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AR Processes

Discrete time autoregressive processes of order p can be
described

xt =

p∑
k=1

akxt−k + bozt

They can also be written as

p∑
k=0

akxt−k = bozt
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OU Processes

One can define the analagous continuous time process
as

p∑
k=0

akxk
t = bozt

where xk
t denotes the k th order derivative of xt .

This is referred to as an OU(p) process (Gardiner, 1983).
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OU Processes

For an OU(1) process we have

a0xt + a1ẋt = bozt

We can rewrite this as

ẋt = −a0

a1
xt +

b0

a1
zt

= −axt + bzt

In last weeks lecture we wrote this as

dxt = −axtdt + bdWt

where Wt is a Wiener process.
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Embedding

A pth order differential equation describing y can be
expressed as an ordinary differential equation comprising
the p variables in u which is defined via an embedding.
Consider, for example, an OU(4) process.

a0xt + a1ẋt + a2ẍt + a3
...
x t + a4

....
x t = b0zt

We can divide through by a4 and redefine coefficients
giving

ẋt = ẋt

ẍt = ẍt
...
x t =

...
x t

....
x t = −a0xt − a1ẋt − a2ẍt − a3

...
x t + b0zt
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Embedding
If we define ut = [xt , ẋt , ẍt ,

...
x t ]

T we can express the
process in vector form

u̇t = Aut + Dut + Bzt

where

A =


0 0 0 0
0 0 0 0
0 0 0 0
−a0 −a1 −a2 −a3



D =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0



B =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 b0



where D is a derivative operator.
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OU(2) process

Single realisation of an OU(2) process with parameters
a0 = 100,a1 = 2,b0 = 1.
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OU process

Defining F = A + D we can write the OU process as

u̇t = Fut + Bzt

This is equivalently written

dut = Futdt + Bdwt

They have closed form solutions as follows

ut = exp(−Ft)u0 +

∫ t

0
exp(−F (t − t ′))Bdw ′t

This follows from the result in the last lecture (stochastic
processes) - applying Ito’s formula and integrating.
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Covariance functions

Williams (2006) (see also Gardiner 1983, section 4.4.6)
shows that, if a2

1 < 4a0, then the covariance function for
an OU(2) process is given by

C(τ) =
b2

0
2a0a1

exp(−ατ)(cos[βτ ] +
α

β
sin[βτ ])

where α = a1/2 and α2 + β2 = a0. For the parameters
used to generate the sample path in the previous figure,
this corresponds to a frequency of f = β/(2π) = 1.6Hz,
which seems about right.

Similar results exist for OU(p) processes (Gardiner,
1983).
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Resting state MEG

Hindriks et al. (2011) have fitted such an equation to
resting state MEG data (showing alpha rhythm
dynamics).

By matching the observed and model-based covariance
functions they estimated the parameters to be
a0 = 65.22,a1 = 3.2,b0 = 224.3. This corresponds to a
dominant frequency of f = 10.4Hz.
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Dynamic models
We now add on an observation equation, implying that the
dynamic processes of interest are not directly observed.
Friston et al. (2008) developed a triple estimation DEM
framework for estimation hidden states, parameters and
hyperparameters. We first focus on filtering.

y = g(x) + z
ẋ = f (x) + w

Here y is data to be modelled and x is a hidden state. The
second equation here embodies a dynamical prior.

The noise terms z and w are stochastic innovations such that
the covariance of the vector [z, ż, z̈, ..] is well defined. Similarly
for w .

In Friston et al’s DEM formulation the noise processes are
smooth Gaussian processes with non-zero correlation times.
They are not Wiener processes.
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Other Approaches

Before getting into the DEM formalism we note that the
majority of work in filtering focuses on discrete time
models

yt = g(xt ) + zt

xt = f (xt−1) + wt

Estimation of states then takes place using discrete time
Bayesian filtering. Methods include (extended) Kalman
filtering, particle filtering. There is a very large literature
on this see eg. Bishop et al. (2006).

Daunizeau et al (2009) have developed a triple estimation
discrete time framework using variational methods. For
continuous time formulations (ie inference on SDEs)
other than DEM see eg Archambeau (2011) and
Calderhead (2009).
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Generalised coordinates

The hallmark of the DEM approach is its use of
generalised coordinates.

Under local linearity assumptions the state equation can
be repeatedly differentiated with respect to time to give

ẋ = f (x) + w
ẍ = fx ẋ + ẇ
...
x = fx ẍ + ẅ
.. = ..

where fx denotes the derivative df/dx .



Hierarchical
Dynamic Models

Will Penny

OU Processes
Embedding

OU(2) process

Dynamic Models
Generalised coordinates

Joint Likelihood

Filtering
Mode Following

Dynamic
Expectation
Maximisation
Generative Model

State Equation

Observation Equation

Generative Model

Energies and Actions

Linear Convolution
Model
Generative Model

Generated Data

Filtering

Triple Estimation

Hierarchical
Dynamic Models

References

Generalised coordinates

Instead however we write

x ′ = f (x) + w
x ′′ = fxx ′ + ẇ
x ′′′ = fxx ′′ + ẅ
.. = ..

where x̃ = [x , x ′, x ′′, ..] are the ‘Generalised Coordinates
(GCs)’ of x .

Filtering will take place in the space of GCs, and we will
estimate x̃ . Because we are estimating the states it is
unlikely that x ′ = ẋ . However, this will be the case when
tracking is good.
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Generalised coordinates

The embedded state transition can be written as
f̃ = [f , f ′′, f ′′′, ...] where

f = f (v , x , θ)

f ′ = fxx ′

f ′′ = fxx ′′

.. = ..

and we write
w̃ = [w , ẇ , ẅ , ...]

Hence
Dx̃ = f̃ + w̃

where D is the derivative operator.
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Observation equation

Similarly the observation equation can be repeatedly
differentiated to give

y = g(x) + z
ẏ = gxx ′ + ż
ÿ = gxx

′′
+ z̈

.. = ..

where gx denotes the derivative dg/dx .
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Generalised coordinates
The embedded predicted response can be written as
g̃ = [g,g′,g′′, ...] where

g = g(v)

g′ = gxx ′

g′′ = gxx
′′

.. = ..

and we also write

ỹ = [y , ẏ , ÿ , ..]
z̃ = [z, ż, z̈, ..]

This means we can write the observation equation in
generalised coordinates as

ỹ = g̃ + z̃
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Compact expression

Hence, for locally linear systems

ỹ = g̃ + z̃
Dx̃ = f̃ + w̃
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Joint Likelihood
The joint log likelihood of observatons and states is

L(x̃ , t) = log[p(ỹ |x̃)p(x̃)]

Given Gaussian densities

p(ỹ |x̃) = N(ỹ ; g̃, (Π̃z)−1)

p(x̃) = N(Dx̃ ; f̃ , (Π̃w )−1)

where Π̃z and Π̃w are the precision matrices for the
observations and state (more on this later). As a function
of x we therefore have

L(x̃ , t) = −1
2

ẽT
y Π̃z ẽy −

1
2

ẽT
x Π̃w ẽx

where the observation and flow error terms are

ẽy = ỹ − g̃

ẽx = Dx̃ − f̃
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Filtering

Filtering refers to the estimation of the hidden states x̃ .
Hidden states can be estimated by following the gradient
of L(x̃ , t) with respect to x̃

j(x̃) =
dL(x̃ , t)

dx̃

=
dL1(x̃ , t)

dẽy

dẽy

dx̃
+

dL2(x̃ , t)
dẽx

dẽx

dx̃

= (Ip ⊗ gx ) Π̃z(ỹ − g̃) + (Ip ⊗ fx − D) Π̃w (Dx̃ − f̃ )

where p is the embedding dimension. The hidden states
could then be updated by following this gradient

˙̃x = j(x̃)

This optimisation would be sufficient for a stationary
system where L(x̃ , t) = L(x̃).
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Mode Following
However, because the likelihood itself is changing we
must add another term

˙̃x = j(x̃) + Dx̃

We can see that this makes sense because at the
maximum likelihood value (or the ‘mode’) the gradient is
zero, j(x̃) = 0. We then have

˙̃x = Dx̃

x̃ = [x , x ′, x ′′, ..]
Dx̃ = [x ′, x ′′, x ′′′, ..]

˙̃x = [ẋ , ẋ ′, ẋ ′′, ..]

So at the mode, the generalised coordinates are equal to
the time derivatives eg. x ′ = ẋ
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Dynamic Model

We consider dynamic models of the form

ẋ = f (x , v , θ) + w
y = g(x , v , θ) + z

where x is a hidden state, v is a hidden cause, θ are
model parameters, and y are observed time series.

We have now made explicit the dependence on
parameters θ. The state and observation noise also
depend on hyperparameters λ.

The DEM framework provides a method for estimating
states, causes, parameters and hyperparameters.
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Generative Model
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Causes and Parameters

There is a Gaussian prior over the hidden causes

p(ṽ) = N(ṽ ; ηv ,Cv )

where ηv is the mean and Cv is the covariance.

The prior over the parameters is

p(θ) = N(θ; ηθ,Cθ)

where ηθ is the mean and Cθ is the covariance.
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State Equation

The distribution governing the evolution of the states is

p(x̃ |ṽ , θ, λ) = N(Dx̃ ; f̃ , Σ̃w )

The state noise covariance Σ̃w is parameterised by a
hyperparameter, λw , and a parameter γ that governs the
smoothness of the Gaussian innovations (Friston et al,
2008).

Previously we referred to the precision of the state noise
covariance (Π̃w )−1 = Σ̃w .
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Observation Equation
The distribution governing the evolution of the states is

p(ỹ |x̃ , ṽ , θ, λ) = N(ỹ ; g̃, Σ̃z)

The state noise covariance Σ̃z is the inverse of the state
noise precision Π̃z .

It is parameterised by a hyperparameter, λz , and a
parameter γ that governs the smoothness of the
Gaussian innovations.
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Hyperparameters

For the hyperparameters λ = {λw , λz} we have a prior

p(λ) = N(λ; ηλ,Cλ)
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Generative Model
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Joint Likelihood and Posterior

The joint log-likelihood of the data, hidden states, causes,
parameters and hyperparameters is

L(x̃ , ṽ , t , θ, λ) = log [p(ỹ |x̃)p(x̃ |ṽ)p(ṽ)p(θ)p(λ)]

We assume an approximate posterior that factorises over
states, parameters and hyperparameters

q(x̃ , ṽ , t , θ, λ) = q(x̃ , ṽ , t)q(θ)q(λ)
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Energies and Actions

The variational energies

I(x̃ , ṽ , t) =

∫ ∫
L(x̃ , ṽ , t , θ, λ)q(θ)q(λ)dθdλ

I(θ) =

∫ ∫ ∫ ∫
L(x̃ , ṽ , t , θ, λ)q(x̃ , ṽ , t)q(λ)dx̃dṽdλdt

I(λ) =

∫ ∫ ∫ ∫
L(x̃ , ṽ , t , θ, λ)q(x̃ , ṽ , t)q(θ)dx̃dṽdθdt

The latter two are known as ’actions’ as the integral is
also over time.
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Dynamic Expectation Maximisation

The Dynamic Expectation Maximisation (DEM) algorithm
implements a triple estimation of states (D-step),
parameters (E-step) and hyperparameters (M-step).

I The D-step updates q(x̃ , ṽ , t) so as to minimise the
variational energy I(x̃ , ṽ , t).

I The E-step updates q(θ) so as to minimise the
variational action I(θ).

I The M-step updates q(λ) so as to minimise the
variational action I(λ)
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D-Step

The state estimates are updated (approximately) using

˙̃x = j(x̃) + Dx̃

Previously (when just filtering) the gradient was of the
joint log likelihood

j(x̃) =
dL(x̃ , t)

dx̃

But for the D-step we use the gradient of the variational
energy

j(x̃) =
dI(x̃ , t)

dx̃
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Generative Model
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Linear Convolution model

We generate data from a single input multiple output
linear dynamical model with input

v = exp(
1
4

[t − 12]2)
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Linear Convolution model

State variables were then generated according to the
equations

ẋ1 = −0.25x1 + x2 + v + w1

ẋ2 = −0.50x1 − 0.25x2 + w2
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Generated Data
Observations were then created from the state variables

y1 = 0.125x1 + 0.1633x2 + z1

y2 = 0.125x1 + 0.0676x2 + z2

y3 = 0.125x1 − 0.0676x2 + z3

y4 = 0.125x1 − 0.1633x2 + z4
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Linear Convolution model

This conforms to a dynamical model

ẋ = f (x , v , θ) + w
y = g(x , v , θ) + z

where

f (x , v) = Fx + hv
g(x , v) = Gx
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Linear Convolution model

The parameters θ = {F ,h,G} are given by

F =

[
−0.25 1
−0.50 −0.25

]
h =

[
1
0

]

G =


0.125 0.1633
0.125 0.0676
0.125 −0.0676
0.125 −0.1633
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Filtering

We now run the DEM algorithm with (infinitely) tight priors
on the parameters and hyperparameters. Effectively,
DEM just implements the D-step ie filtering.

The figure shows the true (solid) and estimated (dotted)
causes, v . Implementation in ’DEMdemoconvolution.m’
from the DEM toolbox of SPM.
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Linear Convolution model

The figure shows the true (solid) and estimated (dotted)
hidden variables, x .

Importantly, DEM also provides an approximate posterior
density over the hidden states (not just the posterior
mean - dotted line).
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Linear Convolution model

Importantly, DEM also provides an approximate posterior
density over the hidden states, q(x̃ , t).
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Extended Kalman Filtering
State estimation is more accurate using DEM as the
innovations can be smooth Gaussian processes. With the
(Extended) Kalman Filter (EKF) the Gaussian innovations are
assumed IID (ie rough) (Bishop, 2006).

Additionally, DEM can invert models with hidden causes and
hierarchical structure (see later).
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Triple Estimation
The DEM algorithm was then run with uninformative priors over
two of the parameters.

These were (1) the parameter coupling the first hidden state to
the second (true value −0.5) and (2) the parameter coupling
the first hidden state to the output (true value 0.125).
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State Posterior

Posterior state distribution, q(x̃ , t), from DEM filtering
(left) - where the parameters are assumed known -
versus DEM triple estimation (right) - where the
parameters and hyperparameters are estimated.

The gray tubes mark 90 percent confidence intervals.
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Cause Posterior

Posterior cause distribution, q(ṽ , t), from DEM filtering
(left) - where the parameters are assumed known -
versus DEM triple estimation (right) - where the
parameters and hyperparameters are estimated.

The gray tubes mark 90 percent confidence intervals.
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Hierarchical Dynamic Models

We now make the causes dependent on higher order
dynamics and causes. This continues in hierarchical
fashion up to the nth level cause

y = g(x1, v1, θ1) + z1

v1 = g(x2, v2, θ2) + z2

.. = ..

vn−1 = g(xn−1, vn, θn−1) + en−1

These hierarchical relations embody what might be
termed structural priors.

The generative models are identical to those in the
hierarchy lecture (number 4) with the addition of hidden
variables xi that allow the model to remember the causes
vi of previous data y .
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Hierarchical Dynamic Models

The hidden variables evolve dynamically and are also
constrained by higher level causes (and parameters at
the same level).

ẋ1 = f (x1, v1, θ1)

ẋ2 = f (x2, v2, θ2)

.. = ..

ẋn−1 = f (xn−1, vn, θn−1)
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Hierarchical Dynamic Models
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Speech Perception
Kiebel et al (2009) proposed that speech perception might
correspond to Bayesian inference in dynamical systems
comprised of a hierarchy of SHCs.
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