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Relevance Vector Regression
Relevance Vector Regression (RVR) comprises a linear
regression model (Tipping, 2001)

y(m) =
d∑

n=1

K (xm, xn)wn + e(m)

where m = 1..d , n = 1..d index d data points, K is a kernel or
basis function, and w are regression coefficients. The
independent variable, x , is uni- or multi-variate and the
dependent variable y is univariate.

This can be written as the usual General Linear Model

y = Xw + e

with [dx1] data vector y , known [dxp] design matrix X and p
regression coefficients. We have X (m,n) = K (xm, xn), p = d
(or p = d + 1 including offset term). The noise, e, is zero mean
with isotropic precision λy .
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Kernel
For example, a univariate linear spline kernel is given by

K (xm, xn) = 1 + xmxn + xmxn min(xm, xn) −
xm + xn

2
min(xm, xn)

2 +
min(xm, xn)

3

3

Three splines at xn = −5 (red), xn = 0 (black) and xn = 5
(blue).
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Prior

RVR is a Bayesian method with prior (Tipping, 2001)

p(w) =

p∏
i=1

N(wi ;0, λw (i)−1)

That is, each regression coefficient wi has prior precision
λw (i).

This sort of prior, with a precision parameter for every
regression coefficient is an example of an Automatic
Relevance Determination (ARD) prior (Mackay, 1994).

Inference in this model leads to irrelevant predictors being
automatically removed from the model.
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Prior

The implicit prior over each regression coefficient is

p(wi) =

∫
p(wi |λw (i))p(λw (i))dwi

For p(λw (i)) given by a (constrained) Gamma density,
p(wi) is a t-distribution, which is sparser than a Gaussian.
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Inference
Inference in this model is very similar to the Empirical
Bayes method for isotropic covariances (previous
lecture). In the E-step we compute a posterior over
regression coefficients

p(w |α,Y ) = N(w ;m,S)

S−1 = λyX T X + diag(λw )

m = λySX T y

In the M-step, we first compute

γi = 1− λw (i)Sii

where Sii is the i th diagonal element of the posterior
covariance matrix. γi is approximately unity if the i th
parameter has been determined by the data and zero if
determined by the prior.
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M-Step

The hyperparameters are then updated as

1
λw (i)

=
m2

i
γi

1
λy

=
eT

y ey

d −
∑

i γi

where the prediction error is

ey = y − Xw

The learning algorithm then proceeds by repeated
application of the E and M steps. Regression coefficients
for which λw (i) becomes very large are removed from the
model, as are the corresponding columns of X . The
remaining columns are referred to as relevance vectors.
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Sinc Example
Tipping (2001) first generated n = 1..100 data points xn
and corresponding yn values from the sinc function
yn = sin(xn)/xn and added noise. He used the linear
spline kernel. RVR found 6 relevance vectors.

Bottleneck in algorithm is computation of posterior
covariance. See Tipping and Faul (2003) for more
efficient version.
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Visual Coding
For a 2D image V
which is [N1 × N2]
pixels

y = vec(V )

= V (:)

Each image is modelled as a linear superposition of basis
functions

y = Wx + e

with Cov(e) = λy I. The length of y is d = N1N2. We have
p basis functions.

The i th column of W contains the i th basis function, and
x(i) the corresponding coefficient. Different images, y ,
will be coded with a different set of coefficients, x . The
basis functions W will be common to a set of images.
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Visual Coding

We can also write

y =

p∑
i=1

wixi + e

If there are d image elements then for p > d we have an
overcomplete basis. Usually p < d .

We wish to learn both wi and xi . If wi were fixed (eg
assume wavelets) then we can use ARD to select
appropriate bases (Flandin et al 2007).
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ML Learning

The likelihood is given by p(y |W , x). We can learn both
W and x using gradient ascent of the likelihood The ML
estimate is given by

WML = arg max
W

p(y |W , x)

Because the maxima of log x is the same as the
maximum of x we can also write

WML = arg max
W

L(W , x)

where
L = log p(y |W , x)

is the log likelihood.
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Learning basis functions

For the i th basis function

τw
dwi

dt
=

dL
dwi

This gives

τw
dwi

dt
= λy (y −Wx)xi

which is simply the Delta rule (previous lecture).
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Learning activations

For the activations
τx

dx
dt

=
dL
dx

This gives

τx
dx
dt

= λy (W T y −W T Wx)

This has the standard ML solution

xML = (W T W )−1W T y

These dynamics can be implemented in two different
ways in terms of neural circuits using either (i) Recurrent
Lateral Inhibition or (ii) Predictive Coding.
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Recurrent Lateral Inhibition

We have
τ

dx
dt

= λy (W T y −W T Wx)

The update for the i th activation can be written as

τ
dx(i)

dt
= λy (xbu(i)− xlat(i))

where the bottom up and lateral terms are

xbu = Uy
xlat = Vx

and U = W T ,V = W T W . Vij is the strength of the
recurrent lateral connection from unit j to unit i . Learning
acts so as to match bottom up and lateral predictions.
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Recurrent Lateral Inhibition
The update for the i th activation can be written as

τ
dx(i)

dt
= λy (xbu(i)− xlat(i))

where the bottom up and lateral terms are

xbu = Uy
xlat = Vx

where Vij is the strength of the recurrent lateral
connection from unit j to unit i .
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Receptive versus projective fields

The top-down or generative weights are W as

ŷ = Wx

W are the projective fields.

The bottom-up or recognition weights are U as

xbu = Uy

U are the receptive fields.

We have U = W T .



Sparsity

Will Penny

Relevance Vector
Regression
Kernel

Prior

Inference

Sinc Example

Visual Coding
Maximum Likelihood

Recurrent Lateral Inhibition

Predictive Coding

Hebbian Learning

Sparse Coding
MAP Learning

Self-Inhibition

Receptive Fields

References

Predictive Coding Architecture
If first layer units are split into two pools (i) one for predictions
from second layer and (ii) for prediction errors which are
propagated back to the second layer

then activations are then driven by purely bottom up signals

τ
dx
dt

= λy W T (y −Wx)

= λy W T e

For the i th activation unit we have simply

τ
dx(i)

dt
= λy

∑
j

Wjiej

There is no need for lateral connectivity.
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Predictive Coding

Moreover, if the bottom up signals are prediction errors
then Delta rule learning of basis functions (synapses)

τ
dwi

dt
= λy (y −Wx)xi

is seen to correspond to simple Hebbian Learning

τ
dWji

dt
= λyejxi

where ej is the j th prediction error and xi is the output of
the i th unit.
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Hebbian Learning

Hebbian learning modifies connections between two units
by an amount proportional to the product of the
activations of those units - ‘cells that fire together wire
together’.

τ
dWji

dt
= λyejxi

where ej is the j th prediction error (j th input to i th unit)
and xi is the output of the i th unit.
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Sparse Coding
Olshausen and Field (1996) propose a sparse coding model of
natural images. The likelihood is the same as before

p(y |W , x) = N(Wx , λy I)

But importantly, they also define a prior over coefficients

p(x) =
∏

i

p(xi)

where p(xi) is a sparse prior. This can be any distribution
which is more peaked around zero than a Gaussian.

This means we expect most coefficients to be small, with a few
being particularly large.
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MAP Learning
Again, we need to learn both W and x . The posterior
density is given by Bayes rule

p(W , x |y) = p(y |W , x)p(x)
p(y)

The Maximum A Posterior (MAP) estimate is given by

WMAP = arg max
w

p(W , x |y)

Because the maxima of log x is the same as the
maximum of x we can also write

WMAP = arg max
W

L(W , x)

where
L = log[p(y |W , x)p(x)]

is the joint log likelihood.
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Learning
The updates for the basis functions are exactly the same
as before. For the activations we have

τ
dx
dt

=
dL
dx

This gives

τ
dx
dt

= λyW T e −
∑

i

g(xi)

where
g(xi) =

d log p(xi)

dxi

is the derivative of the log of the prior. Olshausen and
Field have used a Cauchy density

p(x) =
1

π(1 + x2)
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Learning

This gives

τ
dxi

dt
= λywT

i e − g(xi)

The figures shows g(xi) = xi for Gaussian priors (blue)
and g(xi) = 2xi/(1 + x2

i ) for Cauchy priors (red)
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Self-Inhibition

In terms of the neural implementation we must add
self-inhibition to the activation units, which is linear for
Gaussian priors and nonlinear for Cauchy priors

τ
dxi

dt
= λywT

i e − g(xi)

For Gaussian priors the amount of inhibition is
proportional to the activation, whereas for Cauchy priors
large activations are not inhibited.
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Original Images

Ten images of natural scenes were low-pass filtered.
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Principal Component Analysis

Receptive fields from PCA.
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Receptive Fields from Sparse Coding

This produced receptive fields that are spatially localised,
oriented and range over different spatial scales, much like
the simple cells in V1.
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