Appendix A

Series and Complex Numbers

A.1 Power series

A function of a variable x can often be written in terms of a series of powers of x.
For the sin function, for example, we have

sinz = ag + a1 + asx? + azz> + ... (A.1)

We can find out what the appropriate coefficients are as follows. If we substitite
x = 0 into the above equation we get ay = 0 since sin0) = 0 and all the other terms
disappear. If we now differentiate both sides of the equation and substitute x = 0 we
get a; = 1 (because cos0 = 1 = a;). Differentiating twice and setting z = 0 gives
as; = 0. Continuing this process gives

A A

sinx:x—§+§—ﬁ+... (A.2)

Similarly, the series representations for cosx and e” can be found as

2t 2
cosx:1—§+ﬂ—a+... (A.3)
and
o1 ¥ 2 Ad
e’ = +ﬁ+§+§+... ()

More generally, for a function f(z) we get the general result

F@) = £(O) +27/(0) + 5710 + 5 770 + . (A5)

where f'(0), f”(0) and f"(0) are the first, second and third derivatives of f(x) eval-
uated at x = 0. This expansion is called a Maclaurin series.

So far, to calculate the coefficients in the series we have differentiated and substituted
x = 0. If, instead, we substitute x = a we get
(x — a)?

2!

f(x)=f(a)+ (x —a)f'(a) + f"(a) + ———f"(a) + ... (A.6)
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which is called a Taylor series.

For a d-dimensional vector of parameters @ the equivalent Taylor series is

1
f(z) Zf(a)+(-’L‘—G)T9+§(w—a)TH(w—a)+--- (A.7)
where
g = [af/aal,af/aaQ,...,8f/8ad]T (AS)
is the gradient vector and
6_f2 an 3f2
dal 0a10az °°  0Oa10aq
3f2 3_fz 3f2
H = daz0a1  0a3 " daz0ay (Ag)
. oo . o . 3_fz
0agda1  0Oagdaz aa?i

is the Hessian.

A.2 Complex numbers

Very often, when we try to find the roots of an equation !, we may end up with

our solution being the square root of a negative number. For example, the quadratic
equation
ar® +br +c =0 (A.10)

has solutions which may be found as follows. If we divide by a and complete the
square 2 we get
2
b ¥ —c
— ) - = _= A1l
(3: + 2a> 4a? a ( )
Re-arranging gives the general solution

. —b+ /b2 — 4ac

2a

(A.12)

Now, if b* — 4ac < 0 we are in trouble. What is the square root of a negative number
? To handle this problem, mathematicians have defined the number

i=v—1 (A.13)

allowing all square roots of negative numbers to be defined in terms of ¢, eg v/—9 =
v9v/—1 = 3i. These numbers are called imaginary numbers to differentiate them
from real numbers.

!'We may wish to do this in a signal processing context in, for example, an autoregressive model,
where, given a set of AR coefficients we wish to see what signals (ie. x) correspond to the AR model.
See later in this chapter.

2This means re-arranging a term of the form z% + kz into the form (z + %)Z — (%) which is often
convenient because x appears only once.



Finding the roots of equations, eg. the quadratic equation above, requires us to
combine imaginary numbers and real numbers. These combinations are called complex
numbers. For example, the equation

22 =20 +2=0 (A.14)

has the solutions x =14+ and x = 1 — ¢ which are complex numbers.

A complex number z = a+ bi has two components; a real part and an imaginary part
which may be written

b = Im{z}

The absolute value of a complex number is
R = Abs{z} = Va®> + v? (A.16)
and the argument is

0 = Arg{z} = tan™! <9> (A.17)

a
The two numbers z = a + bt and z* = a — bi are known as complex conjugates; one

is the complex conjugate of the other. When multiplied together they form a real
number. The roots of equations often come in complex conjugate pairs.

A.3 Complex exponentials

If we take the exponential function of an imaginary number and write it out as a
series expansion, we get

~ 202 :3p3
0 0 c0° 00
e = 1+E+T+?+ (A18)
By noting that 72 = —1 and > = i? = —i and similarly for higher powers of i we get
: 62 o 6
9 _ 1
e = [1 5 +] i lll 3 +] (A.19)
Comparing to the earlier expansions of cos# and sinf we can see that
e = cosf +isinf (A.20)

which is known as Euler’s formula. Similar expansions for e~ give the identity

e = cosf —isinf (A.21)
We can now express the sine and cosine functions in terms of complex exponentials

0 ,—if
cosh = ¢ (A.22)

sinff =



A.4 DeMoivre’s Theorem

By using the fact that
ei06i0 — ei0+i0 (A23)

(a property of the exponential function and exponents in general eg. 535% = 5°) or

more generally . .
(e)k = k0 (A.24)

we can write
(cos + isin0)* = cosk® + isink® (A.25)

which is known as DeMoivre’s theorem.

A.5 Argand Diagrams

Any complex number can be represented as a complex exponential
a+ bi = Re" = R(cosb + isin ) (A.26)
and drawn on an Argand diagram.

Multiplication of complex numbers is equivalent to rotation in the complex plane (due
to DeMoivre’s Theorem).

(a + bi)* = R?e™" = R?*(c0s20 + isin 20) (A.27)



Appendix B

Linear Regression

B.1 Univariate Linear Regression

We can find the slope a and offset b by minising the cost function

N
E =) (yi — az; — b)?
i=1

Differentiating with respect to a gives

OF al
o —2;xi(yi —ax; — b)
Differentiating with respect to b gives
OF

N
- = 2 i —ar; —b
% ;(y ax; — b)

(B.3)

By setting the above derivatives to zero we obtain the normal equations of the regres-

sion. Re-arranging the normal equations gives

N N N
aZx? + bei = inyi
i=1 i=1 i=1
and
N N
a Z x; +bN = Z Yi
i=1 i=1

(B.4)

(B.5)

By substituting the mean observed values ji, and ji, into the last equation we get

b=y — apy

Now let
N
Sz = Z(xz - ,U/x)2

=1

N
= > i — Nig
=1
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and

N

=1

N
= > wyi — Nptaply
=1

(B.10)
Substiting for b into the first normal equation gives
N N N
aY i+ (uy — ape) Yo =Yy (B.11)
i=1 i=1 i=1

Re-arranging gives

YN my =y N 1
a = N = (B.12)
i1 T e 2l T
SN wy — Npgpy
i]\il 333 + Ny

YN (@ — o) (v — )
Zi]\il (l‘l - /’LCL’)2

Oay
2
O-.’E

B.1.1 Variance of slope

The data points may be written as

Vi = Yite (B.13)
= ar; +b+¢;

where the noise, ¢; has mean zero and variance o?. The mean and variance of each
data point are

E(y;) = ax; +b (B.14)
and
Var(y;) = Var(e;) = az (B.15)
We now calculate the variance of the estimate a. From earlier we see that
N P — P—
a = Eiil(x];fz /J/a;)(yz 5 /’Ly) (B16)
i1 (25 — 1)
Let

i1 (25 — p1g)?



We also note that XN ¢; = 0 and | ¢;7; = 1. Hence,

@ = Yl - m) (B.18)

N
= Zciyi - Myzcz'
i=1 i=1

(B.19)
The mean estimate is therefore
N N
E(a) = Y cE(y)— > ¢ (B.20)
i=1 i=1
N N N
= aZcZwi +bZCi — ,uchi
i=1 i=1 i=1
= a
(B.21)
The variance is
N N
Var(a) = Var(z Cilli — Iy Z ;) (B.22)

The second term contains two fixed quantities so acts like a constant. From the later
Appendix on Probability Distributions we see that

Var(a) = Var(d_ cy:) (B.23)

1=1

N
= Z C?VW(%)
=1

N
_ 2 2
- Ue Z Ci
=1

2

O¢

i]\;l(xi - Nw)2

2

O¢

(N =1)o3
B.2 Multivariate Linear Regression

B.2.1 Estimating the weight covariance matrix

Different instantiations of target noise will generate different estimated weight vectors
according to the last equation. The corresponding weight covariance matrix is given
by

Var(w) = Var(XTX) ' XTy) (B.24)



Substituting y = Xw + e gives

Var(w) = Var(X"X) ' X" Xw + (X" X) ' X"e) (B.25)

This is in the form of equation B.28 in Appendix A with d being given by the first
term which is constant, C being given by (X”X)~'X" and z being given by e.
Hence,

Var(w) = (XTX)' X" [Var(e)][(XTX) X1 (B.26)

_ (XTX)—IXT( 2I)[(XTX)_1XT]T

&

Re-arranging further gives

Var(w) = oc*(XTX)™! (B.27)

B.3 Functions of random vectors

For a vector of random variables, z, and a matrix of constants, C, and a vector of
constants, d, we have
Var(Cz +d) = C[Var(z)|C" (B.28)

where, here, Var() denotes a covariance matrix. This is a generalisation of the result
for scalar random variables Var(cz) = ¢*Var(z).

The covariance between a pair of random vectors is given by

Var(C,z,Cyz) = Ci[Var(z)|CL (B.29)

B.3.1 Estimating the weight covariance matrix

Different instantiations of target noise will generate different estimated weight vectors
according to the equation 3.7. The corresponding weight covariance matrix is given
by

T =Var(XTX) ' XTy) (B.30)

Substituting y = Xw + e gives



Y =Var(XTX) ' X" Xw+ (XTX) ' X"e) (B.31)

This is in the form of Var(Cz + d) (see earlier) with d being given by the first term
which is constant, C' being given by (X?X) !XT and z being given by e. Hence,

Y = (XTX)'XT[Var(e)][(XTX) X" (B.32)

Re-arranging further gives
T =0(XTXx)™! (B.33)

B.3.2 Equivalence of t-test and F-test for feature selection

When adding a new variable z, to a regression model we can test to see if the increase
in the proportion of variance explained is significant by computing

(N =)oy [r*(y, 9p) — r* (¥, Dp—1)]

"= o2(p)

(B.34)

where r%(y, ,) is the square of the correlation between y and the regression model with
all p variables (ie. including x,) and r%(y, §, 1) is the square of the correlation between
y and the regression model without z,. The denominator is the noise variance from
the model including x,. This statistic is distributed according to the F-distribution
with vy =1 and vy = N — p — 2 degrees of freedom.

This test is identical to the double sided t-test on the t-statistic computed from the
regression coefficient a,, described in this lecture (see also page 128 of [32]). This test
is also equivalent to seeing if the partial correlation between xz, and y is significantly
non-zero (see page 149 of [32]).






Appendix C

Matrix Identities

C.1 Multiplication

Matrix multiplication is associative
(AB)C = A(BC)

distributive
AB+C)=AB+ AC

but not commutative

AB + BA

C.2 Transposes

Given two matrices A and B we have

(AB)" = BTA"

C.3 Inverses

Given two matrices A and B we have
(AB)"'=B'A™!
The Matrix Inversion Lemma is
(XBX'"+A)'=A"-A'XB '+ XA X)) XxTA™!
The Sherman-Morrison-Woodury formula or Woodbury’s identity is

Uvi+A)'=A"-A"'vI+viATlU) 'vVIAT
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(C.6)

(C.7)



C.4 Eigendecomposition

QTAQ =A (C.8)
Pre-multiplying by @ and post-multiplying by Q* gives
A=QAQ" (C.9)

which is known as the spectral theorem. Any real, symmetric matrix can be repre-
sented as above where the columns of @ contain the eigenvectors and A is a diagonal
matrix containing the eigenvalues, \;. Equivalently,

d
A=Y Maal (C.10)

k=1

C.5 Determinants

If det(A) = 0 the matrix A is not invertible; it is singular. Conversely, if det(A) # 0
then A is invertible. Other properties of the determinant are

det(AT) = det(A) (C.11)
det(AB) det(A) det(B)

det(A™") = 1/det(A)

det(A)

= Hakk det(A) = H )‘k

k

C.6 Traces

The Trace is the sum of the diagonal elements

and is also equal to the sum of the eigenvalues

Tr(A) =3 A (C.13)

Also
Tr(A+B)=Tr(A)+Tr(B) (C.14)

C.7 Matrix Calculus

From [37] we know that the derivative of ¢ Be with respect to c is (B" + B)ec.



