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When choosing between different options, it is often the case that 
one alternative is preferable on one set of attributes, but another is 
preferred on others. Such trade-offs are ubiquitous in decisions affect-
ing consumers1, foraging animals2, social interactions3 and economic 
choice4. Although key aspects of multi-attribute choice behavior have 
been well characterized, their neural basis has not yet been systemati-
cally examined. This question is important not only in relation to the 
ecological validity of such decisions, but also because of the constraints 
they place on the implementation of choice in neural circuits.

When faced with such choices, human subjects dynamically con-
struct their preferences online as opposed to merely revealing them1. 
A common assumption in neurobiological studies of reward-guided 
choice is that preference construction depends first on combining 
attributes in each option into an integrated value, followed by a proc-
ess involving value comparison5–11. This ‘integrate-then-compare’ 
strategy, a classic solution to the decision problem in the behavioral 
literature, holds the appeal of a normative approach to choice, albeit a 
computationally expensive one12. Some expressions of choice behav-
ior indicate that subjects do indeed integrate different features of an 
option to form a unitary value13.

However, anomalies in human decision-making indicate that this 
normative explanation cannot fully account for subjects’ choice 
behavior by itself. For instance, behavioral economic studies have 
highlighted preference reversals between two options when a third 
option is introduced. As this is critically dependent on the degree 
of similarity between alternatives on specific attributes, this raises 
the likelihood of a within-attribute comparison process14. Studies 
of information gathering during multi-attribute choice, contain-
ing multiple options and multiple features, have also suggested that  
evidence is acquired within-attribute, at least initially15. Such  
behavior is explained by several alternative accounts, and these 

depend on different combinations of within-attribute and within-
option comparisons1,14,16–19.

The neural substrate of these alternative decision strategies remains 
unexplored, but is of great interest given that it violates the most com-
mon assumption in neural studies of decision-making—that values 
are integrated and then compared, or even that values are computed 
before choice. One obstacle to exploring this conundrum has been the 
difficulty of designing tasks in which there is transparent behavioral 
evidence for within-attribute comparison20. In addition, there is a 
lack of a candidate neural mechanism by which this type of decision 
might be implemented.

Here we provide evidence that preference construction in multi-
attribute choice may occur via a hierarchical competition process17–19. 
Such a model argues that because competition via mutual inhibition 
is a canonical feature of local neural circuits21, it should occur at all 
levels of representation. In this scheme, comparison would still occur 
at the level of option values5–10, but it also has additional features of 
comparison occurring at the level of the component attributes, as well 
as at the level of which attribute is most salient for guiding choice. 
To test this mechanism, we combined behavioral analysis, functional 
imaging data and computational modeling in a novel multi-attribute 
choice task. Subjects were explicitly instructed to equally weight two 
different attributes in guiding choice. Crucially, the task was designed 
such that within-attribute comparisons might emerge naturally, even 
in a relatively simple (and experimentally tractable) three-option, two-
attribute decision. Using this task, we found clear behavioral evidence 
for a within-attribute comparison strategy. Notably, on each trial, one 
or another of the attributes was more salient (relevant) for guiding 
behavior, allowing us to investigate how competition for attribute sali-
ence is implemented neurally. Our key findings, based on functional  
magnetic resonance imaging (fMRI) data, were that intraparietal  
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sulcus (IPS) signaled a competition over which attribute was the most 
salient for the current decision, whereas portions of medial frontal 
cortex reflected an ‘integrated’ value signal. Consistent with this func-
tional architecture, IPS altered its functional connectivity with regions 
subserving lower level (within attribute) comparisons as a function 
of which attribute was currently most relevant for guiding behavior. 
Our results provide evidence for a canonical inhibitory competition 
mechanism that is general throughout all layers of a stimulus process-
ing hierarchy and not simply present at a final choice stage.

RESULTS
A multi-attribute reward-guided decision task
We used a multi-attribute choice task, which forms the basis for our 
modeling and behavioral results. Subjects were trained on the relative 
likelihood of receiving a reward on a set of eight different images (not 
tied to any spatial location, hereafter referred to as stimuli; Fig. 1a) 
and a set of eight different button presses (tied to spatial locations 
onscreen, hereafter referred to as actions; Fig. 1b). Subjects learned 
action-reward probabilities (pA) and stimulus-reward probabilities 
(pS) separately from one another by performing pairwise choices 
between two randomly selected alternatives from each set. If they 
chose the better of the two options, they received positive feedback 
(a smiley face), and if they chose the worse, they received negative 
feedback (a sad face). Subjects received inter-
leaved blocks of stimulus and action trials 
across a training session that lasted approxi-
mately 45 min, until they attained a preor-
dained performance criterion.

Following training, subjects underwent 
fMRI scanning while performing a mone-
tary reward task in which three stimuli were  
pseudorandomly paired with three actions 
(Fig. 1c). Subjects were instructed to apportion  

equal weight to each of the two sources of information so as to select 
the best option. Rewards were determined probabilistically, based on 
pO, a Bayesian combination of probabilistic information from the 
stimulus (pS) and action (pA) (Fig. 1d and Online Methods). The 
logic behind this rule for combining the pre-learned probabilities is 
straightforward; for example, two cues that both predict reward with 
probability of 0.5 combine to produce a net reward probability of 0.5, 
as would one cue with 0.8 probability combined with another cue with 
0.2 probability. It also meant that the information provided by each of 
the two attributes was balanced; both stimulus and action provided 
equally relevant probabilistic information about reward likelihood. 
We adopted such an approach to avoid problems arising from sub-
jects being biased to use each attribute differentially. The effectiveness 
of our approach was revealed in behavioral evidence that subjects 
were not (on average) biased toward using either stimulus or action 
attribute (Supplementary Fig. 1).

Subjects successfully deployed information learned in the initial 
phase of the experiment to guide their decisions inside the scanner. 
Based on the Bayesian integrated values (pO), subjects chose the best 
option on 79.0 ± 3.8% (mean ± s.d) of all trials. On more challenging 
‘conflict’ trials, in which the best stimulus favored one option, but the 
best action favored a different option, this figure fell to 70.9 ± 4.6%.  
On 89.6 ± 4.8% of all of these more challenging trials, subjects selected 
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Figure 1 Experimental task design. (a) Outside  
of the scanner, subjects learned reward  
probabilities (pS) associated with eight stimuli  
via pairwise choices between stimuli. Subjects  
trained to reach a minimum performance criterion  
of 90% correct (choosing higher valued stimulus).  
(b) Subjects also learned reward probabilities  
(pA) associated with eight actions (finger presses)  
via pairwise choices between actions (dark gray  
squares indicate currently available actions;  
each action was tied to an onscreen spatial location).  
Subjects were trained to same criteria as for stimuli.  
Stimulus and action training was alternated in blocks  
of at least 70 trials, with an additional 40 trial refresher  
block immediately before the fMRI experiment. (c) Inside  
of the scanner, subjects performed a three-option choice task  
in which each option comprised one previously learned stimulus  
and one previously learned action. Subjects were instructed to  
weight stimulus and action information equally on each trial and  
select the best option to obtain points that subsequently converted  
into monetary reward (Online Methods). Reward was delivered probabilistically according to pO,  
the optimal combination of pS and pA (equation (1)), for the chosen option. (d) Two example trials.  
In trial 1, options A and B are of equal (integrated) value. The action attribute favors option A and  
so would be deemed relevant if A were chosen, and stimulus deemed irrelevant. The converse would  
be true if option B were chosen. Were option C chosen, the trial would be discarded from fMRI analysis.  
In trial 2, action would be deemed relevant if A were chosen, whereas stimulus would be deemed  
relevant if C were chosen. (e) Choice behavior. On trials where stimulus and action favor different  
options, the probability of choosing the option favored by the stimulus attribute (ordinate) is plotted  
as a function of the difference in probabilities on the two dimensions (abscissa). Data are presented  
as mean ± s.e.m. across 19 subjects.
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either the best pS or the best pA. However, there was a relatively high 
proportion of challenging trials (22.6 ± 3.8%) in which subjects went 
with a high pS or pA when it was not the highest pO. Such choices 
accounted for the majority (78.2 ± 10.3%) of errors on challenging 
trials. Moreover, a substantial portion of these errors (42.2 ± 15.6%) 
were those in which the best individual attribute on the chosen option 
exceeded or was equal to the best attribute available on the best option. 
There were few trials (~5 per subject) in which the highest pO was 
neither the best pS nor the best pA.

A further simple measure of subjects’ behavior is shown in Figure 1e.  
This measure focuses on the challenging conflict trials, showing the 
probability of using the stimulus attribute to guide behavior (that is, 
choosing the best stimulus) as a function of the within-attribute dif-
ferences on stimulus and action attributes. When the within-attribute 
difference is much greater on the stimulus attribute than the action 
attribute, subjects became far more likely to select on the basis of the 
largest stimulus, and vice versa. In addition, because the point of sub-
jective equivalence (P = 0.5) occurs when within-attribute differences 
are equal, this shows that subjects did not have any bias (on average) 
towards using one attribute over the other.

Hierarchical competition for multi-attribute choice
How might subjects solve such a task? The classical idea is that once 
the two attributes are integrated to form a unitary value (for example, 
by calculating pO for each option), the option values will then be 
compared with one another. One common model for comparison 
assumes a ‘softmax’ choice rule, in which the probability of choosing 
an option is a function of its value relative to other alternatives. To also 
capture subjects’ reaction times (RTs), comparison may be modeled 
as a dynamic process in which evidence is accumulated through time. 
There are several closely interrelated dynamical models17–19,21,22. One 
class assumes leaky, competing accumulators for each option that 
receive value-related inputs and compete via inhibition18,21.

Notably, softmax choice models and evidence accumulator models 
make firm predictions as to which factors should influence choices 
and RTs in multi-alternative and multi-attribute decisions. First, in 
the softmax choice rule, the relative frequency of choosing option 1 
(p(C = 1)) over option 2 (p(C = 2)) is independent of any remaining 
values in the decision; that is, the integrated value of option 3 (pO3) 
does not affect the ratio of choosing between options 1 and 2  
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The softmax temperature parameter is omitted for clarity. Second, 
predictions of RTs and choices from accumulator models of decision- 
making suggest that they will principally be driven by variation in 
integrated values (pO) rather than the underlying constituents of 
these values (pA and pS).

However, several known effects in multi-attribute and multi- 
alternative choice violate these predictions. Many of these violations  

show that the value of a third option can influence the relative  
frequency of choosing between two options, serving as a ‘distrac-
tor’ from discriminating between options 1 and 2. One account of 
distractor effects appeals to a neural process of normalization by the 
set of choice alternatives on offer before comparison. This implies 
that high-valued third items prove to be more distracting than  
low-valued third items and so impair discrimination, matching 
empirical observations in humans and macaque monkeys23. Specific 
classes of distractor effects also occur in multi-attribute choice,  
such as ‘compromise’, ‘similarity’ and ‘attraction’ effects17. These 
necessitate comparison at the level of underlying attributes and not 
solely at the level of integrated values, and so have inspired models 
in which evidence accumulation and competition occur at multiple 
hierarchical levels17–19.

We propose a hierarchical competition model for our task 
(Supplementary Fig. 2). This is motivated by previous models, 
together with the idea that specific attributes are more influential 
or relevant on certain trials for guiding behavior, as evidenced by 
behavioral observations made below. Evidence accumulation and 
comparison occurs at multiple levels in the model: within-attribute, 
on integrated values, and between attributes (in a competition for 
attribute relevance). Normalization is also included in the model, 
but occurs at the initial input level of individual attributes rather than 
on integrated values (see Online Methods for detailed mathematical 
description of the model).

The most novel feature of the model is the competition for attribute 
relevance. Inputs to this competition (Supplementary Fig. 2), reflect 
the absolute difference between the best and second best option on 
each attribute, calculated instantaneously from currently accumulated 
evidence in each node. Attributes with a large within-attribute dif-
ference (where the best option is substantially better than the second 
best) dominate this competition and so become more relevant for 
guiding model choices. This is achieved via feedback connections 
that reweight the importance of each attribute as it projects forward 
to an ‘integrated’ value comparison. The output of the integrated value 
comparator is used to determine the model’s choice and RT, once 
activity in this node reaches a decision threshold.
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Figure 2 Predictions of behavior from hierarchical model. (a–c) Distractor 
effects (see Fig. 3a–c). A distractor effect is when option 3 value affects 
choice probabilities between options 1 and 2, here assessed via logistic 
regression. The model shows a classic value-based distractor effect 
(a), but also a within-attribute distractor effect (b,c), as is found in 
subject behavior. (d) RT effects in model estimated via linear regression, 
comparable with those revealed in subject behavior in Figure 3e. The 
model is most heavily influenced by value difference on the relevant 
attribute, not the irrelevant attribute or integrated values. Data are 
presented as mean ± s.e.
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Notably, there are several behavioral observations from our experi-
ment predicted by this framework that appear to be inconsistent with 
alternative or previous models (Supplementary Figs. 3 and 4). These 
are a specific within-attribute distractor effect on subjects’ choices 
and a selective effect of value difference on the relevant attribute on 
subjects’ RTs. We examined these on the basis of observations made 
in subjects’ actual behavior. The exact same analysis was applied to 
both subject behavior and that of the hierarchical model.

A within-attribute distractor effect in choice
We first assessed the hierarchical model’s predictions of distractor 
effects, where the value of option 3 affects discriminations between 
options 1 and 2. We analyzed model choices using binomial logistic 
regression. In this analysis, the presence or absence of a stimulus/
action was denoted by an indicator variable. This allows the regression 
model to independently estimate the influence of each stimulus and 
each action on the probability of choosing the associated option, and 
so is agnostic to the probabilities assigned to each stimulus/action by 
the experimenter. It controls for the other attribute presented on the 
same option, as well as the attributes of the other option. As expected, 
better stimuli and better actions tied to a particular option led to a 
clear increase in the logistic regression weight for that option in the 
model’s choices (Fig. 2). This was also found to be true in subject 
behavior (Fig. 3a).

An important feature of this analysis was that it focused on just a 
pair of the options, including one chosen and one unchosen option 
at a time. By repeating this analysis on a subset of the data in which 
the third option, left out of the regression model, was high or low 

in value, we were able to examine its effects on the discriminability 
of these two options23,24 (third option here refers to any option that 
is unchosen; each trial is included twice in the analysis, with each 
unchosen option becoming the third option once). Crucially, when 
the left-out third option had a low pO, discriminations between the 
values of the remaining two options appeared to be better than was 
the case when the third option had a high pO (Fig. 2a). This was again 
found to be true in subject behavior (Fig. 3a), reflected by a significant 
difference in the slopes of the regression lines on both stimulus and 
action attributes (t test on difference of slopes between lines; stimulus: 
T(18) = 3.17, P = 0.0053; response: T(18) = 2.45, P = 0.025).

Notably, this effect replicates observations from a recent study of 
value-guided choice and can explained in the context of divisive nor-
malization23. However, it can also be seen in our hierarchical competi-
tion model, where divisive normalization is applied within-attribute 
rather than on integrated values. Moreover, the observed response 
pattern violates the axiom of independence of irrelevant alternatives 
and therefore could not be predicted by softmax or simple value accu-
mulator models (Supplementary Fig. 3a). These data indicate that a 
comparison of different options is fundamentally dependent on what 
other alternatives are available to the subject.

We next split the third option not on the basis of its integrated value 
(pO), but instead on the basis of its stimulus value (pS; Fig. 2b) or 
its action value (pA; Fig. 2c). In doing so, we found that the distrac-
tor effect in the model’s choices was restricted to the same attribute 
used to perform the split. This within-attribute distractor effect is a 
consequence of a normalization applied at the level of within-attribute  
competition rather than at the level of integrated option values.  

Figure 3 Subject behavior (n = 19 subjects).  
(a) Value-based distractor effect. High  
values of option 3 make options 1 and  
2 less discriminable. Data points show  
mean ± s.e.m. (across subjects) of logistic 
regression parameters for each of the 16 stimuli 
and actions on the probability of choosing 
option 1 versus option 2 (Online Methods). 
Trials have been split into those where the  
third option has a high value and those where  
it has a low value. Red points show effects  
when option 3 pO is high (in top 33% of 
values), blue points indicate when option 3  
pO is low (in bottom 33%). Lines show  
average best fit to data points; the slope of  
this line was significantly different between  
high pO3 versus low pO3 (stimulus influence, 
T(18) = 3.17, P = 0.0053; action influence, 
T(18) = 2.45, P = 0.025). (b) When option 3  
is split selectively on the stimulus attribute,  
the distractor effect remains on the stimulus  
discriminability of options 1 and 2 (T(18) = 2.51,  
P = 0.021), but not on the action 
discriminability (T(18) = 0.82, P = 0.42).  
(c) When option 3 is split selectively on the 
action attribute, the distractor effect remains  
on the action attribute (T(18) = 3.18,  
P = 0.0052), but not on the stimulus attribute 
(T(18) = 1.78, P = 0.092). (d) Analysis of trials 
in which evidence given by stimulus and action are equal and opposite. Probability of choosing option 1, on trials where pS1 > pS2, pA2 > pA1,  
and (pS1 − pS2) ≈ (pA2 − pA1). On such trials, choosing on the basis of stimulus (plotted on ordinate) is equivalent to choosing option 1. Option 3 is 
always one of the two unchosen options. Data are presented as mean ± s.e. (across subjects). ***P = 8.5 × 10−4, paired t test between low and high  
pR3 (T(18) = −3.99) and P = 9.0 × 10−6, paired t-test between low and high pS3 (T(18) = 6.11). Interaction in two-way ANOVA, F(1,72) = 16.62, 
P = 1.7 × 10−4. (e) RTs are more heavily influenced by the relevant attribute than the irrelevant attribute. Data are presented as mean ± s.e. (across 
subjects) of effects of value difference on subject RTs, estimated via linear regression (y axis is flipped, that is, higher value differences typically  
elicit faster RTs). ***P = 2.13 × 10−4, one-sample t test (T(18) = 4.62); **P = 0.0030, paired t test (T(18) = 3.43)); n.s. = non-significant  
one-sample t test (P = 0.08 and P = 0.84).
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By contrast, in alternative models in which integrated values (pO) 
were divisively normalized before comparison, distractor effects 
were distributed equally across both attributes, irrespective of which 
attribute was used to perform the split (Supplementary Fig. 3c).

We therefore asked whether the distractor effect occurred selectively 
within-attribute in subject behavior or was distributed equally across 
both attributes. We found the stimulus value of option 3 affected sub-
jects’ ability to discriminate between stimulus values of options one and 
two (T(18) = 2.51, P = 0.021), but not their action values (T(18) = 0.82,  
P = 0.82) (Fig. 3b). Likewise, the action value of option 3 affected 
action (T(18) = 3.18, P = 0.0052), but not stimulus discriminations 
(T(18) = 1.78, P = 0.092) (Fig. 3c). Collapsing across both stimulus 
and action analyses, this resulted in a significant interaction between 
distractor effect magnitudes on different attributes and the attribute 
used to perform the split (T(18) = 3.54, P = 0.0023). Similar behavio-
ral observations were also made without use of a regression analysis  
by examining raw choice probabilities (Fig. 3d and Supplementary 
Fig. 5). We focused on trials in which stimulus value difference on 
options 1 and 2 was approximately equal and opposite in sign to 
action value difference on options 1 and 2 (Fig. 3d). The probability 
of choosing the option with higher stimulus value (and hence lower 
action value) decreased when option 3 had a high stimulus value or 
low action value, but increased when option 3 had a high action value 
or low stimulus value (interaction in two-way ANOVA, [attribute * 
high/low]: F(1,72) = 16.62, P = 0.00017).

The within-attribute distractor effect that we observed cannot be 
explained by models in which only integrated values are compared to 
solve the task. If such a model were true, then distractor effects would 
be spread equally across all attributes, irrespective of which attribute 
was used to parse the third option. Instead, the evidence highlights 
a dependence on comparisons being made within-attribute, shown 
formally by the comparison of the hierarchical model to alternative 
models (Supplementary Figs. 3 and 4 and Supplementary Note). We 
conclude that there is a contribution of within-attribute comparison 
in our multi-attribute choice task.

RT is more influenced by one attribute than another
We next sought to isolate a signature of hierarchical competition 
in both model and subject RTs. To enable this, we applied multiple 
regression with the logarithm of RTs as the dependent variable and the 
value of different options as independent variables. In a first analysis 
of both model and subjects’ RTs, we entered integrated values (pO) as 
explanatory variables. Unsurprisingly, RTs scaled with trial difficulty. 
When the chosen value was higher, choices were made more rapidly 
(model: β = −0.81 ± 0.01, mean ± s.e. across 10 simulations; behav-
ior: β = −1.13 ± 0.12 across subjects; T(18) = −9.22, P = 3.06 × 10−8), 
whereas choices were slower when the best unchosen value increased 
(model: β = 1.10 ± 0.01; behavior: β = 0.31 ± 0.07; T(18) = 4.47,  
P = 2.96 × 10−4). Thus, RTs decreased when (pOchosen − pObest unchosen)  
increased (model: β = −1.91 ± 0.02; behavior: β = −1.46 ± 0.18; T(18) = 
−8.00, P = 2.44 × 10−7). The influence of the worst unchosen value on 

RTs was also significant (model: β = 1.42 ± 0.03; behavior: β = 0.22 ± 0.09;  
T(18) = 2.47, P = 0.024).

The above analysis is predicated on the idea that there is integra-
tion across attributes before comparison. In our task, however, this 
appeared to be inconsistent with the presence of a significant within-
attribute distractor effect. On the basis of the hierarchical model, we 
hypothesized that on trials in which attributes conflict—that is, on 
trials in which pS values favor one alternative, but pA values favor 
another—the two attributes might compete with one another when 
guiding the choice, with one attribute becoming more relevant for 
guiding behavior. Although the relevant attribute would vary from trial 
to trial, we could nevertheless use the subject’s choice to disclose it. In 
trials in which pSchosen > pSbest unchosen and pAchosen < pAbest unchosen),  
we labeled stimulus as the ‘relevant’ attribute and action as ‘irrelevant’ 
(or strictly, less relevant). By contrast, if (pSchosen < pSbest unchosen and 
pAchosen > pAbest unchosen), we labeled action as relevant and stimulus 
as irrelevant. In the model, competition for relevance was realized by 
between-attribute competition (Supplementary Fig. 2).

The crucial question in this context is whether reward probabilities 
on the relevant attribute explain more variability in RT than on the 
irrelevant attribute, or instead whether RTs are better explained by 
the integrated value difference used in our initial analysis. We again 
applied multiple regression, but now all three forms of value differ-
ence competed for variance in explaining RTs (Online Methods).  
In the model, we found that the probability difference on the relevant 
attribute had a greater influence on RTs than the irrelevant attribute 
probability difference (Fig. 2d). Moreover, these two terms explained 
away the contribution of pO value difference to model RT (Fig. 2d). 
Notably, these predictions were not made of simpler models of evi-
dence accumulation (Supplementary Fig. 4).

We applied the same analysis to subjects’ RTs. Although the dif-
ference on reward probabilities on the relevant attribute influenced 
RTs (β = 1.46 ± 0.31, T(18) = −4.62, P = 2.13 × 10−4), neither the dif-
ference in probabilities on the irrelevant attribute (β = 0.68 ± 0.37, 
T(18) = −1.48, P = 0.08) nor the Bayesian integrated value difference 
(β = 0.06 ± 0.35, T(18) = −0.19, P = 0.84) had a significant effect  
(Fig. 3e). Consequently, the difference on the relevant attribute 
showed a significantly greater effect than the irrelevant difference 
(paired T(18) = −3.43, P = 0.003). To assess the robustness of this 
result, we applied Levene’s test and confirmed that there was no  
significant difference in variances between the two sets of param-
eter estimates (F1,36 = 0.12, P = 0.74). We also confirmed the effect 
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Figure 4 Model predictions of fMRI data, derived from attribute 
comparison node of the hierarchical model. Model activity from each 
trial was convolved with a hemodynamic response function and then 
regressed against chosen value and best unchosen value on both relevant 
and irrelevant attributes (together with a constant term, and model RT 
included as a co-regressor of no interest). Data are presented as mean 
(solid lines) ± s.e.m. (shaded areas) of parameter estimates from the 
regression across ten simulations of the model. The contrast (chosen 
value − best unchosen value)irrelevant − (chosen value − best unchosen 
value)relevant is encoded by the model.
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remained (paired T(18) = −2.45, P = 0.02) after normalizing all 
the regressors to account for any difference in their magnitude. In 
addition, these effects remained evident even when we considered 
alternative rules for constructing pO (mean, multiplication or sum; 
Supplementary Table 1).

One potential final concern is that hierarchical competition could 
be replaced by a simpler model that retained within-attribute com-
parison, but randomly selected a given attribute to become relevant 
on each trial. We tested such a possibility by running a formal model 
comparison on prediction of subjects’ choice behavior, comparing 
this simpler random attribute model with a hierarchical competition 
model (Supplementary Note). Model evidence favored the hierarchi-
cal model in 16 of 19 individual subjects, reflected across the popula-
tion by a significantly lower Bayesian Information Criterion (BIC) 
in the hierarchical model compared with a random attribute model 
(T(19) = −3.24, P = 0.0046; mean ± s.e, ∆BIC = 19.56 ± 6.05).

Our behavioral findings are inconsistent with the hypothesis that 
subjects equally weight both sources of information on each trial. 
They instead indicate that subjects rely more heavily on one source 
of evidence than another on each trial, which we term the relevant 
attribute. This is consistent with our model, in which competitions 
occur hierarchically.

IPS and attribute relevance competition
We used fMRI data to investigate which brain regions subserve 
multi-attribute choice, tying our analysis to the modeling frame-
work described above. A unique feature of our model (absent from 
integrate-then-compare frameworks) is that the outputs of within-
attribute competitions themselves form the inputs of a competition 
for which attribute becomes relevant in the current trial. By tying one 
attribute to stimuli and another attribute to actions, we capitalized 
on recent reported dissociations between neural structures encoding 
action and stimulus values in cortical12 and subcortical25,26 structures. 
As the competition for relevance was resolving, this would upregulate 
the relevant within-attribute competition and downregulate the irrel-
evant one. This might be reflected by changes in functional connec-
tivity between regions implicated in attribute comparison and those 
involved in lower-level competition.

A region that represents the attribute competition process should 
compare the value difference on the relevant attribute with the same 
value difference on the irrelevant attribute. We therefore hypoth-
esized that this region would be brought out using the contrast  
(pChirrelevant − pBUnChirrelevant) − (pChrelevant − pBUnChrelevant), where 
pCh is the chosen probability on a specific attribute and pBUnCh is the 
best unchosen probability on a specific attribute. This contrast reflects 

the difference in relative ‘attribute goodness’ between irrelevant and 
relevant attributes. Notably, it controls for areas simply encoding inte-
grated value difference, as a result of the subtraction of relevant values 
from irrelevant values. Analogous to recent findings concerning value 
difference coding8,10,27,28, it assumes that a relevance competition  
signal reflects the difference of inputs that determine which attribute 
was more relevant (namely, within-attribute differences).

We first tested whether this contrast emerged from the attribute 
competition node in our hierarchical model by simulating fMRI  
data directly from activity in this node (Supplementary Note).  
We used similar simplifying assumptions to those used in other  
studies, namely that activity would be greatest in the node while 
competition was still being resolved and that this competition would 
continue until a decision was reached8,29. We convolved the node’s 
total activity on each trial with a hemodynamic response function, 
added observation noise and then regressed the simulated data 
against pChrelevant, pBUnChrelevant, pChirrelevant and pBUnChirrelevant. 
All four elements of our contrast were found to affect the simulated 
fMRI signal in the direction specified by our attribute comparison  
contrast (Fig. 4). Hence (pChrelevant − pBUnChrelevant) was pre-
dicted to have a negative regression coefficient on fMRI data, but  
(pChirrelevant − pBUnChirrelevant) was predicted to have a positive 
regression coefficient. This is a consequence of competition between 
attributes being greater on trials in which (pChrelevant − pBUnChrelevant)  
is closer in value to (pChirrelevant − pBUnChirrelevant). It is analogous 
to the hypothesis that regions implementing a choice comparison 
process via evidence accumulation may exhibit greater activity when 
choice alternatives are closer in value8,29.
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Figure 5 IPS shows features of an attribute comparison signal,  
with opposing signs for relevant and irrelevant attributes.  
(a) Statistical parametric map of the contrast (chosen value − best 
unchosen value)irrelevant − (chosen value − best unchosen value)relevant  
at the time of making the decision, thresholded at Z > 2.3,  
uncorrected for display purposes (n = 19 subjects). A bilateral  
portion of IPS reflects this contrast, with the left IPS surviving  
whole-brain correction (FWE-corrected P = 0.0023, cluster-forming 
threshold Z > 2.3; peak Z = 3.65, MNI = −38, −42, 40 mm). (b) Time 
series analysis of this region, time-locked to decision phase, revealed 
negative correlates of (chosen value)irrelevant and positive correlates 
of (best unchosen value)relevant, but positive correlates of (chosen 
value)relevant and negative correlates of (best unchosen value)irrelevant  
(data are presented as mean (solid lines) ±s.e. (shaded areas) across 
subjects). To avoid circular analysis, a leave-one-out cross-validation 
approach was used for time series extraction (Online Methods).
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We therefore searched for brain regions that encoded the contrast 
(pChirrelevant − pBUnChirrelevant) − (pChrelevant − pBUnChrelevant). We 
found bilateral activation in the IPS correlated with this contrast, with 
the left IPS (peak Z = 3.65, MNI (46, −34, 42)) surviving whole-brain 
correction (P = 0.0023, cluster-corrected), and the right IPS showing 
a large, but sub-threshold, response in a similar location (Fig. 5a and 
Supplementary Table 2; unthresholded z statistic maps for all con-
trasts are available at http://neurovault.org). This was the only region 
to survive this contrast with whole-brain correction. A wider network 
of regions (notably including bilateral superior frontal sulcus) was 
present at an uncorrected threshold (Supplementary Fig. 6). Next, 
we extracted the time course from IPS with a method that controls for 
circularity in statistical inference30 by defining each subject’s region of 
interest for analysis from the remaining (n − 1) subjects’ data31. From 
this time course, it was apparent that all the necessary components 
of relevance competition were present in IPS signal. On the relevant 
attribute, IPS blood oxygen level–dependent (BOLD) fMRI signal cor-
related negatively with the value of the chosen option and positively  
with the value of the best unchosen option (Fig. 5b). This was 
shown formally by a negative effect of (pChrelevant − pBUnChrelevant)  
(T(18) = −2.83, P = 0.011). This is similar to signals previously observed 
in IPS in value-guided choice tasks, in which only one attribute or  
integrated value was considered27,32. As predicted, however, this  
pattern was reversed on the irrelevant attribute: IPS signal correlated  
positively with the value of the chosen option and negatively with the 
value of the best unchosen option (Fig. 5b). This was again shown 
formally by a positive effect of (pChirrelevant − pBUnChirrelevant)  
(T(18) = 2.50, P = 0.022). These effects are based on contrasts of 
parameter estimates from a general linear model (model 1, Online 
Methods), which partials out any covariance between irrelevant and 
relevant attributes. This signal profile would not be predicted for a 
region that compares integrated values, but is instead predicted for  
a region that selects which feature of a decision to attend.

In a further analysis, we also found a positive correlate of log(RT) 
in the same region, as is predicted by a dynamical model. Notably, 
however, the above effects (Fig. 5b) survived the inclusion of log(RT) 
as a co-regressor (Supplementary Fig. 7), as did predictions from the 
hierarchical model.

It is also notable the signed relative attribute difference is highly 
correlated with the absolute (unsigned) difference in within-attribute 
differences, that is |(pChirrelevant − pBUnChirrelevant) − (pChrelevant − 
pBUnChrelevant)| (r values across subjects ranged from 0.91 to 0.99). 
This mirrors an observation made previously in the context of value 
comparison8. Disambiguating this absoluted contrast from our origi-
nal contrast is therefore not possible with our study design.

Next, we reasoned that if IPS forms part of a hierarchical comparison 
process, then this should be reflected in its functional connectivity with 
other brain regions in a manner dependent on which attribute was cur-
rently relevant. To test this hypothesis, we used a psychophysiological 
interaction analysis33 that compared IPS functional connectivity with 
the rest of the brain as a function of whether the stimulus attribute 
was currently relevant, or whether the action attribute was currently 
relevant. On trials in which stimulus was relevant, IPS exhibited greater 
functional connectivity to a bilateral sector of anterior orbitofrontal/
lateral frontopolar cortex (right peak Z = 3.52, MNI (36, 52, −10); left 
peak Z = 2.90, MNI (−38, 52, 10); Fig. 6a). This is a notable finding 
in that IPS has direct connections to OFC via the third branch of the 
superior longitudinal fasciculus34, and lesions to OFC are known to 
impair stimulus-based, but not response-based, value-guided choice12. 
By contrast, on trials in which action was relevant, IPS exhibited greater 
functional connectivity to bilateral putamen (left peak Z = −3.46, MNI 

(−18, 12, 2); right peak Z = −2.69, MNI (26, 10, 0); Fig. 6b), a portion 
of striatum previously implicated in habitual action-guided choice25,26. 
The finding that both sets of activations occur bilaterally considerably 
reduces their probability of being false positives.

Finally, at the time of feedback, the ventral striatum encoded a 
classic reward prediction error, signaling reward outcomes positively 
and predictions of reward negatively (on both relevant and irrelevant 
attributes; Supplementary Fig. 8a,b). By contrast, the signal encoded 
in the IPS can also be interpreted as a prediction error, but acting on 
relevance rather than value or reward (Supplementary Fig. 8c,d). It 
encoded reward negatively, but the prediction of reward was encoded 
positively on the relevant attribute and the prediction of reward was 
encoded negatively on the irrelevant attribute. This signal can be con-
strued as a prediction error on attribute relevance. If reward is greater 
than expected, more attention would be given to the relevant attribute 
on future trials and less attention to the irrelevant attribute. It should 
be noted that this IPS relevance prediction error is inverted in sign, 
in the sense that a more positive attribute prediction error elicits a 
greater deactivation at the time of outcome.

In summary, at the time of the decision, IPS carried signals that 
implicate it in selecting which attribute is relevant and changed its 
functional connectivity in accordance with an upregulation of lower-
level competition. At the time of outcome, IPS showed a (inverted) 
prediction error signal suggestive of a role in relevance learning. 
These data provide evidence for a role for the IPS in selecting which 
attribute to attend to on any given trial.

Medial prefrontal cortex and integrated value comparison
If the IPS carries a signal that reflects a competition for attribute 
relevance, then do any other brain regions reflect a more traditional 
integrated value competition? This can be tested by looking at a 
different contrast: (pChrelevant − pBUnChrelevant) + (pChirrelevant −  
pBUnChirrelevant). This contrast correlated negatively with BOLD 
fMRI signal in the dorsal medial frontal cortex (dMFC), in the vicinity  
of preSMA/paracingulate sulcus (peak Z = −3.85, MNI (0, 38, 42);  
Fig. 7a and Supplementary Table 3). This is in close proximity to a 
locus previously implicated in a comparison of integrated values dur-
ing action selection8,35. Notably, this region is frequently co-activated  
with the IPS; both IPS and dMFC are recruited more strongly by 
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Figure 6 Psychophysiological interaction with intraparietal cortex.  
(a) Functional connectivity with a bilateral portion of the anterior/lateral 
orbitofrontal cortex was greater on trials in which stimulus was the 
relevant attribute relative to trials in which action was the relevant 
attribute (peak Z = 3.52; MNI = 36, 52, −10 mm (right OFC); peak  
Z = 2.91, MNI = −26, 42, −12 mm (left OFC); all voxels with Z > 2.3 
shown, both clusters contained >100 voxels at this threshold; n = 19 
subjects). (b) Functional connectivity with a portion of the left putamen 
was greater on trials in which action was the relevant attribute relative to trials 
in which stimulus was the relevant attribute (peak Z = −3.46; MNI = −18,  
12, 2 mm; all voxels with Z > 2.3 shown, the left putamen contained 
>100 voxels at this threshold, whereas the right putamen showed a 
similar, smaller activation).

http://neurovault.org
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trials in which values are close together, and so correlate negatively 
with the value of the chosen option minus the unchosen option8,29. 
It is therefore particularly notable in our study that, although dMFC  
and IPS encode variables in the same direction on the relevant 
attribute, they do so in the opposite direction on the irrelevant 
attribute (Figs. 5b and 7b).

Finally, we asked what signals are encoded in ventromedial pre-
frontal cortex (VMPFC), a region commonly recruited in studies of 
value-guided choice36,37, but in which different studies have observed 
different task variables8,27. We found that VMPFC encoded a chosen 
value signal selectively for the relevant, but not irrelevant, attribute 
(Supplementary Fig. 9).

DISCUSSION
It is commonly assumed that a key step in how the brain supports  
value-guided choice is through an integration of the different  

features of an option into a single value, so that values can be compared 
with one another in a common currency. Such a decision schema 
has obvious appeal, not least because it can support comparison of 
incommensurable items11, but it cannot explain several key behav-
ioral observations. Among these are the effects of within-attribute 
similarity on choice, suggesting that some forms of comparison are 
enacted before integration, as well as the effects of relevance of a 
particular attribute modulating RTs. Subject behavior in our multi-
attribute decision task showed both these effects, most notably via a 
previously undescribed within-attribute distractor effect.

To explain our data, we adopted a fundamentally different approach 
to value comparison, suggested previously in the behavioral litera-
ture16–19, but notably absent from many neuroscientific studies. In 
this scheme, competition (via mutual inhibition10,21) occurs not just 
at the higher level of integrated values, but also at lower levels (within 
attribute) and between levels (attention toward attributes). This was 
necessary to capture all key features of our behavioral data, which 
were not captured by more simple models of evidence accumulation. 
Apart from successfully explaining behavioral data, our model gained 
extra validity by explaining task-related neural activity as well as func-
tional interactions between brain regions involved in supporting value 
comparison, indexed via fMRI.

Hierarchical competition invokes the notion of a canonical compu-
tation performed across multiple brain regions, and it is implicit that 
competition in different brain regions occurs in different frames of 
reference. Such hierarchies mirror those proposed in the domain of 
rule-based action selection, or tasks requiring cognitive control38. In 
our task, the IPS carries a signal reflecting competition in an attribute 
frame of reference, whereas medial prefrontal structures carry signals 
reflecting competition in a frame of reference of options. Such a clear 
dissociation between computations in IPS and dMFC has not been 
described previously and it is notable that these areas have typically 
coactivated in studies of decision-making8,29, particularly where there 
is increased choice difficulty (decreased value difference). The portion 
of IPS that we identified is ideally placed, in terms of anatomical con-
nectivity to prefrontal cortex34,39 and its established role in attentional 
reorienting40, to compute which attribute to attend on a particular 
trial. Indeed, in number comparison tasks in which the relevant and 
irrelevant dimensions are explicitly cued rather than internally gener-
ated, IPS only reflects value differences in the relevant, and not the 
irrelevant, competition41. When information is presented from two 
different sources whose distributions can be formally specified, fMRI 
signal in IPS reflects the Kullbeck-Leibler divergence (or degree of 
competition) between these two sources of information42.

However, we do not argue that IPS performs a general role of arbi-
trating between attributes at the top level of hierarchical competition. 
In our experiment, subjects had to trade a competition that occurred 
in stimulus space in the OFC against a competition that occurred in 
action space in the motor system. IPS is ideally placed to resolve such 
a competition as a result of its monosynaptic projections with both 
structures. It is clear that, unlike OFC or vmPFC, IPS has access to 
values selective for spatial locations, for specific actions and specific 
stimuli. Notably, in circumstances in which both attributes can be 
represented in stimulus or goal space, deficits in attribute compari-
son can be induced by lesions to vmPFC43. We therefore argue that 
attribute comparison is not a unique process with a single cortical 
focus, but an example of a general rule of competition in cortical 
processes. The critical neural substrate will depend on the relevant 
features of the decision at hand.

Similarly, the frames of reference and functional roles of other brain 
regions contributing to task performance reflect both their anatomical 
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Figure 7 dMFC shows an integrated value difference signal, with  
the same sign for both relevant and irrelevant attributes. (a) Statistical 
parametric map of the contrast (chosen value − best unchosen 
value)relevant + (chosen value − best unchosen value)irrelevant, at the  
time of making the decision, thesholded at Z < −2.3, uncorrected  
for display purposes. A portion of dMFC reflects this contrast  
(FWE-corrected, P = 0.0054, cluster-forming threshold Z < −2.3;  
peak Z = −3.85, MNI = −2, 34, 46 mm). Other regions surviving  
whole-brain correction are detailed in Supplementary Table 3  
(n = 19 subjects). (b) Time series analysis of this region, time-locked to 
decision phase, revealed negative correlates of both (chosen value)relevant 
and (chosen value)irrelevant, and positive correlates of (best unchosen 
value)relevant and (best unchosen value)irrelevant (data are presented as 
mean ± s.e. across subjects), slightly delayed in time relative to attribute 
comparison signal in IPS (compare with Fig. 5b). As before, cross-
validated ROIs were used for time series extraction (Online Methods).
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connectivity and functional specialization. For example, lateral OFC 
is likely to be involved in competition between stimuli given that it 
receives a highly processed sensory input44 and is critical for tasks 
involving stimulus, but not action, comparison12. In keeping with 
this formulation, we observed increased functional connectivity of 
OFC with IPS on trials in which stimulus probabilities became rel-
evant. By contrast, a dorsolateral portion of the striatum is likely to be 
involved in competition between actions, given evidence that it pos-
sesses anatomical connectivity with motoric structures45 and is impli-
cated in habitual action selection25,26. This region showed increased 
functional connectivity to IPS on trials in which action probabilities 
became relevant. Finally, both dMFC and ventral medial frontal cor-
tex are implicated in competition between values8,10,11,27,28,35. Here, 
integrated value comparison signals were particularly prominent in 
dMFC at the time of choice and, similar to the IPS, this region has 
monosynaptic connections to both OFC and motoric structures.

Recent studies have examined distractor effects in value-guided 
choice tasks with multiple options, but from a different perspective to 
that examined here. One study23 isolated distractor effects in subjects 
who chose between rewards of different value. As in our study, high 
value distractors impaired discrimination between two alternative 
options. The authors proposed a divisive normalization of values dur-
ing choice. In our model, divisive normalization captured distractor 
effects (Supplementary Figs. 3 and 4), but, given the within-attribute 
distractor effect, we placed it at the level of attributes instead of the 
level of integrated values. Indeed, normalization may also reflect a 
canonical mechanism operating at all levels of a processing hierar-
chy46. Future models may unify the processes of competition and 
normalization in a single framework. Another study47, in a task in 
which decisions were made under time pressure, reported a distrac-
tor effect that operates in the opposite direction, where high-valued 
third options are less distracting than low-valued third options. In 
this task, distractors are made transiently available and then removed 
from the decision47. Such an effect can be explained by the increased 
pulse of inhibition introduced into a competitive decision-making 
network by high-value distractors, resulting in slowing of a deci-
sion that renders it more accurate. We found a similar (albeit weak) 
effect in our leaky, competing accumulator model when divisive 
normalization is switched off, and competition between options is 
high (Supplementary Fig. 3b). The conditions under which nor-
malization occurs during competition remain debated48, but one 
hypothesis is that divisive normalization occurs over a different time 
course than competition via mutual inhibition, and may not occur 
when one option is removed shortly after decision onset. Finally, the 
within-attribute distractor effect may mirror the well-known simi-
larity effect in multi-attribute choice, in which introducing a new 
option reduces the probability of choosing options that are similar 
on multiple attributes to those that are dissimilar49. In our model, 
similar options (with small within-attribute differences) are down-
weighted by the attention competition relative to dissimilar options 
(with large within-attribute differences). Future work could directly 
test the ability of the model to reproduce this effect, alongside other 
known effects in multi-attribute choice such as the attraction and 
compromise effects17.

In summary, we propose that instead of competition being an iso-
lated ‘component process’ in value-guided decision-making, it occurs 
at multiple, distributed levels of representation. This hierarchical com-
petition account of decision-making reconciles conflicting behavioral 
observations that suggest that comparison occurs within-attribute, as 
well as on integrated values. Our account also explains observations 
in which competition is observed in different frames of reference in 

different brain structures, as well as how interactions between brain 
regions are modulated during a task50. More broadly, the findings 
imply that competition via mutual inhibition represents a canonical 
computation21,46 that subserves distributed decision-making proc-
esses throughout the brain, rather than a process occurring solely at 
a single comparator node.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
experimental task. 24 human volunteers (age range = 20–49 years, 13 female,  
11 male, recruited from a subject pool at University College London) participated 
in the experiment. Inclusion criteria were based on age (minimum = 18 years, 
maximum = 50 years), and screening for history of neurological or psychiatric 
illness. The sample size was based on similar sample sizes in recent fMRI studies 
of decision-making and methodological recommendations in the literature. Two 
subjects failed to reach the requisite learning criterion during training; three sub-
jects showed excessive head motion during fMRI (based on the motion correction 
report in FSL version 6.00). These subjects were excluded, leaving 19 subjects in 
all subsequent behavioral and neural analysis. The experimental protocol was 
approved by the University of College London local research ethics committee, 
and informed consent was obtained from all of the subjects included.

Training. Subjects learnt that certain stimuli and certain responses were more 
predictive of reward by performing pairwise choices within-attribute (that is, 
stimulus versus stimulus, action versus action). In each action training trial, 
two locations from eight were highlighted onscreen and the subject aimed to 
select the better of the two actions to receive positive feedback (smiley face). 
Each spatial location was tied to a button press with a specific forefinger on 
a keyboard. In each stimulus training trial, two stimuli from eight were pre-
sented in random spatial locations (either side of a fixation point), and subjects  
aimed to select the better of the two stimuli. Subjects performed four  
training blocks outside the scanner (two stimulus, two action, each consisting  
of a minimum of 70 trials and terminating once subjects had reached a  
performance criterion of 90% correct responses). Stimuli and actions were 
counterbalanced across subjects.

During training, feedback was delivered deterministically, according to 
whether the subjects chose the better of the two options. Deterministic feedback 
ensured subjects learnt equally about both the selected and unselected options 
throughout training (which would not be the case if reward was delivered proba-
bilistically on the selected option). The rank of the best through to the worst 
options was translated into a probability of receiving reward (termed pS for 
stimuli, pA for responses) in the main experiment, scaled from worst to best as 
(0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8, 0.9). These probabilities are almost perfectly col-
linear (r = 0.99) with the experienced frequency of reward in the training phase 
(Supplementary Fig. 10).

main experimental task. Inside the scanner, subjects performed 200 trials of 
a three-option choice task in which stimuli were pseudorandomly paired with 
different actions. Subjects were instructed to weight both stimulus and action 
attributes equally in making their choice. It was never the case that the same 
stimulus (or action) was available on more than one option. Trials were selected 
such that key variables of interest for neural (and behavioral) analysis were decor-
related (as far as possible) in the design. In this schedule, as expected by chance, 
the best stimulus and best action suggested conflicting responses on 66% of trials. 
In these trials, only infrequently (5% of trials) did the best pO occur for options 
with neither the best pS nor pA; instead, the best pO typically aligned with the 
best pS or best pA (59% and 36% of trials, respectively). Across all trials, this 
meant that the best pO aligned with the best pS on 73% of trials, and with the 
best pA on 58% of trials. Despite this slight asymmetry between best pA and pS 
being coincident with best pO, subjects showed no systematic bias toward using 
one attribute over another (Supplementary Fig. 1). The same schedule was used 
for each subject, but with high/low value stimulus identities and high/low value 
actions counterbalanced across subjects. Full details of schedules used can be 
obtained by examining the raw datafiles and analysis scripts (Supplementary 
data). Task timings are shown in Figure 1c. Subjects could view freely (that is, 
they were not required to hold fixation) during the decision phase.

True reward probabilities for each option were based on a posterior prob-
ability of reward (pO) that optimally weighted pS and pA for each alternative, 
using Bayes’ Rule

pO pS pA
pS pA pS pAi

i i

i i i i
= ⋅

⋅ + − ⋅ −( ) ( )1 1
  

Behavioral data analysis. Trials on which no response was made within the 
3-s time limit (on average <3% of total trials) were removed from subsequent 

behavioral analysis. The same analysis was applied to both predictions from the 
computational model of the task (Fig. 2) and subject behavior (Fig. 3).

Preference for using stimulus or action attribute (Supplementary Fig. 1).  
To estimate the average weight assigned to using the stimulus or action attribute, 
we fit a behavioral model to subjects’ choices that contained a free parameter, ϒ, 
that was greater in subjects who used stimulus information more heavily, and 
a free choice parameter β. ϒ serves to transform the true stimulus and action 
probabilities of option i into subjective ‘weights’ 
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Each individual’s ϒ and β parameter was fit via maximum likelihood estimation.

logistic regression of choices, revealing distractor effects (Figs. 2a–c and 
3a–c). To estimate the influence of each stimulus and action on subjects’ choices, 
we performed a binomial logistic regression analysis. To perform this analysis in 
a manner amenable to revealing a third-option distractor effect, we performed 
the logistic regression on pairs of options taken from the three-option choice 
data. Within the logistic regression model, each trial featured twice: once with 
the chosen option and unchosen option A included, and again with the chosen 
option and unchosen option B included. As shown before23,24, this allows inter-
rogation of the regression coefficients as a function of when the option left out 
of the regression was of high or low value.

The subject’s choice (that is, chose option 2 coded as 1, chose option 1 coded 
as 0) was the dependent variable, and as independent variables we included 
separate indicator variables for each stimulus and each action for option 1 and 2 
(valued 1 when that stimulus/action was present for option 1 or 2, and 0 other-
wise). However, such an approach leads to rank deficiency in the design matrix, 
as the linear combination of each stimulus/action sums to produce a constant 
term. To finesse this, we removed the regressor corresponding to the eighth 
(best) stimulus and action for both options 1 and 2 (that is, we removed columns 
8, 16, 24 and 32 from the design matrix), and added a single constant term. 
We then constructed contrasts of parameter estimates that recovered the mean 
parameter estimate of each stimulus/response, collapsed across options 1 and 2 
(Supplementary Fig. 11).

This was repeated on subsets of data points: where the third (left-out) option 
was either high (>67th percentile) or low (<33rd percentile) in integrated value 
(Figs. 2a and 3a), high or low in stimulus probability (Figs. 2b and 3b), or high 
or low in action probability (Figs. 2c and 3c). The data points in these figures 
show the mean ± s.e. (across subjects) of the contrasts of parameter estimates 
from the logistic regression.

RT regression (Figs. 2d and 3e). We assessed the influence of reward probabili-
ties on RTs using multiple linear regression. Log(RT) was used as the dependent 
variable as this approximates a normal distribution. In a first analysis, we only 
investigated the role of integrated values on RT. Four regressors were included: 
the integrated value of the chosen option (pOchosen), the integrated value of the 
best unchosen option (pObest unchosen), the integrated value of the worst unchosen 
option (pOworst unchosen), and a constant term.

In a second analysis, we investigated the separable contributions of value differ-
ence on the relevant attribute, the irrelevant attribute, and the integrated value, on 
trials in which relevance could be defined (where stimulus and action conflicted, 
and subjects either selected the best stimulus or the best response). Ten regres-
sors were included in total: a constant term, the chosen, best unchosen and worst 
unchosen values on the relevant attribute, the chosen, best unchosen and worst 
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unchosen values on the irrelevant attribute, and the chosen, best unchosen and 
worst unchosen integrated values. Contrasts of parameter estimates were used to 
calculate the influence of the value difference on chosen and best unchosen values 
on RT (that is, [1 −1] contrast on chosen and best unchosen values). Complete 
anonymous behavioral data sets and MATLAB analysis scripts are provided in 
the Supplementary data.

computational model. We implemented a hierarchical leaky, competing 
accumulator model to capture behavioral and neural effects observed in our 
multi-attribute choice task. In the main model (Figs. 2 and 4), we assumed 
that evidence accumulated and competed on each attribute (within-attribute 
competition), there was competition over which attribute to attend (between-
attribute competition), and there was competition on integrated values to select 
the winning option.

Within-attribute evidence accumulation was modeled using a dynamical 
equation

E E S E CM CN E 0l l l l l( ) ( ) ( ) ( , ); ( )t dt t t dt dt dt+ = + + + =0 02s

where el(t) is a 3 × 2 matrix (superscripted with l to denote lower-level of hier-
archical model), containing accumulated evidence on each option (row) and 
attribute (column) at time t; m is a 3 × 2 matrix, containing the within-attribute 
probabilities, divisively normalized within-attribute (that is, the columns of m 
sum to 1); Sl is a 3 × 3 matrix, containing off-diagonal elements that determine 
competition (kl), and on-diagonal elements that determine the rate of self-decay 
(dl); c is a 3 × 3 contrast matrix that subtracts the mean of all other alternatives 
from the firing rate of each element (on-diagonal elements set to 1, off-diagonal 
elements set to −0.5); N(0, σ2 dt) is a 3 × 2 matrix containing Gaussian noise, with 
each element drawn from the normal distribution with mean 0 and variance σ2 
dt; 0 is a 3 × 2 matrix of zeros.

Accumulation of evidence integrated across attributes was then modeled 
using

E E S E E E 0h h h h l h( ) ( ) ( ) ( ) ( ) ; ( )t dt t t dt t w t dt+ = + + =→ 0

where eh(t) is a 3 × 1 matrix (superscripted with h to denote higher-level of 
hierarchical model), containing accumulated evidence on each option at time t; 
Sh is a 3 × 3 matrix, containing off-diagonal elements that determine competition 
(kh), and on-diagonal elements that determine the rate of self-decay (dh); w(t) is 
a 2 × 1 vector, whose elements sum to 1 and are ≥0, that determines the relative 
weight assigned to each lower level attribute; 0 is a 3 × 1 matrix of zeros.

Finally, the weight assigned to each attribute is assumed to be calculated 
instantaneously by applying a softmax transformation to the within-attribute 
difference of the best and second best option on each attribute (as suggested 
by the signal observed in the intraparietal sulcus at the time of making  
the decision)

w t
e

i Ediffi Ediff i
( ) ( ~ )=

+ −
1

1 b

 Ediffi refers to the difference between the highest value in el(t) and next  
highest value in el(t) for the ith attribute. β is a free parameter that determines 
the influence of within-attribute differences on attention. When wi(t) is close 
to 0.5, both stimulus and action have an influence on guiding choice; when  
it is close to 1, then w~i(t) will be close to 0, and only the ith attribute will  
have influence on choice.

A decision was made when any value of eh exceeded a decision threshold θ. 
The RT of the model was the time at which this occurred plus a non-decision 
time, tnd.

The model has eight free parameters. We assumed that the dynamics  
of the leaky, competing accumulators were the same both within- and  
between- attributes (that is, kh = kl and dh = dl), reducing the parameter space to 
six parameters. We performed a grid search across parameter space to fit basic 
properties of subject behavior—namely, the distribution of RTs and the error rates 

(1)(1)

(2)(2)

(3)(3)

of an average subject. The fit parameters are listed below. However, it is important 
to note that the key behaviors of the model—that is, the within-option distractor 
effect and the effect on RTs—are qualitative rather than quantitative features  
of the model. These properties did not change fundamentally as a function of 
the parameter fit.

Model parameters were as follows (search grid resolution and limits  
specified in square brackets): decay rate, dh = dl = −0.1 [–0.5:0.1:0]; inhibitory 
competition, kh = kl = −0.05 [–0.08:0.01:0]; non-decision time, tnd = 300 ms 
[100:100:500]; threshold, θ = 200 [100:100:1100]; input noise, σ = 1 [0:1:10]; 
between-attribute competition softmax temperature, β = 0.1. [0.1:10, logarithmi-
cally spaced in 10 bins].

All modeling was implemented in MATLAB (Mathworks); MATLAB  
code for models is available on request. For comparison with alternative  
models, and details of fMRI simulations, see Supplementary Figures 3 and 4 
and Supplementary Note.

fmRI data. Whole-brain T2*-weighted echo-planar imaging (EPI) data were 
acquired using a Siemens Trio 3T scanner, using a 32-channel headcoil. The 
sequence chosen was selected to minimize dropout in both orbitofrontal cortex 
and amygdala51. Each volume contained 43 slices of 3-mm isotropic data; echo 
time = 30 ms, repetition time = 3.01 s per volume, echo spacing of 0.5 ms, slice tilt 
of −30° (T > C), Z-shim of −1.4 mT/m*ms, phase oversampling of 13%, ascending 
slice acquisition order. The mean number of volumes acquired per subject was 
815 (the total number of volumes acquired varied depending on participants’ 
RTs). The first five volumes of each data set were discarded to account for T1 
saturation effects, and so the experiment was not started until these five volumes 
had been acquired.

Structural data. Whole-brain T1-weighted structural data were acquired  
using a 3D MDEFT routine with sagittal partition direction, 176 partitions,  
field of view = 256 × 240, matrix = 256 × 240, 1-mm isotropic resolution,  
TE = 2.48 ms, TR = 7.92 ms, flip angle 16°, inversion time = 910 ms. Total  
acquisition time was 12 min 51 s.

Field maps. Whole-brain field maps (3-mm isotropic) were acquired to allow  
for subsequent correction in geometric distortions in EPI data at high field 
strength. Acquisition parameters were 10-ms/12.46-ms echo times (short/long 
respectively), 37-ms total EPI readout time, with positive/up phase encode  
direction and phase-encode blip polarity −1.

fmRI analysis. fMRI data processing was carried out using FEAT (fMRI  
Expert Analysis Tool) Version 6.00, part of FSL (FMRIB’s Software Library,  
http://www.fmrib.ox.ac.uk/fsl)52. Region-of-interest time series analysis was per-
formed using custom-written scripts in MATLAB (Mathworks).

Preprocessing. The following pre-statistics processing was applied in FSL; 
motion correction using MCFLIRT; unwarping of B0 slice-timing correc-
tion using Fourier-space time-series phase-shifting; non-brain removal using  
BET; spatial smoothing using a Gaussian kernel of FWHM 7.0 mm; highpass 
temporal filtering (Gaussian-weighted least-squares straight line fitting, with 
sigma = 50.0 s).

First-level general linear model. Time-series statistical analysis was carried 
out using FILM (FMRIB’s Improved Linear Model) with local autocorrela-
tion correction. Two event-related models were specified: model 1 with 
solely task-based regressors (Figs. 5 and 7, Supplementary Figs. 6–9, and 
Supplementary Tables 2 and 3), and model 2 to specify the psychophysi-
ological interaction (Fig. 6).

Model 1 contained 14 regressors in total. The first eight were related to the 
decision phase of the trial; the next two were related to the response; the final 
four were related to feedback.

DECIDE_ONSET: 1 during decision (from decision until response), 0 outside 
decision.

DECIDE_RELATT_CHPROB: Same timings as DECIDE_ONSET; parametric 
regressor for probability of the chosen option being rewarded on relevant attribute 
(chosen pS for stimulus relevant trials, chosen pA for action relevant trials).  

http://www.fmrib.ox.ac.uk/fsl
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Only trials in which stimulus and action attributes had different best options 
(and where one of these was selected) were included in this regressor.

DECIDE_RELATT_BEST_UNCHPROB: As DECIDE_RELATT_CHPROB, 
containing probability of best unchosen option on the relevant attribute.

DECIDE_RELATT_WORST_UNCHPROB: As DECIDE_RELATT_
CHPROB, containing probability of worst unchosen option on the relevant 
attribute.

DECIDE_IRRELATT_CHOSEN_PROB: As DECIDE_RELATT_CHPROB, 
containing probability of chosen option on irrelevant attribute.

DECIDE_IRRELATT_BEST_UNCHPROB: As DECIDE_RELATT_CHPROB, 
containing probability of best unchosen option on irrelevant attribute.

DECIDE_IRRELATT_WORST_UNCHPROB: As DECIDE_RELATT_
CHPROB, containing probability of worst unchosen option on irrelevant 
attribute.

DECIDE_EASY: Same timings as DECIDE_ONSET; value 1 on easy  
decisions in which both stimulus and action indicate the same best option,  
0 on other trials.

RESPONSE_ONSET: Value 1 during the 4–8-s period when the response was 
onscreen, 0 outside this period.

RESPONSE_RIGHT>LEFT: Value 1 when a button was pressed with the right 
hand; −1 with the left hand; 0 outside this period. Stick function lasting 1 s, time-
locked to response.

FEEDBACK_ONSET: Value 1 during 3-s period when reward feedback was 
onscreen, 0 outside this period.

FEEDBACK_REWARD: Same timings as FEEDBACK_ONSET, value 1 if 
reward was delivered and 0 otherwise.

FEEDBACK_RELATT_CHPROB: Same timings as FEEDBACK_ONSET;  
parametric regressor containing probability of chosen option on relevant  
attribute. Only included for same trials as DECIDED_RELATT_CHPROB.

FEEDBACK_IRRELATT_CHPROB: As FEEDBACK_RELATT_CHPROB, 
but containing probability of chosen option on irrelevant attribute.

All regressors were convolved with FSL’s canonical gamma hemodynamic 
response function, and temporally filtered with the same high-pass filter applied 
to the fMRI time series. Temporal derivatives of all regressors were included to 
account for variability in the hemodynamic response function.

The following contrasts of parameter estimates were constructed, and reported 
in the main text.

Regions encoding value difference differentially across relevant and irrelevant 
attributes (Fig. 5): (DECIDE_IRRELATT_CHPROB − DECIDE_IRRELATT_
BEST_UNCHPROB) − (DECIDE_RELATT_CHPROB − DECIDE_RELATT_
BEST_UNCHPROB).

Regions encoding value difference commonly across relevant and irrelevant 
attributes (Fig. 7): (DECIDE_RELATT_CHPROB − DECIDE_RELATT_BEST_
UNCHPROB) + (DECIDE_IRRELATT_CHPROB − DECIDE_IRRELATT_
BEST_UNCHPROB).

Regions encoding a traditional reward prediction error, tied to the relevant 
attribute (Supplementary Fig. 8a): (FEEDBACK_REWARD − FEEDBACK_
RELATT_CHPROB).

Regions encoding an ‘attribute prediction error’ (Supplementary Fig. 8c): 
(FEEDBACK_RELATT_CHPROB − FEEDBACK_IRRELATT_CHPROB).

Model 2 contained 17 regressors in total. The first two regressors comprised 
the psychological component of the psychophysiological interaction; the next 
regressor comprised the physiological component; the next two regressors made 
up the key interaction contrast. The remaining 12 regressors modeled other  
elements of the task (regressors of no interest).

DECIDE_WENT_W_STIM: 1 during decision period (that is, lasting from 
decision onset until response), 0 outside decision period, on trials where stimulus 
was relevant attribute.

DECIDE_WENT_W_RESP: 1 during decision period (that is, lasting from 
decision onset until response), 0 outside decision period, on trials where action 
was relevant attribute.

IPS_TIMECOURSE: The mean timeseries (after preprocessing) extracted 
from a region of interest based on analysis from model 1. The mask used is 
described below.

IPS_WENT_W_STIM_INTERACTION: Interaction of DECIDE_WENT_
W_STIM and IPS_TIMECOURSE; following the procedure outlined in33, 

DECIDE_WENT_W_STIM had zero center and IPS_TIMECOURSE had  
zero mean.

IPS_WENT_W_RESP_INTERACTION: The interaction of DECIDE_
WENT_W_RESP and IPS_TIMECOURSE; DECIDE_WENT_W_RESP had 
zero center and IPS_TIMECOURSE had zero mean.

The remaining twelve regressors (of no interest) were: RESPONSE_ONSET, 
RESPONSE_RIGHT>LEFT, FEEDBACK_ONSET, FEEDBACK_REWARD, 
DECIDE_NOBRAINER, DECIDE_WENT_W_NEITHER (as regressor 
DECIDE_WENT_W_STIM, but on trials where neither the best stimulus nor 
best action was chosen), and six parametric regressors for the values of the best, 
second best and worst response, and best, second best and worst stimulus, all at 
the decision phase.

The key contrast of parameter estimates (Fig. 6) was therefore: (IPS_WENT_
W_STIM_INTERACTION − IPS_WENT_W_RESP_INTERACTION).  
A region significantly greater than zero for this contrast was showing greater 
functional connectivity with IPS on trials where stimulus was relevant, 
whereas a region significantly less than zero for this contrast was show-
ing greater functional connectivity with IPS on trials where action was  
relevant.

Intersubject registration. Registration to high resolution structural images was 
carried out using FLIRT (FMRIB’s Linear Image Registration Tool). Registration 
from high resolution structural to standard space was then further refined using 
FNIRT nonlinear registration.

Second-level general linear model and statistical inference. For both mod-
els 1 and 2, higher-level analysis was carried out using FLAME (FMRIB’s 
Local Analysis of Mixed Effects) stage 1. A group mean was fit to contrasts 
of parameter estimates from the first-level analysis, and T statistics were 
estimated at each voxel to test whether this mean was significantly different 
from zero. For model 1 (main task GLM), Z (Gaussianised T) statistic images 
were thresholded using clusters determined by Z > 2.3 and a (whole-brain 
corrected, family wise error) cluster significance threshold of P = 0.05. (This 
was except for prediction error signals at feedback time, where the clusters 
extent determined by a threshold of Z > 2.3 were too large to make sensi-
ble inference. Hence, a more stringent cluster-forming threshold of Z > 3.1 
was used). For model 2 (PPI GLM), Z (Gaussianised T) statistic images were 
thresholded using clusters determined by Z > 2.3 and clusters exceeding 100 
voxels in predefined regions of interest were reported. Clusters formed at this 
threshold were also tested for whole-brain significance using Monte Carlo 
simulation of a Gaussian random field, using the AlphaSim software released 
as part of AFNI version 1014, using a whole-brain significance threshold of 
P < 0.05; the degree of smoothing for this analysis was estimated using the 
FSL tool smoothest v2.1).’

Region of interest analysis. Time series for ROI plotting and PPI analyses 
were determined by: (i) thresholding Z statistic images from the second level 
analysis reported above; (ii) binarizing this thresholded image to form a mask; 
(iii) applying the inverse of each individual’s registration, calculated during 
intersubject registration, to project this mask from single-subject space back to 
the 3-mm3 isotropic space in which EPI data were acquired; (iv) thresholding 
(at 0.3) and re-binarizing this back-projected mask; (v) extracting the mean 
time series within this region of interest from the pre-processed EPI data. We 
adopted a leave-one-out approach to ROI construction31, in which the mask 
used to extract each subject’s data was based upon a group analysis contain-
ing all the remaining (n − 1) subjects, and then tested in the independent 
left-out subject.

To plot effects of individual regressors through time, the timeseries 
was upsampled, then time-locked to decision onset (Figs. 5b and 7b, and 
Supplementary Fig. 9) or feedback onset (Supplementary Fig. 8b,d) of each 
trial. This creates a data matrix with dimensions nTrials*nTime points. Each 
time point was regressed against explanatory variables of interest for each 
subject. The mean ± standard error (across subjects) of parameter estimates 
from this regression is plotted. A full description of this approach is given  
in ref. 53.

The masks for timeseries analysis and PPIs were determined as follows.
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IPS mask for Figure 5b, attribute-based prediction error (Supplementary 
Fig. 8d), and PPI analysis: all voxels with Z > 2.8 for contrast (i) in GLM 1 that 
lay within an anatomical mask of the parietal cortex.

Nucleus accumbens/VMPFC mask, feedback phase (Supplementary Fig. 8b): 
all voxels with Z > 3.1 for contrast (iv) in model 1, described above, that lay within 
an anatomical mask encompassing the nucleus accumbens and VMPFC. A more 
stringent threshold was used for ROI generation than in IPS/dMFC to enable 
increased anatomical specificity; similar results could be obtained irrespective 
of exact threshold used.

Cingulate/paracingulate cortex mask for Figure 7b: all voxels with Z < −2.8 
for contrast (ii) in GLM 1 that lay within an anatomical mask of the cingulate 
and paracingulate cortices.

Ventromedial prefrontal cortex mask, decision phase (Supplementary  
Fig. 9): an 8-mm sphere placed at a location consistent with findings from a  
recent meta-analysis of value-related activations37.

A Supplementary methods checklist is available.
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