
Appendix A
Series and Complex Numbers
A.1 Power seriesA function of a variable x can often be written in terms of a series of powers of x.For the sin function, for example, we havesinx = a0 + a1x + a2x2 + a3x3 + ::: (A.1)We can �nd out what the appropriate coe�cients are as follows. If we substititex = 0 into the above equation we get a0 = 0 since sin0 = 0 and all the other termsdisappear. If we now di�erentiate both sides of the equation and substitute x = 0 weget a1 = 1 (because cos 0 = 1 = a1). Di�erentiating twice and setting x = 0 givesa2 = 0. Continuing this process givessinx = x� x33! + x55! � x77! + ::: (A.2)Similarly, the series representations for cosx and ex can be found ascos x = 1� x22! + x44! � x66! + ::: (A.3)and ex = 1 + x1! + x22! + x33! + ::: (A.4)More generally, for a function f(x) we get the general resultf(x) = f(0) + xf 0(0) + x22! f 00(0) + x33! f 000(0) + ::: (A.5)where f 0(0), f 00(0) and f 000(0) are the �rst, second and third derivatives of f(x) eval-uated at x = 0. This expansion is called a Maclaurin series.So far, to calculate the coe�cients in the series we have di�erentiated and substitutedx = 0. If, instead, we substitute x = a we getf(x) = f(a) + (x� a)f 0(a) + (x� a)22! f 00(a) + (x� a)33! f 000(a) + ::: (A.6)149



150 Signal Processing Course, W.D. Penny, April 2000.which is called a Taylor series.For a d-dimensional vector of parameters x the equivalent Taylor series isf(x) = f(a) + (x� a)Tg + 12(x� a)TH(x� a) + ::: (A.7)where g = [@f=@a1; @f=@a2; :::; @f=@ad]T (A.8)is the gradient vector andH = 26666664 @f2@a21 @f2@a1@a2 :: @f2@a1@ad@f2@a2@a1 @f2@a22 :: @f2@a2@ad:: :: :: ::@f2@ad@a1 @f2@ad@a2 :: @f2@a2d
37777775 (A.9)is the Hessian.A.2 Complex numbersVery often, when we try to �nd the roots of an equation 1, we may end up withour solution being the square root of a negative number. For example, the quadraticequation ax2 + bx + c = 0 (A.10)has solutions which may be found as follows. If we divide by a and complete thesquare 2 we get  x + b2a!2 � b24a2 = �ca (A.11)Re-arranging gives the general solutionx = �b�pb2 � 4ac2a (A.12)Now, if b2� 4ac < 0 we are in trouble. What is the square root of a negative number? To handle this problem, mathematicians have de�ned the numberi = p�1 (A.13)allowing all square roots of negative numbers to be de�ned in terms of i, eg p�9 =p9p�1 = 3i. These numbers are called imaginary numbers to di�erentiate themfrom real numbers.1We may wish to do this in a signal processing context in, for example, an autoregressive model,where, given a set of AR coe�cients we wish to see what signals (ie. x) correspond to the AR model.See later in this chapter.2This means re-arranging a term of the form x2+kx into the form (x+ k2 )2� �k2 �2 which is oftenconvenient because x appears only once.



Signal Processing Course, W.D. Penny, April 2000. 151Finding the roots of equations, eg. the quadratic equation above, requires us tocombine imaginary numbers and real numbers. These combinations are called complexnumbers. For example, the equationx2 � 2x+ 2 = 0 (A.14)has the solutions x = 1 + i and x = 1� i which are complex numbers.A complex number z = a+ bi has two components; a real part and an imaginary partwhich may be written a = Refzg (A.15)b = ImfzgThe absolute value of a complex number isR = Absfzg = pa2 + b2 (A.16)and the argument is � = Argfzg = tan�1  ba! (A.17)The two numbers z = a + bi and z� = a � bi are known as complex conjugates; oneis the complex conjugate of the other. When multiplied together they form a realnumber. The roots of equations often come in complex conjugate pairs.A.3 Complex exponentialsIf we take the exponential function of an imaginary number and write it out as aseries expansion, we get ei� = 1 + i�1! + i2�22! + i3�33! + ::: (A.18)By noting that i2 = �1 and i3 = i2i = �i and similarly for higher powers of i we getei� = "1� �22! + :::# + i " �1! � �33! + :::# (A.19)Comparing to the earlier expansions of cos � and sin � we can see thatei� = cos � + i sin � (A.20)which is known as Euler's formula. Similar expansions for e�i� give the identitye�i� = cos � � i sin � (A.21)We can now express the sine and cosine functions in terms of complex exponentialscos � = ei� + e�i�2 (A.22)sin � = ei� � e�i�2i



152 Signal Processing Course, W.D. Penny, April 2000.A.4 DeMoivre's TheoremBy using the fact that ei�ei� = ei�+i� (A.23)(a property of the exponential function and exponents in general eg. 5353 = 56) ormore generally (ei�)k = eik� (A.24)we can write (cos� + i sin �)k = cosk� + isink� (A.25)which is known as DeMoivre's theorem.A.5 Argand DiagramsAny complex number can be represented as a complex exponentiala+ bi = Rei� = R(cos� + i sin �) (A.26)and drawn on an Argand diagram.Multiplication of complex numbers is equivalent to rotation in the complex plane (dueto DeMoivre's Theorem).(a+ bi)2 = R2ei2� = R2(cos2� + i sin 2�) (A.27)



Appendix B
Linear Regression
B.1 Univariate Linear RegressionWe can �nd the slope a and o�set b by minising the cost functionE = NXi=1(yi � axi � b)2 (B.1)Di�erentiating with respect to a gives@E@a = �2 NXi=1 xi(yi � axi � b) (B.2)Di�erentiating with respect to b gives@E@b = �2 NXi=1(yi � axi � b) (B.3)By setting the above derivatives to zero we obtain the normal equations of the regres-sion. Re-arranging the normal equations givesa NXi=1 x2i + b NXi=1 xi = NXi=1 xiyi (B.4)and a NXi=1 xi + bN = NXi=1 yi (B.5)By substituting the mean observed values �x and �y into the last equation we getb = �y � a�x (B.6)Now let Sxx = NXi=1(xi � �x)2 (B.7)= NXi=1 x2i �N�2x (B.8)153



154 Signal Processing Course, W.D. Penny, April 2000.and Sxy = NXi=1(xi � �x)(yi � �y) (B.9)= NXi=1 xiyi �N�x�y (B.10)Substiting for b into the �rst normal equation givesa NXi=1 x2i + (�y � a�x) NXi=1 xi = NXi=1 xiyi (B.11)Re-arranging gives a = PNi=1 xiyi � �yPNi=1 xiPNi=1 x2i + �xPNi=1 xi (B.12)= PNi=1 xiyi �N�x�yPNi=1 x2i +N�2x= PNi=1(xi � �x)(yi � �y)PNi=1(xi � �x)2= �xy�2xB.1.1 Variance of slopeThe data points may be written asyi = ŷi + ei (B.13)= axi + b+ eiwhere the noise, ei has mean zero and variance �2e . The mean and variance of eachdata point are E(yi) = axi + b (B.14)and V ar(yi) = V ar(ei) = �2e (B.15)We now calculate the variance of the estimate a. From earlier we see thata = PNi=1(xi � �x)(yi � �y)PNi=1(xi � �x)2 (B.16)Let ci = (xi � �x)PNi=1(xi � �x)2 (B.17)



Signal Processing Course, W.D. Penny, April 2000. 155We also note that PNi=1 ci = 0 and PNi=1 cixi = 1. Hence,a = NXi=1 ci(yi � �y) (B.18)= NXi=1 ciyi � �y NXi=1 ci (B.19)The mean estimate is thereforeE(a) = NXi=1 ciE(yi)� �y NXi=1 ci (B.20)= a NXi=1 cixi + b NXi=1 ci � �y NXi=1 ci= a (B.21)The variance is V ar(a) = V ar( NXi=1 ciyi � �y NXi=1 ci) (B.22)The second term contains two �xed quantities so acts like a constant. From the laterAppendix on Probability Distributions we see thatV ar(a) = V ar( NXi=1 ciyi) (B.23)= NXi=1 c2iV ar(yi)= �2e NXi=1 c2i= �2ePNi=1(xi � �x)2= �2e(N � 1)�2xB.2 Multivariate Linear RegressionB.2.1 Estimating the weight covariance matrixDi�erent instantiations of target noise will generate di�erent estimated weight vectorsaccording to the last equation. The corresponding weight covariance matrix is givenby V ar(ŵ) = V ar((XTX)�1XTy) (B.24)



156 Signal Processing Course, W.D. Penny, April 2000.Substituting y =Xw + e givesV ar(ŵ) = V ar((XTX)�1XTXw + (XTX)�1XTe) (B.25)This is in the form of equation B.28 in Appendix A with d being given by the �rstterm which is constant, C being given by (XTX)�1XT and z being given by e.Hence, V ar(ŵ) = (XTX)�1XT [V ar(e)][(XTX)�1XT ]T (B.26)= (XTX)�1XT (�2I)[(XTX)�1XT ]T= (XTX)�1XT (�2I)X(XTX)�1Re-arranging further gives V ar(ŵ) = �2(XTX)�1 (B.27)B.3 Functions of random vectorsFor a vector of random variables, z, and a matrix of constants, C, and a vector ofconstants, d, we have V ar(Cz + d) = C[V ar(z)]CT (B.28)where, here, Var() denotes a covariance matrix. This is a generalisation of the resultfor scalar random variables V ar(cz) = c2V ar(z).The covariance between a pair of random vectors is given byV ar(C1z;C2z) = C1[V ar(z)]CT2 (B.29)B.3.1 Estimating the weight covariance matrixDi�erent instantiations of target noise will generate di�erent estimated weight vectorsaccording to the equation 3.7. The corresponding weight covariance matrix is givenby � = V ar((XTX)�1XTy) (B.30)Substituting y =Xŵ + e gives



Signal Processing Course, W.D. Penny, April 2000. 157� = V ar((XTX)�1XTXw + (XTX)�1XTe) (B.31)This is in the form of V ar(Cz + d) (see earlier) with d being given by the �rst termwhich is constant, C being given by (XTX)�1XT and z being given by e. Hence,� = (XTX)�1XT [V ar(e)][(XTX)�1XT ]T (B.32)= (XTX)�1XT (�2eI)[(XTX)�1XT ]T= (XTX)�1XT (�2eI)X(XTX)�1Re-arranging further gives � = �2e(XTX)�1 (B.33)B.3.2 Equivalence of t-test and F-test for feature selectionWhen adding a new variable xp to a regression model we can test to see if the increasein the proportion of variance explained is signi�cant by computingF = (N � 1)�2y [r2(y; ŷp)� r2(y; ŷp�1)]�2e(p) (B.34)where r2(y; ŷp) is the square of the correlation between y and the regression model withall p variables (ie. including xp) and r2(y; ŷp�1) is the square of the correlation betweeny and the regression model without xp. The denominator is the noise variance fromthe model including xp. This statistic is distributed according to the F-distributionwith v1 = 1 and v2 = N � p� 2 degrees of freedom.This test is identical to the double sided t-test on the t-statistic computed from theregression coe�cient ap, described in this lecture (see also page 128 of [32]). This testis also equivalent to seeing if the partial correlation between xp and y is signi�cantlynon-zero (see page 149 of [32]).
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Appendix C
Matrix Identities
C.1 MultiplicationMatrix multiplication is associative(AB)C = A(BC) (C.1)distributive A(B +C) = AB +AC (C.2)but not commutative AB 6= BA (C.3)C.2 TransposesGiven two matrices A and B we have(AB)T = BTAT (C.4)C.3 InversesGiven two matrices A and B we have(AB)�1 = B�1A�1 (C.5)The Matrix Inversion Lemma is(XBXT +A)�1 = A�1 �A�1X(B�1 +XTA�1X)�1XTA�1 (C.6)The Sherman-Morrison-Woodury formula or Woodbury's identity is(UV T +A)�1 = A�1 �A�1U(I + V TA�1U)�1V TA�1 (C.7)159



160 Signal Processing Course, W.D. Penny, April 2000.C.4 EigendecompositionQTAQ = � (C.8)Pre-multiplying by Q and post-multiplying by QT givesA = Q�QT (C.9)which is known as the spectral theorem. Any real, symmetric matrix can be repre-sented as above where the columns of Q contain the eigenvectors and � is a diagonalmatrix containing the eigenvalues, �i. Equivalently,A = dXk=1�kqkqTk (C.10)C.5 DeterminantsIf det(A) = 0 the matrix A is not invertible; it is singular. Conversely, if det(A) 6= 0then A is invertible. Other properties of the determinant aredet(AT ) = det(A) (C.11)det(AB) = det(A) det(B)det(A�1) = 1= det(A)det(A) = Yk akk det(A) =Yk �kC.6 TracesThe Trace is the sum of the diagonal elementsTr(A) =Xk akk (C.12)and is also equal to the sum of the eigenvaluesTr(A) =Xk �k (C.13)Also Tr(A+B) = Tr(A) + Tr(B) (C.14)C.7 Matrix CalculusFrom [37] we know that the derivative of cTBc with respect to c is (BT +B)c.


