated in many essential homeostatic 
functions.33,4’,47 

Learning-phase speciJicity of the responses of value 
systems 

An important characteristic of value systems is 
their adaptation to sustained input, i.e. their tendency 
to respond preferentially to changes in their input. In 
the model, while ACe responds in a sustained way to 
its input, VAL only responds to changes in the input 
it receives from Ace. A consequence of the fact that 
the output of the value system is the time derivative 
of its input is that value-dependent modulation of 
plasticity is greatest when a behavior is incorporated 
into a learned sequence. As learning proceeds, early 

components of a behavioral sequence elicit value 
while late components lose this capacity. We have 
shown that this occurs in our simulations as indicated 

by a decrease in svA,_ at the point of foveation (Fig. 

5). Experimental support for this notion comes from 
the adaptation of dopaminergic neurons: Ljungberg 
et aL2* recorded unit activity in (cell groups) AS, A9, 
and Al0 during operant conditioning of a reaction 
time task. Monkeys had to reach towards a lever 
when a light was illuminated. During acquisition, half 
the recorded dopaminergic neurons were phasically 
activated by a drop of liquid, delivered in order to 
reinforce the reaching movement. With established 
task performance, however, these neurons lost re- 
sponses to this primary reward. 

During discrimination learning in the present 
model, we observed the transfer of value-system 
responses from the conditioned reinforcer (visual 
stimulus, CS,) to the conditioned stimulus (tone, 
CS,) that predicted the CS, This resulted in acqui- 
sition of the capacity to elicit discriminative eye 
movements. In the experiment by Ljungberg et aL2* 
described above, the loss of dopaminergic neuron 
responses to the primary reward was associated with an 
increasing response to the conditioned light stimulus. 

Because such a transfer depends on plasticity in the 
connections between the modality of the discrimina- 
tive stimulus and the amygdala (e.g., Al +ACe 
projections), the model suggests an interesting and 
somewhat counterintuitive experimental prediction: 
Transfer of unit responses in dopaminergic neurons, 
and in particular habituation of responses to a CS, , 
should be abolished by disconnecting the amygdala 
from the modality of the discriminative CS,. In the 
model, disconnection of ACe from Al was in fact 
found to abolish transfer of value responses and 
habituation to the light (results not shown). 

Constraints on the value model 

It is important to point out that the model has 
several limitations that require further comment. 
First, the link between foveation and reward is 
extremely simplistic. In the natural environment, 
many behaviors would precede and intervene be- 
tween foveating a visual target and appetitive reward. 
We did not model these behaviors explicitly. The 
main reason for using simple behavioral contingen- 

cies was to emulate experimental conditioning para- 
digms and thus relate our findings to the experimental 
literature. We have assumed that value-dependent 
linking of behavioral sequences could also operate in 
a natural environment. Second, we did not consider 
value-dependent plasticity in connections between 
motor units (e.g., intrinsic connections within SC). 
This is clearly a very interesting area which we plan 
to pursue in terms of procedural learning and skill 
acquisition. Third, all the stimuli were either single 
points or tones. This simplifying device meant that all 
the sensory cues were uniquely identified in some 
sensory space and this obviated the complexities of 
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perceptual categorization and choice that have been 
explicitly addressed in previous work from our lab- 
oratory.39,48 Provisional work using multiple visual 
stimuli of different colors shows that the current 
model can respond selectively to different wave- 
lengths and conjunctions of wavelengths and that the 
results can be extended into this arena. 

Relationship to temporal diSference models of re- 
inforcement learning 

While the work presented here is primarily based 
on our previous theoretical work on va1ue,13,39~48 there 
are links with several theories of learning and re- 
inforcement. An important characteristic of value 
systems is that their activity reflects the changes in 
their inputs. Because of this characteristic, the dis- 
charge of the value system is uncorrelated with its 
input (the derivative of a stationary stochastic process 
is uncorrelated with the process itself; see Ref. 9). As 
a consequence, runaway facilitation, which would be 
of no adaptive value, is avoided. 

The use of the time derivative of convergent sen- 
sory signals is also a key aspect of temporal difference 
(TD) models of reinforcement learning.46 TD models 
share with value-dependent learning the ability selec- 
tively to amplify behaviors that are initially generated 
by stochastic processes. This selection is based on 
reinforcement signals that are derived from the conse- 
quences of the total activity of the system. As has 
been found in TD models, stimuli that acquire value 
through value-dependent learning in the present 
model come to predict the occurrence of other valu- 
able events. There are, however, some qualitative 
differences in the nature of this prediction which we 
describe in the Appendix. Unlike TD models, value- 
dependent learning requires no special apparatus to 
construct associative strengths (see Equation 2.1). 
The same rule for changing synaptic strengths is used 
for all types of connections, whether they pertain to 
acquiring value, to sensorimotor integration, or to 
the configuration of receptive fields. Most impor- 
tantly, the notion of value is firmly rooted in evol- 
utionary biologyi and it has specific neurobiological 

correlates in both anatomy and physiology. 

CONCLUSION 

Several important properties of value acting in 
the nervous system are seen in its dynamic, con- 
text-sensitive character and its role as a constraint 
rather than as a precise or fixed set of instructions. 
Value is not an invariant that can be used to label 
a known world either in evolutionary or in somatic 
time. Inasmuch as the environment is unpredictable 
and open-ended and no two individuals are the same, 
the value of an event cannot in general be specified 
precisely a priori. This limits the usefulness of value 
descriptors that ignore either the history of the 
individual or the context in which they are exercised. 
On the other hand, this very limitation makes appar- 
ent the advantage in evolutionary terms of having 
value systems that are themselves adaptive in somatic 
time. In this paper, we have shown that this can 
be achieved with no further assumption than the 
requirement that connections to value systems them- 
selves be under the same selectional constraints as 
those governing sensorimotor integration. 

Evolutionary and somatic selection interact in in- 
teresting ways.12 Given value systems with the appro- 
priate anatomical and physiological characteristics, 
value can mediate its own acquisition during an 
organism’s lifetime. During evolution, natural selec- 
tion will favor value systems if their tendency to 

support acquired value and build up appropriate 
behavioral sequences leads to increases in adaptive 
fitness. Thus, while value systems constrain the selec- 
tion of adaptive behavior in somatic time, they are 
also subject to selection in evolutionary time for those 
anatomical and neurophysiological characteristics 
that increase fitness. 
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APPENDIX 

Value-dependent learning provides a paradigm for the acquisition of adaptive behavior that does not require an external 
“teacher” to provide detailed error signals dependent on preestablished criteria of correct output, as employed in so-called 
“supervised” learning. In this Appendix, we compare and contrast value-dependent learning with reinforcement learning, 
which has emerged as a distinct alternative to supervised and unsupervised learning in neural network and control theory. 
One important class of reinforcement learning models comprises TD models.’ The basic hypothesis of these models is that 
“reinforcement is the time derivative of a composite association combining innate (US) and acquired (CS) associations”.4h 
The similarity is evident to the present proposal for value-dependent learning, in which input to neuronal value systems 
(in the model, sAce ) is differentiated to produce V, a global signal that modulates synaptic plasticity. The models differ in 
detail in that the TD model (as presented in Ref. 1) explicitly includes a specific formalism for predicting future 
reinforcement as a function of system inputs; in value-dependent learning, this function emerges implicitly, and more 
generally, as a consequence of the activity of neurons in value systems that have no special mechanisms adumbrated for 
this purpose. Here, we examine this key difference in some detail, using a continuous time formulation. (Our model may 
be considered a discrete-time approximation of this formulation.) 

The input to a value system can be thought of as a potential to elicit value that varies according to the current state 
of the system and of the environment, which may be considered to define a location in an abstract, time-independent state 
space. An analogy can be drawn between an unchanging potential field (corresponding to these inputs) and the energy 
(corresponding to value) associated with movement in that field, which depends upon the field gradients and the direction 
of motion.4 In what follows, let this potential be denoted by I#J (in the model $J = s*,--). Furthermore let 4 have innate and 
acquired components $J = 4, + 4, [in the model, 4, = sLHA, 4, = s (v,,A,)]. Using this distinction between the potential (4) 
and value (V), we can consider reinforcement learning in the light of value learning. 

In the TD model, the equality 

AC, = B ]A (t + 1) + y&(2 + 1) - &(r )I q x, (Eqn 2.1) 

defines the update rule for C,, which is the associative strength of US i, a,, p and y are positive constants, and dp is here 
called prediction and is Z C,X,. x, represents a trace of the ith CS, and i (t ) is the effectiveness of the US. The condition 
for the associative strengths to stabilize (AC, = 0) is: 

or on repeated substitution: 

&(t)=A(f + l)+yi(t +2)+y2a(t + 3). .y”i(t +n + 1). (Eqn 2.2) 

Because y < 1, 4,(t ) represents a discounted sum of expected I, or the effectiveness of unconditional stimuli that will be 
encountered in the future. The discounting depends on how fast y ” decays. This interpretation of d,(t) as a predictor of 
innate associations allows the system to derive an estimate of reinforcement in the absence of a US. From the perspective 
of stochastic dynamic programming, the associative strengths &(t ) can be thought of as representing gradients of secondary 
reinforcement,2 which intervene between sporadic unconditioned stimuli. 

In the case of value-dependent selection, the potential to elicit innate value, $,, represents some valuable internal or 
autonomic state, which increases after the US and then decreases monotonically with time. Without loss of generality, 
d4i/dt = 1. - x(t) where X(C) is an arbitrary non-negative function of time and value is: 

V = d4/dr = d(d, + r$,)/dt = I(t) - x(t) + d&(t )/dt. 

The requirement for connectivity (c,) to stop changing is V = 0 or: 

d&(r )ldt = x(t ) - A(1 ). (Eqn 2.3) 
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Compare this with the equivalent equation, in continuous time, for the TD model: 

d&(r )ldr = (1 - Y M+,(t) - 1 (t ). 

Solutions of the differential equations 2.3 and 2.4 are: 

eeO(‘,“)l (u) du. 

where: 
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(Eqn 2.4) 

(Eqn 2.5) 

0 (4 U)Value = “xX(Wa(+ 

8 (1, u) TD model = I “(l-y)dr=(I-y)(u-r). 

0 (t, u) > 0 in both cases and d,(t) represents a discounted prediction of I (t ). Equation 2.5 can be thought of as a 
convolution of I (t ) where (i) the convolution function (discounting function) changes with time and (ii) it runs from the 
present into the future. 

The main difference between TD and value learning is in the nature of the discounting, which is fixed in the TD model 
but self-adjusting and dynamic in value learning. The nature of this adjustment means that discounting is greatest shortly 
after an US, when, assuming convergence has been reached, 4, is falling fast and 4, is low (note 4, + I#J, = constant). 
Conversely, the effective prediction becomes more far-sighted with time elapsed since the last restoration of homeostasis 
(increase in +i). In other words, in an environment with sparse and infrequent unconditioned stimuli (innate value), the 
average prediction is more long-ranging. In a sense, reinforcement learning can be considered a special case of value learning, 
in which x(t) = (1 -~)4~(t). 

For convergence to occur, V must asymptotically approach 0. Equivalently the sum (or more generally the interaction) 
of 4, and 4, is constant. This means that innate and acquired value should complement each other. This phenomenon is 
seen in Fig. 4 where connection strengths from Vl to ACe are low where there is innate value and high where there is no 
innate value. This complementary interaction means there is a smooth progression from neuronal events with acquired value 
to events with innate value. Once established, and in the absence of changes in environmental contingencies that would 
affect innate or acquired value responses, this progression is exempt from further selective pressure in somatic time (because 
at later stages of learning, V tends to become small). A final experimental prediction ensues from this observation: in the 
absence of an expected reward, value system responses should show a decrease in activity at the time when the reward would 
normally be delivered. 


