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Associative learning of social value
Timothy E. J. Behrens1,2*, Laurence T. Hunt1,2*, Mark W. Woolrich1 & Matthew F. S. Rushworth1,2

Our decisions are guided by information learnt from our envir-
onment. This information may come via personal experiences of
reward, but also from the behaviour of social partners1,2. Social
learning is widely held to be distinct from other forms of learning
in its mechanism and neural implementation; it is often assumed to
compete with simpler mechanisms, such as reward-based associative
learning, to drive behaviour3. Recently, neural signals have been
observed during social exchange reminiscent of signals seen in
studies of associative learning4. Here we demonstrate that social
information may be acquired using the same associative processes
assumed to underlie reward-based learning. We find that key com-
putational variables for learning in the social and reward domains
are processed in a similar fashion, but in parallel neural processing
streams. Two neighbouring divisions of the anterior cingulate cortex
were central to learning about social and reward-based information,
and for determining the extent to which each source of information
guides behaviour. When making a decision, however, the informa-
tion learnt using these parallel streams was combined within
ventromedial prefrontal cortex. These findings suggest that human
social valuation can be realized by means of the same associative
processes previously established for learning other, simpler, features
of the environment.

To compare learning strategies for social and reward-based
information, we constructed a task in which each outcome revealed
information both about likely future outcomes (reward-based
information) and about the trust that should be assigned to future
advice from a confederate (social information).

Twenty-four subjects performed a decision-making task requiring
the combination of information from three sources (Fig. 1, Methods
and Supplementary Information): (1) the reward magnitude of each
option (generated randomly at each trial); (2) the likely correct
response (blue or green) based on their own experience of rewards
on each option; and (3) the confederate’s advice, and how trustworthy
the confederate currently was. When a new outcome was witnessed,
subjects could use this single outcome to learn in parallel about the
likely correct action, and the trustworthiness of the confederate.

The investigation resembles previous experiments that have com-
pared animate and inanimate conditions in different trials or experi-
ments5,6. Here, however, both sources of information were present on
each trial outcome but the relevance of each was manipulated con-
tinuously allowing determination of both the functional magnetic
resonance imaging (fMRI) signal and the behavioural influence
associated with each source of information.

Optimal behaviour in this task requires the subject to track the
probability of the correct action and the probability of correct advice
independently, and to combine these two probabilities into an overall
probability of the correct response (Supplementary Information).
Computational models of reinforcement learning (RL) have had
considerable success in predicting how such probabilities are tracked
in learning tasks outside the social domain7. The simplest RL models

integrate information over trials by maintaining and updating the
expected value of each option. When new information is observed
this value is updated by the product of the prediction error and the
learning rate7. In our task, there are two dissociable prediction errors:
the reward prediction error (actual reward 2 expected value), for
learning about the correct option, and the confederate prediction
error (actual 2 expected fidelity), for learning about the trustworthi-
ness of the confederate. The optimal learning rate depends on the
volatility of the underlying information source8–10. In volatile condi-
tions, subjects should give more weight to recent information, using a
fast learning rate. In stable conditions, subjects should weigh recent
and historical information almost equally, using a slow learning rate.
By ensuring that the correct option and the confederate’s advice
became volatile at different times, we ensured that the learning rate
for these two sources of information varied independently. We used a
Bayesian RL8 model (Supplementary Information) to generate the
optimal estimates of prediction error, volatility and outcome proba-
bility separately for each source of information (Fig. 1b–d).

We first sought to establish whether human behaviour matched
predictions from the RL model. We used logistic regression to deter-
mine the degree to which subject choices were influenced by the
optimally tracked confederate and outcome probabilities, and by
the difference in reward magnitudes between options. Parameter
estimates for all three information sources were significantly greater
than zero, and there was no significant difference in the degree to
which subjects used reward and social information to determine their
behaviour (Fig. 1e). Furthermore there was no significant effect
either of subjects blindly following confederate advice without learn-
ing its value, or of subjects assuming that the confederate would
behave in the same way as the previous trial (Fig. 1e). Hence subjects
were able to integrate the fidelity of the confederate over many trials
in an RL-like fashion.

We then investigated whether the fMRI signal reflected the model’s
estimates of prediction error and volatility, for both social and
reward information, when subjects witnessed new outcomes. In the
reward domain, neural responses have been identified that encode
these key parameters8,11–16. Dopamine neurons in the ventral tegmen-
tal area (VTA) code reward prediction errors12,13,17. Similar signals are
reported in the dopaminoceptive striatum11,18 and even in the VTA
itself, when specialized strategies are used in human fMRI studies19.
fMRI correlates of the learning rate in the reward domain have been
reported in anterior cingulate sulcus (ACCs)8. If humans can learn
from social information in a similar fashion, it should be possible to
detect signals that co-vary with the same computational parameters,
but in the social domain.

We observed blood-oxygen-level-dependent (BOLD) correlates of
the confederate prediction error in dorsomedial prefrontal cortex
(DMPFC) in the vicinity of the paracingulate sulcus, right middle
temporal gyrus (MTG), and in the right superior temporal sulcus at
the temporoparietal junction (STS/TPJ) (Fig. 2a). Equivalent signals
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were present in the left hemisphere at the same threshold, but did not
pass the cluster extent criterion; similar effects were also found bilate-
rally in the cerebellum (Supplementary Information). Notably, these
regions showed a pattern of activation similar to known dopaminer-
gic activity in reward learning13, but for social information. Activity
correlated with the probability of a confederate lie after the subject
decision but before the outcome was revealed (a prediction signal).
When the subjects observed the trial outcome, activity correlated
negatively with this same probability, but positively with the event
of a confederate lie (Fig. 2b). This signal reflects both components of
a prediction error signal for social information: the outcome (lie or
truth) minus the expectation (Fig. 2b). These signals cannot be influ-
enced by reward prediction errors as the two types of prediction error
were decorrelated in the task design. The presence of this prediction

error signal in the brain is a prerequisite for any theory of an RL-like
strategy for social valuation.

We performed a similar analysis for prediction errors on reward
information (reward minus expected reward). We found a significant
effect of reward prediction error in the ventral striatum (Fig. 2c), the
ventromedial prefrontal cortex, and anterior cingulate sulcus (see
Supplementary Information). As in the social domain, we observed
significant effects of all three elements of the reward prediction error
(Fig. 2d; see Supplementary Information for discussion).

As previously demonstrated8, the volatility of action–outcome
associations predicted BOLD signal in a circumscribed region of the
ACCs (Fig. 3a). This effect varied across people such that those whose
behaviour relied more on their own experiences (Supplementary
Information) showed a greater volatility-related signal in this region
(Fig. 3b). The volatility of confederate advice correlated with BOLD
signal in a circumscribed region in the adjacent ACC gyrus (ACCg)
(Fig. 3a). Subjects whose behaviour relied more on this advice showed
greater signal change in this region (Fig. 3c). Notably, this double
dissociation (reflected in a three-way interaction between area
(ACCs versus ACCg), volatility type (social versus outcome) and
degree of reliance on social (F1,20 5 7.145, P 5 0.015) or experiential
information (F1,20 5 5.379, P 5 0.031) in an analysis of covariance)
can be understood by reference to a dissociation in macaque monkeys.
Selective lesions to ACCs but not ACCg impair reward-guided
decision making in the reward domain20. In the social domain, male
macaques will forego food to acquire information about other indi-
viduals21,22. Selective lesions to ACCg but not ACCs abolish this
effect23. We found that BOLD signals in these two regions reflect the
respective values of the same outcome for learning about the two
different sources of information.

Learning about reward probability from vicarious and personal
experiences recruits distinct neural systems, but subjects combine
information across both sources when making decisions (Fig. 1e).
A ventromedial portion of the prefrontal cortex (VMPFC) has been
shown to code such an expected value signal for the chosen action24,25

during decision making.
We computed two probabilities of reward on the subject’s chosen

option: one based only on experience and one based only on confed-
erate advice. BOLD signal in the VMPFC was significantly correlated
with both probabilities (Fig. 4a and Supplementary Fig. 4). However,
there was subject variability in whether the VMPFC signal better
reflected the reward probability based on outcome history or on
social information. The extent to which the VMPFC data reflected
each source of information (at the time of the decision) was predicted
by the ACCs/ACCg response to outcome/social volatility (at the time
when the outcomes were witnessed) (Fig. 4b, c).
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Figure 1 | Experimental task and behavioural findings. a, Experimental task
(see Methods and Supplementary Information). Each trial consists of four
phases. Subjects are presented with a decision (Cue), receive the advice (red
square) of the confederate (Suggest) and respond using a button press (grey
square). An ‘Interval’ period follows, before the correct outcome is revealed
(Monitor). If the subject chooses correctly the red bar is incrementally
increased by the number of points on the chosen option. b, c, Reward
schedules for reward (b) and social (c) information. Dashed lines show the
true probability of blue being correct (b) and the true probability of correct
confederate advice (c). Each schedule underwent periods of stability and
volatility. Solid lines show the model’s estimate of the probabilities.
d, Optimal model estimates of the volatility of reward (green) and social
(red) information. e, Logistic regression on subject behaviour. Factors
included were the reward magnitude difference between options (RMD); the
outcome probability derived from the model using reward outcomes (RLO);
the outcome probability derived from the model using confederate advice
(RLC); the possibility that the subjects would blindly follow the confederate
without learning (BFC); and the possibility that subjects would assume the
confederate would behave as in the previous trial (CPT). The logistic
regression analysis revealed significant effects only on RMD, RLO and RLC
(asterisks). Error bars show s.e.m.; a.u., arbitrary units.
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Here, we have shown that the weighting assigned to social
information is subject to learning and continual update via associa-
tive mechanisms. We use techniques that predict behaviour when
learning from personal experiences to show that similar mechanisms
explain behaviour in a social context. Furthermore, we demonstrate
fundamental similarities between the neural encoding of key para-
meters for reward-based and social learning. Despite using similar
mechanisms, distinct anatomical structures code learning para-
meters in the two domains. However, information from both is
combined in ventromedial prefrontal cortex when making a decision.

By comparing the two sources of information, we find that social
prediction error signals similar to those reported in dopamine neu-
rons for reward-based learning are coded in the MTG, STS/TPJ and
DMPFC. BOLD signal fluctuations in these regions are often seen in
social tasks26,27, and in tasks which involve the attribution of motive
to stimuli28. Such activations have been thought critical in studies of
the theory of mind28. That these regions should code quantitative
prediction and prediction error signals about a confederate lends
more weight to the argument that social evaluation mechanisms
are able to rely on simple associative processes.

A second crucial parameter in reinforcement learning models is the
learning rate, reflecting the value of each new piece of information. In
the context of reward-based learning, this parameter predicts BOLD
signal fluctuations in the ACCs at the crucial time for learning8—a
finding that is replicated here. We further demonstrate that the exact
same computational parameter, in the context of social learning, pre-
dicts BOLD fluctuations in the neighbouring ACCg. This functional
dissociation is mirrored by differences in the regions’ anatomical
connectivity. In the macaque monkey, connections with motor
regions lie predominantly in ACCs29, giving access to information
about the monkey’s own actions. Connections with visceral and social
regions, including the STS, lie predominantly in ACCg29, giving access
to information about other agents. Nevertheless, that it is the same
computational parameter that is represented in ACCs and ACCg sug-
gests that parallel streams of learning occur within ACC for social and
non-social information.

It has been suggested that VMPFC activity might represent a com-
mon currency in which the value of different types of items might be
encoded25,30. Here we show that the same portion of the VMPFC
represents the expected value of a decision based on the combination

x = 0 mm x = 54 mm

y = 16 mm

−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

0 5 10 15 20 25
–0.1

–0.05

0

0.05

0.1

0.15
Trial onset Suggestion Response Outcome

   
 (

P
ar

tia
l) 

co
rr

el
at

io
n 

b
et

w
ee

n 
B

O
LD

   
   

si
g

na
l a

nd
 r

eg
re

ss
o

r 
o

f i
nt

er
es

t 
(r

)

Effect of lie probabilityEffect of lie event

0 5 10 15 20 25

Trial onset Suggestion Response Outcome

Time (s)

–0.1

–0.05

0

0.05

0.1

0.15
Trial onset Suggestion Response Outcome

Trial onset Suggestion Response Outcome

−0.2
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6

   
 (

P
ar

tia
l) 

co
rr

el
at

io
n 

b
et

w
ee

n 
B

O
LD

   
   

si
g

na
l a

nd
 r

eg
re

ss
o

r 
o

f i
nt

er
es

t 
(r

)

0 5 10 15 20 25
Time (s)

0 5 10 15 20 25
Time (s)

Effect of expected valueEffect of reward magnitude

a

b

c

d

Figure 2 | Predictions and prediction errors in social and non-social
domains. Time courses show (partial) correlations 6 s.e.m. (See
Supplementary Fig. 2.) a, Activation in the DMPFC, right TPJ/STS and MTG
correlate with the social prediction error at the outcome (threshold set at
Z . 3.1, cluster size .50 voxels). b, Deconstruction of signal change in the
DMPFC. Similar results were found in the MTG and TPJ/STS. Top:
following the outcome, areas that encode prediction error correlate
positively with the outcome and negatively with the predicted probability.
Red, effect size of the confederate lie outcome (1 for lie, 0 for truth); blue,
effect size of the predicted confederate lie probability. To perform inference,
we fit a haemodynamic model in each subject to the time course of this effect
(that is, to the blue line). The green line in the top panel shows the mean
overall fit of this haemodynamic model (for comparison with the blue line).
Bottom: the effect of lie probability (blue line from top panel) is decomposed
into a haemodynamic response function at each trial event (corresponding
to the four colours in the bottom panel) (see Supplementary Fig. 2). Dashed
and solid lines show mean responses 6 s.e.m. Each region showed a
significant positive effect of predicted confederate lie probability after the

decision (t22 5 1.96 (P , 0.05), 1.73 (P , 0.05), 1.74 (P , 0.05) for DMPFC,
MTG and TPJ/STS, respectively). Crucially, each brain region showed a
significant negative effect of predicted confederate lie probability after the
outcome (t22 5 2.68 (P , 0.005), 2.35 (P , 0.05), 3.27 (P , 0.005)).
c, Ventral striatum is taken as an example of a number of regions revealed by
the voxel-wise analysis of reward prediction error (threshold set at Z . 3.1,
cluster size .100 voxels). d, Panels are exactly as in b, but coded in terms of
reward and not in terms of confederate fidelity. The top panel shows the
parameter estimate relating to the expected value of the trial (blue line) and,
after the outcome, the parameter estimate relating to the magnitude of these
rewards (red line). To test for prediction error coding, we again fit a
haemodynamic model to the expectation parameter estimate (shown by the
green line, for comparison with blue line). Bottom panel: the time course
showed a significant positive effect during the time of the decision (t22 5 3.32
(P , 0.002)), and a significant negative effect after the trial outcome
(t22 5 2.50 (P , 0.05)). (See Supplementary Information for further
discussion.)
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of information from social and experiential sources. However, the
extent to which the VMPFC signal reflects each source of information
during a decision is predicted by the extent to which the ACCs and
ACCg modulate their activity at the point when information is learnt.
If, as is suggested, the VMPFC response codes the expected value of a
decision, then the ACCs response to each new outcome predicts the
extent that this outcome will determine future valuation of an action;
the ACCg response predicts the extent to which this outcome will
determine future valuation of an individual.

METHODS SUMMARY
Short description of task (Fig. 1a). Subjects performed a decision-making task

while undergoing fMRI, repeatedly choosing between blue and green rectangles,

each of which had a different reward magnitude available on each trial. The

chance of the rewarded colour being blue or green depended on the recent

outcome history. Before the experiment, subjects were introduced to a confed-

erate. At each trial, the confederate would choose between supplying the subject

with the correct or incorrect option, unaware of the number of points available.

The subject’s goal was to maximize the number of points gained during the

experiment. In contrast, the confederate’s goal was to ensure that the eventual

score would lie within one of two pre-defined ranges, known to the confederate

but not the subject. The confederate might therefore reasonably give consistently

helpful or unhelpful advice, but this advice might change as the game progressed

(Supplementary Information). During the experiment, the confederate was

replaced by a computer that gave correct advice on a prescribed set of trials.

Subjects knew that the trial outcomes were determined by an inanimate com-

puter program, but believed that the social advice came from an animate agent’s

decision.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Detailed analysis of the task, the learning model, the behavioural analysis, the

data acquisition and pre-processing, and several further results and discussion

can be found in the Supplementary Information. Here, we describe aspects of the

fMRI modelling that may be relevant to the interpretation of our results. Further

technical details can also be found in the Supplementary Information.

fMRI single-subject modelling. We performed two fMRI GLM analyses using

FMRIB’s Software library (FSL, ref. 31). The first looked for learning-related

activity (Figs 2, 3 and Supplementary Fig. 3), the second for decision-related

activity (Fig. 4 and Supplementary Fig. 4). In each case a general linear model was

fit in pre-whitened data space (to account for autocorrelation in the fMRI

residuals)32. Regressors were convolved and filtered according to FSL defaults

(see Supplementary Information).

The following regressors (plus their temporal derivatives) were included in the

time series model (learning-related activity): four regressors defining the different

times during the task (see Fig. 1 and Supplementary Information), namely Cue,
Suggest, Interval, Monitor; four regressors defining key learning parameters when

the outcomes are presented (see Supplementary Information), namely (Monitor 3

Reward history volatility), (Monitor 3 Confederate volatility), (Monitor 3

Reward prediction error), (Monitor 3 Confederate prediction error).

The following regressors (plus their temporal derivatives) were included in the

time series model (decision-related activity): four regressors defining the differ-

ent times during the task (see Fig. 1 and Supplementary Information), namely

Cue, Suggest, Interval, Monitor; seven regressors defining key decision para-

meters at the times when they were available during the decision (see

Supplementary Information), namely (Cue 3 Experience-based probability),

(Suggest 3 Experienced-based probability), (Suggest 3 Confederate-based

probability), (Cue 3 Chosen reward magnitude), (Suggest 3 Chosen reward

magnitude), (Cue 3 Unchosen reward magnitude), (Suggest 3 Unchosen

reward magnitude). Note that probabilities were log-transformed such that their

linear combination in the GLM would approximate the optimal combination for

behaviour (see Supplementary Information). Figure 4a was generated using the

mean ([1 1 1]) contrast of all probability-related regressors.

fMRI group modelling. fMRI group analyses were carried out using a GLM with

three regressors: a group mean, the weight for reward history information based
on each subject’s behaviour (see Supplementary Information), and the weight for

confederate information based on each subject’s behaviour (see Supplementary

Information).

fMRI region of interest analyses (Fig. 2). The following processing steps are

illustrated schematically in Supplementary Fig. 2 and described in more detail in

the Supplementary Information. Individual subject data were taken from regions

of interest defined by the group clusters. Data from each trial were up-sampled

and re-aligned to points in the trial corresponding to the onset of the four trial

stages. Data were Z-normalized across trials at each time point in the trial. We

then performed two general linear models across trials for both reward and

confederate prediction errors. This allowed us (1) to test at which points in

the trial the data correlated with the prediction of reward, or the prediction of

confederate fidelity, and (2) to test at which points after the outcome the data

correlated with the trial outcome, or actual confederate fidelity. A prediction

error signal should comprise three parts. (1) A positive correlation with the

prediction after the decision; (2) a positive correlation with the trial outcome

at the time of this outcome; (3) a negative correlation with the prediction at the

time of the outcome (as a prediction error is defined as the outcome minus the

prediction).

We witnessed all three parts of the confederate prediction error as deflections

in BOLD correlations at the relevant times. However, owing to the nature of the

haemodynamic response, it is difficult to test significance from just these deflec-

tions. We therefore fit a haemodynamic model to these correlation profiles in

each subject (see Supplementary Information). The key test was whether the time

course of correlations with the prediction could be accounted for by a positive

haemodynamic impulse at the time of the decision and a negative haemody-

namic impulse at the time of the outcome; and whether the time course of

correlations with the outcome could be accounted for by a positive haemody-

namic impulse at the time of the outcome. By fitting the haemodynamic model

we were able to measure three parameter estimates for each of these three hae-

modynamic impulses in each subject, and perform random-effects t-tests to

measure statistical significance of each.

31. Smith, S. M. et al. Advances in functional and structural MR image analysis and
implementation as FSL. Neuroimage 23 (Suppl. 1), S208–S219 (2004).

32. Woolrich, M. W., Ripley, B. D., Brady, M. & Smith, S. M. Temporal autocorrelation
in univariate linear modeling of FMRI data. Neuroimage 14, 1370–1386 (2001).
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