
Invited Review

Design and Analysis of fMRI Studies With
Neurologically Impaired Patients

Cathy J. Price, PhD,* Jenny Crinion, PhD, and Karl J. Friston, MD

Functional neuroimaging can be used to characterize two
types of abnormality in patients with neurological deficits:
abnormal functional segregation and abnormal functional
integration. In this paper we consider the factors that in-
fluence the experimental design, analysis, and interpreta-
tion of such studies. With respect to experimental design,
we emphasize that: 1) task selection is constrained to tasks
the patient is able to perform correctly, and 2) the most
sensitive designs entail presenting stimuli of the same type
close together. In terms of data preprocessing, prior to
statistical analysis, we note that structural pathology may
call for constraints on nonlinear transformations, used by
spatial normalization, to prevent distortion of intact tissue.
This means that one may have to increase spatial smooth-
ing to reduce the impact of inaccurate normalization. Im-
portant issues in statistical modeling concern the first level
of analysis (estimation of activation within subject), which
has to distinguish correct from incorrect responses. At the
second level (between subjects), inference should be based
on between-subjects variance. Provided that these and
other constraints are met, deficits in functional segregation
are indicated when activation in one or a set of regions is
higher or lower in patients relative to control subjects. In
contrast, deficits in functional integration are implied when
the influence of one brain region on another is stronger or
weaker in patients relative to control subjects.
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THIS PAPER IS CONCERNED with the experimental
design and analysis techniques that are currently used
in fMRI studies of patients with neurological deficits.
Most fMRI studies of clinical cohorts aim to identify the
brain areas in which changes in regional cerebral acti-
vation occur in response to pathology (i.e., a task by
pathology interaction). The questions asked can be di-
vided broadly into two classes involving either func-
tional segregation or functional integration (Fig. 1).
Functional segregation refers to the segregation of pro-

cesses in different brain regions. This is investigated by
identifying brain regions that are activated by one task
more than another. Functional integration refers to
task-dependent processing that emerges from changes
in the interactions among brain regions. The distinction
between studies of functional segregation and integra-
tion is crucial for imaging patients because some pa-
tients suffer from abnormal functional segregation (i.e.,
the function of a discrete cortical area is abnormal)
while others suffer from abnormal functional integra-
tion (i.e., abnormal interactions among different brain
regions).

Studies of abnormal functional segregation attempt
to correlate a syndrome, or particular symptoms, with
changes in cortical responsiveness. For instance, stud-
ies of schizophrenia have shown that patients have
abnormal responses in the frontal lobes (1–3), and that
this hypofrontality correlates with the expression of
psychomotor poverty (4). These results imply a region-
ally specific pathology that is consistent with abnormal
functional segregation. However, this does not explain
why, in schizophrenia, a region such as the frontal lobe
might show normal activity in some contexts and ab-
normal activity in others. The alternative explanation is
that the symptoms of schizophrenia reflect abnormal
integration, i.e., abnormalities in how different brain
regions interact with one another. Specifically, the fron-
tal lobes may function normally when they interact with
one set of regions but abnormally when they interact
with another set. To demonstrate abnormal functional
integration in schizophrenia, Friston and colleagues (5)
showed that for word generation relative to word repe-
tition, prefrontal and superior temporal activity was
negatively correlated in control subjects but positively
correlated in schizophrenia. This complete reversal of
large-scale prefronto-temporal interactions in schizo-
phrenics indicates abnormalities in regionally specific
functional connectivity. The reversed correlations can
be regarded as a task-specific failure of prefrontal cor-
tex to suppress activity in the temporal lobes (or vice
versa) (6–9).

In the following, we provide a fairly comprehensive
and practical guide to some key issues that should be
considered in the design and analysis of fMRI studies of
patients. The paper is divided into five sections. The
first deals with issues related to experimental design of
patient studies, including constraints on task and stim-
ulus selection, and issues related to presentation pa-
rameters such as the interstimulus interval and order
of conditions. The second section is concerned with the
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preprocessing steps that are required to correct for
head motion and compare different patient popula-
tions. The third is concerned with how regional activa-
tion is estimated. The fourth and fifth sections deal with
the analysis of abnormal segregation and functional
integration, respectively.

EXPERIMENTAL DESIGN

Task and Stimulus Selection

In fMRI, brain regions are activated by changing stimuli
or tasks. Sensory and perceptual processes are typi-
cally investigated with stimulus manipulations (e.g.,
view colored vs. black and white shapes), and motor or
high-level cognitive processes are typically investigated
with task manipulations (e.g., moving the left hand vs.
the right hand, or verbal fluency vs. verbal repetition).
The most informative designs manipulate two or more
variables, including both the task and the stimuli, as
this allows the effects of each variable to be estimated in
different contexts, thereby enabling context-specific re-
gionial responses to be detected. These “factoral” de-
signs, (10) are particularly appropriate for studying
functional integration, which usually focuses on con-
text-dependent changes in the coupling among differ-
ent brain regions.

For patient studies, the desired task is usually di-
rected toward the sensory, motor, or cognitive pro-
cesses that are impaired relative to normal subjects.
However, task selection is not easy to perform in pa-
tients with behavioral deficits, because if a process is
impaired, how do you engage the impaired process to
measure the neuronal correlates? Moreover, if a patient
is presented with a task they can not perform normally,
how do you control for abnormal processing demands
in areas that are fully functional? fMRI studies of pa-
tients therefore need to employ tasks that the patients
can perform. Since this contrasts with the design of
neuropsychological studies that typically require tasks
with impaired responses, we will start this section with
two examples of how task difficulty affects neuronal
responses in functionally preserved areas (see also Fig.
2). Our first example is concerned with how impaired
perceptual analysis influences subsequent cognitive re-

sponses. The second example describes how impaired
motor responses affect perceptual processing.

Our example of how perceptual difficulties affect sub-
sequent cognitive responses comes from the develop-
mental dyslexia literature. By definition, developmental
dyslexics have poor reading accuracy. Therefore, if they
are engaged in an fMRI study involving reading, they
are likely to read fewer words accurately than the con-
trol subjects with whom they are compared. Fewer
reading responses will result in less activation in read-
ing areas (11–13), but how can these abnormal neuro-
nal responses be interpreted? They could reflect brain
regions that are physiologically compromised, or they
could occur in fully functional brain regions that do not
activate normally because of problems that originate in

Figure 1. Functional segregation and integra-
tion. Functional segregation (left side) refers to
the segregation of different brain regions ac-
cording to their function. In this illustration,
regions A1 and A2 are activated by task 1,
while regions B1 and B2 are activated by task
2. Damage to one region (e.g., A1 indicated by
dotted lines) impairs performance on task 1
but not on task 2. Functional integration refers
to functions that depend on how regions inter-
act with one another. In the illustration, region
A1 is involved in two different tasks: one that
depends on its interactions with region A2, and
one that depends on its interaction with region
A3. Damage to the connections between re-
gions A1 and A3 will disrupt responses in A1
when the task requires regions A1 and A3, but
not when the task requires regions A1 and A2.

Figure 2. Task selection. This figure summarizes two points.
The first is that brain regions and their functions are interde-
pendent. A deficit at any functional level will affect the func-
tions in all other regions. It then becomes difficult to determine
whether abnormal responses are due to a deficit in that region
or in another region. The second point is that functional re-
sponses in any given region can be tested by selecting a range
of tasks that tap similar processes to the impaired task. In the
example given, one can assess visual, semantic, and speech
output processing in dyslexics who cannot read by attempting
to tap the same processes during picture-naming.
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other brain regions. For instance, if dyslexic partici-
pants have a problem at the level of perceptual process-
ing, normal responses in speech production areas will
be prohibited. It then becomes impossible to determine
whether abnormal neuronal responses are due to a
primary physiological deficit or are the secondary con-
sequence of impaired processing in an earlier region.

Our example of how motor difficulties influence per-
ceptual responses is based on patients with speech
production deficits. If such patients are engaged in an
fMRI paradigm that involves speech production (e.g.,
auditory repetition), their neuronal activation is likely
to be abnormal. However, without further investigation,
it is not possible to distinguish abnormal neuronal re-
sponses that cause the speech production deficit from
those that are a consequence of the speech production
deficit. Specifically, if the patient is unable to repeat the
words he or she hears, the level of auditory attention
and perceptual analysis may be less than normal,
which may lead to less activation in areas associated
with auditory perception. In other words, the abnormal
responses in these areas are a consequence of the task
not being performed, rather than an indication that
there is a deficit in the perceptual processing areas.

How can these task-performance confounds be
avoided? The obvious approach is to engage subjects in
tasks they can perform at the same level as the control
subjects. This can be achieved by making the task rel-
atively easy or selecting a task that does not directly
engage the impaired behavior (see Fig. 2). For example,
dyslexics (and their control group) could be scanned
while they read familiar words (“cat,” “dog,” “house,”
“and,” etc.) (14,15). Alternatively, if dyslexics are not
able to read any words but otherwise have intact lan-
guage skills, they could be scanned while they perform
tasks that rely on processes that are similar to reading
and engage the same neuronal systems (e.g., picture
naming) (16). Another approach is to vary the task dif-
ficulty systematically (17). This allows the performance
confounds to be modeled statistically and discounted
as an explanation for regional effects and their interac-
tion with pathology. Similarly, in group studies, when
performance varies among patients, the impact of per-
formance on activation can be tested directly in the
statistical model. For example, if activation in some
brain regions is higher in patients with better perfor-
mance, there is a direct link between good behavior and
activation (18–20). In the section entitled Second-Level
Analyses of Abnormal Functional Segregation, we will
return to ways of dealing with performance confounds
at the level of statistical analysis.

One of the distinctions that arises in the discussion of
task performance above is the difference between ex-
plicit paradigms that directly tap the process of interest
(e.g., reading in dyslexics) and implicit paradigms in
which the process of interest is engaged indirectly. In
functional imaging paradigms, implicit paradigms need
not involve any task change, but can be based solely on
stimulus changes. Indeed, functional imaging can de-
tect activation elicited by a change in stimulus even
when the task and response times remain constant. For
instance, face-naming may elicit emotional responses
that do not affect naming-time but do change the dis-

tribution and composition of hemodynamic responses.
Functional imaging can therefore detect activation re-
lated solely to changes in facial expression (21,22). In
this context the effect of facial expression is not neces-
sary for the task but is invoked by the stimulus change
(i.e., it induces incidental processing). Detecting im-
plicit and incidental processing can be particularly use-
ful for studying patients with limited behavioral re-
sponses. For example, Morris et al (21,22) reported a
functional imaging study of a patient who was blind in
his right hemifield. Although the patient was not aware
that fearful faces were being presented to his right
hemifield, discriminatory amygdala responses were de-
tected.

In summary, when the motivation for a functional
imaging study of the patient is a better understanding
of the patient’s sensorimotor or cognitive deficit, it is
difficult but necessary to select a paradigm the patient
can perform. Task manipulations are appropriate when
the patient can perform the task, and necessary if the
question relates to whether the neuronal systems that
are necessary to perform the task are abnormal. Stim-
ulus manipulations are appropriate when the patient
has limited abilities, and are necessary to make deduc-
tions about normal activation in the context of other
cognitive deficits. For studies of abnormal integration,
both stimulus and task manipulations are usually re-
quired to allow context-dependent changes in regional
interactions to be assessed.

Presentation Parameters

Once the tasks and stimuli have been selected, the
presentation parameters (i.e., the rate of stimulus pre-
sentation and the ordering of conditions) must be spec-
ified. As a general rule, the interstimulus interval
should be kept as short as possible (given psychological
constraints) and stimuli of each type should be pre-
sented together (e.g., AAAABBBB) rather than random-
ized or alternating (e.g., ABAABABB). This is because
the hemodynamic response to each stimulus is pro-
longed, reaching its peak after approximately 4–5 sec-
onds, and returning to baseline after 8–10 seconds. If
subsequent stimuli of the same type arrive in close
succession, the responses to each stimulus will sum-
mate and thus increase the amplitude of the signal.
Indeed, the summation of responses from successive
stimuli is thought to be approximately linear when the
interstimulus interval (ISI) is more than a second or so
(23). The summated response from a train of similar
stimuli will not only be greater than that from a single
stimulus, its time course will also be closer to the
known shape of the hemodynamic response (see Fig. 3).
This allows for greater sensitivity in the design because
signal estimation is more efficient. Put simply, if you
can elicit hemodynamic responses with the same time-
constants as the hemodynamic response function (i.e.,
several seconds), you will be able to detect them more
efficiently.

For single-case functional imaging studies of pa-
tients, sensitivity is particularly important. This will be
maximized when the ISI is selected to be long enough to
enable intact performance but short enough to capital-
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ize on the peak activation generated from the summa-
tion of responses to successive stimuli. In some para-
digms, it may also be necessary to ensure that the trials
are not predictable (e.g., to avoid expectations and at-
tentional sets that may confound differences among
blocks). In this case, the degree of bunching of the
stimuli of one type can be varied over blocks (e.g.,
AABBBBBAAAAABBAAABBB).

In summary, the nature of the hemodynamic re-
sponse means that the most sensitive designs for de-
tecting activation generally involve blocked rather than
randomized trials and an ISI that is long enough to
optimize the number of correct responses but short
enough to maximize signal.

PREPROCESSING FMRI DATA

Four preprocessing steps are used for fMRI data: re-
alignment, coregistration, spatial normalization, and
spatial smoothing. Each will be discussed in turn (see
left side of Figs. 4 and 5).

Realignment

The purpose of realignment is to remove changes in
signal intensity introduced by head motion during the
scanning session. If the variance associated with head
motion is not removed, it will be attributed to error.
Therefore, realignment is important for increasing sen-
sitivity to signals of interest. It is implemented by esti-

mating and minimizing linear transformations between
the first scan and each subsequent scan. Realignment
can be regarded as a simple form of spatial normaliza-
tion (see below), in which subsequent scans are spa-
tially normalized to match the first. It is simple because
the transformation is a rigid-body linear transformation
(i.e., the changes are the same across the whole image),
whereas in spatial normalization transformations can
also be nonlinear (i.e., changes in one area of the brain
differ from those in other areas of the brain).

Coregistration (for Single-Subject Analyses)

For examination of single-subject responses, coregis-
tration can be used to realign the functional images to
a high-resolution structural image. This allows for a
more accurate localization of the signal’s origin and its
anatomical designation.

Spatial Normalization (for Group Analyses)

Spatial normalization is a technique that transforms
each brain image into a standard space defined by a
template image. It is necessary for intersubject averag-
ing and statistical comparisons between different
groups of subjects, and when standard coordinates are
required to specify the location of activations. The algo-
rithms work by minimizing the difference between the
image to be normalized and the template image. This
involves both linear and nonlinear transformations.

Figure 3. Stimulus presentation. The effect of stimulus timing (above) on the evoked hemodynamic response (below). When
stimuli are presented in close succession, experimental variance is increased because the amplitude of the hemodynamic
response increases within a block (i.e., the signal summates from trains of stimuli of the same type) and decreases between
blocks (i.e., the signal has time to return to baseline). The increased experimental variance increases the likelihood of detecting
small activations.
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The linear (affine) transformations scale the volume by
the same amount (e.g., uniform shrinkage or stretching
to meet the size of the template). The nonlinear trans-
formations are concerned with local shape (e.g., shrink-
ing one region within a plane but stretching another
region), and their contribution is determined by the
degree of regularization. High regularization limits non-
linear changes, whereas low regularization allows more
nonlinear changes.

In the presence of a focal lesion, automated algo-
rithms attempt to reduce image mismatch between the

image to be normalized and the template to which it is
being matched. As the template is typically derived from
normal brains, nonlinear transformations can lead to
inappropriate image distortion at the site of the lesion
where the brains to be normalized have areas of signal
intensity that are very different compared to the corre-
sponding area of the template. In other words, the spa-
tial normalization may distort the location of intact tis-
sue to diminish the contribution of the lesion. For
studies of patients with lesioned brains, one solution to
aid the normalization process is to limit the nonlinear

Figure 4. Data analysis stages. This schematic depicts the transformations that start with an imaging data sequence and end
with an SPM. SPMs can be thought of as “X-rays” of the significance of an effect. Voxel-based analyses require the data to be in
the same anatomical space. This is implemented by realigning the data (and removing movement-related signal components that
persist after realignment). After realignment the images are subjected to spatial normalization so that they match a template that
already conforms to a standard anatomical space. After smoothing, the GLM is employed to estimate the parameters of the
model, and derive the appropriate univariate test statistic at every voxel. The test statistics that ensue (usually T or F statistics)
constitute the SPM. The final stage is to make statistical inferences on the basis of the SPM and random field theory, and to
characterize the responses observed using the fitted responses or parameter estimates.

Figure 5. Spatial normalization and coregistration. Axial views of fMRI images at different stages of processing: (a) realigned
fMRI scan from a patient with an extensive left hemisphere infarct, which appears as an area of low signal in the left frontal and
temporal regions; (b) after spatial normalization; (c) after spatial normalization and smoothing; (d) a high-resolution structural
T1 MR image from the same patient after coregistration to the functional scan; (e) significant activation differences (in white)
displayed on the coregistered MRI scan for more accurate localization.
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contributions (i.e., use high regularization). However,
this negates the contribution of nonlinear deforma-
tions, which can greatly improve the quality of the nor-
malization, both for normal brains (24), and for lesioned
brains (25). Although the affine transforms usually pro-
vide an acceptable match of the brain outline, they
cannot match local brain detail without disturbing
alignment elsewhere. For example, nonlinear normal-
ization can match the ventricular outline more accu-
rately to the template compared to affine-only registra-
tion. This is particularly important for the study of
stroke patients, who tend to have enlarged ventricles
consequent to their age or atrophy associated with the
lesion. The affine-only procedure may therefore result
in a significant difference between each subject’s mean
image and the template to which the images are being
matched.

Another solution that was introduced to reduce spa-
tial normalization problems in patients is cost-function
masking (25). Cost-function masking excludes the le-
sioned area from the calculation of image difference.
Therefore there is no attempt to minimize image differ-
ences in the area of the lesion, and the lesion does not
bias either the linear or nonlinear transformations else-
where in the brain. Note that masking the abnormal
region does not mean that areas under the mask re-
main untransformed; rather, a continuation of the so-
lution for the unmasked portions of the image is applied
to the area under the mask. This continuation will be
constrained to be smooth by the use of the nonlinear
regularization term in the normalization process. Brett
et al (25) evaluated the cost-function masking tech-
nique, and their results suggest that it is superior to
affine-only normalization.

In summary, detecting average activation across sub-
jects is dependent on successful spatial registration of
homologous brain areas. If scans from patients have
been normalized less successfully than scans for con-
trols, or for other patient groups, then average activa-
tion may be reduced or inaccurately located. Spatial
normalization in patients with abnormal brains can be
improved by reducing the impact of nonlinear transfor-
mations across the whole brain or specifically in the
region of interest (ROI) using cost-function masking.

Spatial Smoothing

To increase the signal-to-noise ratio (SNR), validate the
use of parametric statistical tests, and fulfill the lattice
assumption of random field theory, fMRI data must be
smoothed spatially. This is achieved by applying a point
spread function (PSF, Gaussian kernel) with a width
that is determined by the size of the voxels used in data
acquisition and the size of the expected signal change.
For patient studies, spatial smoothing at the second
(between-subjects) level may have to be higher than
normal because of increased between-subjects disper-
sion in the location of local structures.

FIRST-LEVEL STATISTICAL ANALYSES

Statistical analysis of patient studies usually involves
estimation of activation within a patient, and then be-

tween-subjects comparisons of activation in patients
and normal controls to assess the degree of abnormality
(a test for task by pathology interaction). Thus there are
two distinct stages to the analysis, which we will refer to
as first- and second-level analyses. In this section we
will discuss the first-level estimation of significant ac-
tivation within a patient (see right side of Fig. 4). In the
following section we will discuss the second-level com-
parison of patients with normal controls.

General Linear Model (GLM)

Estimation of regional activation in response to an ex-
perimental condition is usually based on the GLM,
which partitions the observed neurophysiological re-
sponse into a linear combination of 1) components of
interest (e.g., variance of interest caused by a change in
condition or performance), 2) confounds (e.g., motion
artifacts or low-frequency variations in signal due to
aliased biorhythms), and 3) error. Collectively these
sources of variance constitute the design matrix.

Nonsphericity Correction

In parametric tests, error variance is usually assumed
to be spherical (i.e., distributed identically and inde-
pendently over observations). However, error variance
is not always spherical. For example, in single-subject
analyses, nonsphericity can arise due to serial autocor-
relations (the error at any given time depends on that
which occurred during a previous time step). Depar-
tures from sphericity require a nonsphericity proce-
dure. This involves estimating the nonsphericity and 1)
decorrelating the error terms so that they are indepen-
dent, or 2) adjusting the degrees of freedom post hoc
(c.f., the Greenhouse-Geisser correction).

Classic Inference

Deductions concerning the size of the activation relative
to error variance are normally based on one of two types
of statistical test. The F-statistic tests the null hypoth-
esis that all of the effects are zero, while the T-statistic
is used to test whether a particular contrast or differ-
ence between two conditions is zero. To find regionally
specific effects, F and T statistics from functional imag-
ing data are calculated in multiple voxels across the
whole brain. These statistics constitute a statistical
parametric map (SPM). The likelihood that voxels will
be activated by chance is therefore very high. For in-
stance, if T-statistics are generated in 10,000 voxels,
then 500 voxels would be expected to be activated by
chance using a conventional cutoff of P � 0.05. To
correct for the number of false positives, the P-value
has to be adjusted. However, it is not simply the case
that the number of independent measurements corre-
sponds to the number of voxels, because neighboring
voxels will show similar responses (particularly after
spatial smoothing). Correction for multiple compari-
sons therefore requires an estimation of the number of
resolution elements that correspond to the number of
independent measurements (RESELS). For example, in
the SPM analysis package, the theory of random fields
is introduced as a means of correcting for multiple com-
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parisons in the context of continuous, spatially ex-
tended statistical fields. The ensuing adjustment to
each voxel’s P-value plays the same role as the Bonfer-
roni correction in a family of discrete statistical tests.

Brain Inclusion Mask

In addition to correcting for multiple comparisons, the
analysis also has to exclude data from areas that are
not brain. This can be implemented in many ways, but
requires some special consideration in the context of
brain-damaged patients. For example, if a patient has
extensive brain damage, the signal intensity may not
match what is expected from brain tissue, and these
voxels might therefore be excluded from the statistical
analysis. Consequently, for statistical analysis of dam-
aged brains, the brain inclusion mask must be speci-
fied very carefully.

SECOND-LEVEL ANALYSES OF ABNORMAL
FUNCTIONAL SEGREGATION

In a single-case study, the inference regarding the sig-
nificance of an effect is based on the error variance
within the same subject (within-subject variance). The
first-level analysis in a single subject therefore involves
a fixed-effect analysis because the subject effect is
treated as fixed. However, to infer abnormal regional
brain responses, the patient’s activation has to be com-
pared with that in a group of normal controls. A fixed-
effect analysis is not appropriate here because it does
not account for how the activation varies from one sub-
ject to another (between-subjects variance). A compar-
ison of patients with normal controls or other groups of
patients therefore requires the activation from each
subject (normal and patient) to be modeled indepen-
dently, and the patient to be compared with normals
using between-subjects variance. This is called a ran-
dom effects analysis because subjects are assumed to
be drawn randomly from a large population. The be-
tween-subjects variance is assumed to correspond to
the variance of the general population. In other words,
group studies need to assess the significance of an
effect relative to between-subjects variability. In most
neuroimaging analyses, random-effects models are im-
plemented in a multistage procedure. This simply
means that the effect (i.e., activation) is computed for
each subject using a first-level analysis, and then im-
ages of the effects enter the second level in exactly the
same way as the original images entered the first.

Patient Issues

There are five main factors that generate spurious or
confounding differences between groups. First, con-
founds can be introduced when there are differences in
the number of correct responses per subject/patient.
This relates to the problem of equating task perfor-
mance between the patient and normal controls (see
Experimental Design section). One option might be to
limit the statistical analyses to correct trials only (using
an event-related analysis in fMRI). This is effected by
modeling correct and incorrect trials separately and

comparing only like with like. However, to fully equate
efficiency, the distribution of correct trials in the con-
trols and the patients would have to be the same (c.f.,
arguments about “bunching” in Experimental Design).
Therefore, it may not be possible to equate task perfor-
mance post hoc, and it may be best to select stimulus
paradigms that maximize the correct responses in the
patient.

Second, artifactual differences between patient and
control groups can be introduced by using fixed-effect
analyses rather than random-effect analyses. As noted
above, fixed-effect analyses are based on within-subject
variance, and random-effect analyses are based on be-
tween-subjects variance. The reason why fixed-effect
analyses are sometimes used for between-group com-
parisons stems from conventional analyses of PET data.
In PET it is usually assumed that between-subjects
variance is approximately equivalent to between-
scans/within-subject variance. This is certainly not the
case in fMRI, where within-subject variance is substan-
tially lower than between-sessions or between-subjects
variance. Random-effect analyses are now standard for
between-groups comparisons in both PET and fMRI.
Although fixed-effect analyses are appropriate when
the inference is about some aspect of evoked responses
in the group studied, they are not appropriate for mak-
ing inferences about group differences. These require
random-effects analyses.

Third, activation may not be detected when patients
have been grouped together on the basis of similar
pathology (e.g., damage to temporal lobe areas). Such
analyses assume that patients do not vary in either the
shape or size of their lesions, or in the degree of neuro-
nal reorganization. Perilesional activation, for example,
is unlikely to be detected when patients are grouped
together. Inconsistent activations in patients may then
generate positive average differences between normal
and patient groups, and interpretation will be blind to
patient-specific responses. This limitation can be over-
come by modeling each patient as a single case study
within the same statistical model. Fourth, when data
from only one patient are available, there may be insuf-
ficient statistical power to detect activation in the pa-
tient. One way to improve sensitivity on the single-
subject level is to increase the number of scanning
sessions per subject and look for patient abnormalities
that are consistent across sessions (for instance, by
using conjunction analyses to look for abnormalities
that replicate across sessions).

Fifth, when neurovascular coupling is disrupted, ab-
normalities in the blood oxygen level-dependent (BOLD)
signal can arise even when neural activity is effectively
normal. As shown in Fig. 6, neurovascular coupling
depends on the cerebral blood flow (CBF), cerebral
blood volume (CBV), and cerebral blood oxygen con-
sumption (CMRO2). An extreme example of how neuro-
vascular coupling can be disrupted was provided by
Rother and colleagues (26), who reported a patient with
extra-cranial carotid stenosis that resulted in a nega-
tive BOLD signal in the affected hemisphere during
performance of a simple motor task. The carotid steno-
sis resulted in chronic vasodilation, which provided ad-
equate tissue perfusion but reduced the reactivity of the
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cerebrovascular circulation and thereby reduced the
dynamic range of the BOLD response. Although neuro-
nal activity in this patient was considered to be normal,
the difference in blood flow and oxygen concentration
between the resting and active states (which is the de-
pendent variable in fMRI studies) was limited and could
potentially have led to erroneous conclusions regarding
the underlying neural activity in the examined task. A
less extreme example was provided by Huettel and col-
leagues (27), who demonstrated that lower SNRs in the
visual cortex in normal aging resulted in statistically
significant differences among younger subjects, even
though the underlying distributions of neural activity
were similar. Some of the conditions that can cause
abnormal neurovascular coupling are listed in Fig. 7,
and include cerebral ischemia (28), carotid stenosis (26),
atherosclerosis in hypertension and diabetes (29,30), hy-
percholesterolemia (29), medications (31–34), and gliosis
secondary to neural injury (see Ref. 35 for a comprehen-
sive review of the topic). Simply screening patients and
controls for these neurovascular factors pre-fMRI will
greatly reduce the between subject variance and allow
more meaningful group comparisons. Other solutions in-
clude not directly comparing between groups on a single
task, but using group-by-task interactions to look at rel-
ative differences between tasks, and correlating the BOLD
signal with behavioral measures during scanning.

In summary, a comparison of patient and control
data is implemented in a two-stage procedure. The first-
level (fixed-effect) analysis estimates the effect size for
each patient or normal control. The second-level (ran-
dom-effects) analysis compares the activation for differ-
ent conditions or different subjects. In other words,
estimates from the first level become the data for the

second level, with inferences at the second level based
on between-subjects variance.

STATISTICAL ANALYSES OF ABNORMAL
FUNCTIONAL INTEGRATION

Studies of functional integration usually involve esti-
mates of functional and effective connectivity among
different regions. Essentially these are based on tempo-
ral correlations between activity in distant cortical re-
gions (e.g., Refs. 36–39). In electrophysiological stud-
ies, which record spike trains of neural activity, the
temporal scale is on the order of milliseconds. In func-
tional neuroimaging, which measures hemodynamic
changes, the temporal scale is on the order of seconds
and a significant correlation simply implies that activity
(pooled over the time scale) goes up and down together
in distant regions. Such temporal correlations imply
functional connectivity, which can be mediated in a
number of different ways. One way rests on direct con-
nections between the correlated regions (i.e., activity
changes in one region cause activity changes in another
region). The second way does not imply direct connec-
tions between correlated regions, but different regions
may share connections from a region that is the source
of correlated activity. The important point of this dis-
tinction is that functional connectivity does not neces-
sarily imply direct anatomical connections between cor-
related regions. To the contrary, regional coupling
among activities in different brain areas can be ob-
served even when the underlying anatomical connec-
tions are indirect and polysynaptic. Functional connec-
tivity refers simply to the presence of correlations, and
is not concerned with how they were caused. Inferences
about coupling among brain areas and changes in cou-
pling involve the concept of effective connectivity. Effec-
tive connectivity is defined as the influence one neuro-
nal system exerts over another, according to some
model of this influence. We discuss some commonly
used models below.

In this section we briefly discuss three different ap-
proaches for measuring functional integration: psycho-
physiological interactions, structural equation model-
ing (SEM), and dynamic causal modeling (DCM).
Critically, all three are concerned with how interactions
among brain regions are modulated by experimental
manipulations. In a psychophysiological interaction
analysis (40), the physiological response in one area of
the brain is regressed on activity in all other voxels. The
psychophysiological interaction is the change in the

Figure 6. Neurovascular coupling. Schematic of the transfor-
mation of neural activity elicited by a stimulus to a hemody-
namic response resulting in a BOLD signal. The BOLD signal
reflects the ratio of nonparamagnetic oxygenated hemoglobin
to paramagnetic deoxygenated hemoglobin. Neural activity al-
ters this ratio by influencing several factors, including the
CBF, CBV, and CMRO2 (46).

Figure 7. Clinical factors that influence cere-
bral neurovascular dynamics and coupling.
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regression slope in one psychological context relative to
another (e.g., view objects or fixation). This involves a
two-stage analysis. The first analysis extracts the activ-
ity in an ROI (see First-Level Statistical Analyses sec-
tion) and the second analysis uses the activity in the
ROI as an explanatory variable in the second-level sta-
tistical model to identify other regions in the brain
where activity is significantly coupled with the ROI, and
to determine how this coupling changes with condition.
A significant psychophysiological interaction means
that the contribution of one area to another changes
significantly with the psychological context. With re-
spect to patient studies, the psychophysiological inter-
actions can be used to assess whether there is an ab-
normal coupling between brain regions that depends on
the diagnosis (9).

In contrast to psychophysiological interactions, SEM
and DCM look at the interactions between a limited
number of regions. Therefore, both of these approaches
are based on some prespecified anatomical model,
which is usually constructed on the basis of known
anatomical connections or functional systems. SEM of
functional imaging data identifies connection strengths
that best predict the variance-covariance structure of
the empirical data (i.e., fMRI time series) under the
constraints of the prespecified anatomical model. With
respect to patient studies, when connectivity in one
subject or group of subjects is compared with that in
another, between-subjects differences in connectivity
measures must be estimated (37,41). For example, in
Ref. 41 the structural equation model encompassed
responses for different subjects, so that regions within
subjects were connected but regions from different sub-
jects were not. Differences in functional integration
across subjects could then be tested within this multi-
subject model. Changes in effective connectivity are
usually evaluated in SEM by comparing the goodness-
of-fit of two models. In one model the connection of
interest is held constant, and in the other it is allowed to
change. If the second model is significantly better than
the first, inferences can be made concerning changes in
functional connections with the task or subject.

DCM (40,42–45) is based on a model of interacting
neural regions supplemented with a description of how
synaptic activity is transformed into a hemodynamic
response (40,42–45). Unlike SEM, the characterization
of coupling between brain regions is based on the rate of
change of neuronal activity. As such, it does not depend
on the units of activity per se, but rather the speed or
rate of interregional coupling and how this is modu-
lated by experimental manipulations (one condition rel-
ative to another). The baseline connectivity (i.e., cou-
pling that does not depend on experimental
manipulation) can be regarded as a baseline network
established by the experimental context (i.e., task-set).
In contrast, the modulation of intrinsic connectivity, by
experimental factors, is modeled by the bilinear effects.
The strength of the intrinsic connections indicates the
speed with which a change in activity in one region
produces a change of activity in another region. These
intrinsic connections can be either positive or negative.
A positive connection means that an increase in activity
in one region results in an increase in activity in an-
other region. Conversely, a negative connection means
that an increase in activity in one region results in a
decrease in activity in another region. Patients may
show either a change in strength of instrinsic connec-
tivity (stronger or weaker than controls) or a change in
polarity (positive vs. negative).

Like SEM and psychophysiological interactions, a
DCM analysis is conducted in several stages. At the first
level, regional activations are extracted from each re-
gion in a subject-specific fashion. DCM is then used to
estimate the strength of the effective connections and
assess how these change from one experimental condi-
tion to another using a Bayesian approach. The intrin-
sic connections (which characterize the coupling be-
tween regions irrespective of experimental condition)
and the bilinear terms (which capture how the intrinsic
connections vary as a function of experimental condi-
tion) are estimated for each subject independently.
These subject-specific parameters are then taken to a
second level to allow T-tests on the bilinear terms. See
Fig. 8 for an example.

Figure 8. Functional integration and the mod-
ulation of specific pathways. This schematic il-
lustrates the concepts behind DCM. In partic-
ular it highlights the two distinct ways in which
inputs or perturbations can illicit responses in
the regions or nodes that comprise the model.
In this example there are five nodes, including
visual areas, (V1, V4, BA 39, BA 37, and STG).
Stimulus-bound perturbations designated as
u1 act as extrinsic inputs to the primary visual
area (V1). Stimulus-free or contextual inputs,
u2, mediate their effects by modulating the cou-
pling between V4 and BA39, and between BA37
and V4. For example, the responses in BA39 are
caused by inputs to V1 that are transformed by
V4, where the influences exerted by V4 are sen-
sitive to the second input. The dark square
boxes represent the components of the DCM
that transform the state variables, z1, in each
region (neuronal activity) into a measured (he-
modynamic) response, y1.
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CONCLUSIONS

To recap, fMRI can be used to address two types of
neuronal abnormality in patients with neurological def-
icits: abnormal functional segregation and abnormal
functional integration. In this paper we have considered
the factors that influence the experimental design,
analysis, and interpretation of such studies. With re-
spect to experimental design, we emphasized that 1)
task selection should be constrained to tasks the pa-
tient is able to perform correctly, and 2) the most sen-
sitive designs present stimuli of the same type in a
blocked or bunched fashion. With respect to prepro-
cessing, abnormal brain structures may call for con-
strained spatial normalization to prevent distortion of
intact tissue. We described the statistical fundamentals
of first-level (within-subject) and second-level (between-
subjects) analyses, and how they relate to inference
using fixed- and random-effects models. We concluded
with a brief introduction to the analysis of functional
integration in the brain using the two most common
models of effective connectivity: SEM and DCM.

We have covered a lot of issues in this review, with a
special focus on those issues that are relevant to the
experimental design and analysis of fMRI studies in-
volving neurologically impaired patients. Clearly, we
cannot discuss all of the details. However, we hope we
have framed the key considerations and provided refer-
ences for those who who are entering the field or wish to
evaluate studies of this sort.
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