Chapter 10

Bayesian Methods

10.1 Introduction

See [33] or Box and Tiao [6] for a general introduction to Bayesian statistics and [43]
for applications of Bayesian methods in signal processing.

10.2 Bayes Rule

The distribution of a variable x conditioned on a variable y is

plx|y) = pi,y) (10.1)

Given that p(y | x) can be expressed similarly we can write

ply | z)p(x)
p(z | y) o) (10.2)
which is Baye’s rule. The density p(x) is known as the prior, p(y | z) as the likelihood
and p(y) as the evidence or marginal likelihood. Baye’s rule shows how a prior distri-
bution can be turned into a posterior distribution ie. how we update our distribution
in the light of new information. To do this it is necessary to calculate the normalising
term; the evidence

p(y) = [ ply | 2)p(a)de (103
which, being an integral, can sometimes be problematic to evaluate.
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10.2.1 Example

For discrete variables. Given a disease D with a prevalence of ten percent, a test for
it T having a sensitivity of 95% and a specificity of 85% we have

p(D=1) = 0.1 (10.4)
p(T=1D=1) = 0.95 (10.5)
p(T=0/D=0) = 0.85 (10.6)

The probability that subjects who test positive for D actually have D is then given
by Bayes’ rule
p(I'=11D =1)p(D = 1)

p(D=1T =1 (10.7
W=UT=10 = ST iD= 0D =)+ T =1D=0}pD=0) ")
0.95 x 0.1
- 10.8
0.95 % 0.1 4 0.15 x 0.9 (108)
= 0.413 (10.9)
10.3 Gaussian Variables
A Gaussian random variable = has the probability density function (PDF)
1 —(z—p)?
- 10.10
o) = s e | < (10.10)

where the mean is ;o and the variance is 0?. The inverse of the variance is known as
the precision 3 = 1/02. The Gaussian PDF is written in shorthand as

p(x) = N(z;p,0°) (10.11)
If the prior is Gaussian
p(z) = N(z;20,1/50) (10.12)

where o is the prior mean and [ is the prior precision and the likelihood is also
Gaussian

p(y | ) = N(y;2,1/Bp) (10.13)

where the variable x is the mean of the likelihood and (p is the data precision then
the posterior distribution is also Gaussian (see eg. [33],page 37).

p(z [y) = N(z;m,1/0) (10.14)
where the mean and precision are given by
B= 6o+ Pp (10.15)
and p 5
0 D
m=—To+ —Y 10.16
3 0 3 ( )

Thus, the posterior precision is given by the sum of the prior precision and the data
precision and the posterior mean is given by the sum of the prior data mean and the
new data value each weighted by their relative precisions .

1 This is the same as inverse variance weighting where the weights sum to one.



10.3.1 Combining Estimates

This type of updating is relevant to the sensor fusion problem, where we have in-
formation about a variable from two different sources and we wish to combine that
information.

Say, for example, we had two estimates for the amount of carbon in a given compound;
method 1 estimates the percentage to be 35+4 units and method 2 estimates it to be
40 £ 7 units. Before observing the second result we have a prior belief that the mean
percentage is zy = 35 and the variance is 4> = 16 which corresponds to a precision
of By = 0.0625. Whilst the first result is viewed as the prior, the second result is
viewed as the ‘data’, which has mean y = 40 and precision Bp = 1/7% = 0.0204. Our
posterior estimate for the amount of carbon is then estimated as

0.0625 0.0204
35

_ 0.0625 VO208 40 = 362 10.1
M= 50820 <30T gogg X0 =36 (10.17)

and the posterior standard deviation is 3.5. If the results of method 2 were chosen as
the prior (instead of method 1) we’d get the same result.

The equation for the posterior mean can be re-arranged as

m =z + %)(y — Zp) (10.18)
showing that the new estimate is the old estimate plus some fraction (which may be
viewed as a learning rate) of an error term e = y — .

10.3.2 Sequential Estimation

Also, this type of update is particularly suited to sequential estimation, where data
comes in a sample at a time and we update our estimates at each time step. Baye’s
rule is perfect for this because today’s posterior becomes tomorrow’s prior.

Say, for example, we have a random variable x which we observe sequentially - the
value at time ¢ being x; ie. a time series - and that we wish to estimate the mean,
without storing all the data points. At time ¢ our estimate for the mean is p; and
our estimate for the variance is o?. Now our prior distribution for y; (ie. prior to
observing x;) is

p(pe) = N(pu; pu, 07 /1) (10.19)

where the variance is given by the usual standard error formula (see lecture 1). The
likelihood of the new data point is

p(d i) = N(s; pu, 07) (10.20)
Adding the precisions to get the posterior precision gives (from equation 10.15)

t 1 t+1
_ _tr- 10.21
b=t a= o (1021)
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Figure 10.1: Sequential estimation of stationary mean. The graph plots data
values x; (crosses) and the estimated mean value p; (circles) versus iteration number
t.

The posterior mean is then given by equation 10.16

_ ! + ! (10.22)
,ut+1—t_|_1,ut t+1$t .
Re-arranging gives
M1 = phe + Tl (ze — pe) (10.23)

In the above procedure we have implicitly assumed that the data xz; is stationary
ie. that the mean at time ¢ is equal to the mean at time ¢ + T for all T (a more
formal definition of stationarity will be given later). This results in our estimate for
the mean converging to a steady value as ¢ increases. The final value is exactly the
same as if we'd stored all the data and calculated it in the usual way.

But what if the signal is non-stationary 7 See the chapter on Kalman filters.

10.4 Multiple Gaussian Variables

A d-dimensional Gaussian random vector  has a PDF given by

1 1 T -1 -
where the mean & is a d-dimensional vector, C is a d X d covariance matrix, and
|C| denotes the determinant of C. The multivariate Gaussian PDF is written in

shorthand as
p(z) = N(z;2,C) (10.25)



If the prior distribution is Gaussian
p(x) = N(z;zo, Xo) (10.26)
where x; is the prior mean and Y, is the prior covariance and the likelihood is

p(y|z)=N(y;z,Xp) (10.27)

where the variable x is the mean of the likelihood and ¥ p is the data covariance then
the posterior distribution is given by [40]

p(x | y) = N(z;m,X) (10.28)
where the mean and covariance are given by
IR H D (10.29)

and
m =YX, z)+ I,y (10.30)

These updates are similar in form to the updates for the univariate case. Again, these
update formulae are useful for both sequential estimation and sensor fusion. In the
sequential estimation case we have a Kalman filter (see next lecture).

10.5 General Linear Models

Given a set of input variables z, (a row vector) where n = 1..N and a fixed, possibly

nonlinear, function of them

the output variable is then given as a linear combination

where w is a column vector of coefficients and e is zero mean Gaussian noise with
precision . This type of model is sufficiently general to include (i) autoregressive
models if F' is the identity function and @, = [Yn—1, Yn—2, ..., Yn—p|, (i) Fourier-type
models if F are sine and cosine functions and (iii) wavelet models if F' are the wavelet
bases.

Given a data set D = {z,,y,} where n = 1..N the likelihood of the data is given by

N/2
p(D|w,B) = (%) exp(—SEp) (10.33)

where

Ep = %(Y - Xw)' (Y - Xw) (10.34)



and Y is a column vector with entries ,, and the nth row of the matrix X contains x,,.
The weights are drawn from a zero-mean Gaussian prior with an isotropic covariance
having precision «

o p/2
plw|a) = (2—> exp(—aEy) (10.35)
i
where
1 p
i=1
1
= —wlw

The posterior distribution over the unknown coefficients is then given by Bayes’ rule

p(D]w, f)p(w|a)
] p(D|w, )p(w|a)dw

p(w|D,a, ) = (10.37)
As the prior is normal with mean wy = 0 and covariance 3y = (1/«)I, the likelihood
is normal with mean wp = X 'Y and covariance X, = (3X7 X) ! then the poste-
rior is also a normal with mean and covariance given by equations 10.30 and 10.29.
The posterior is therefore given by

~

p(w|D,a, B) = N(w;w, X) (10.38)
where
¥ = BX'X +al)! (10.39)
W X7y

10.5.1 The evidence framework

If the 'hyperparameters’ o and [ are unknown (they almost always are) they can
be set according to following method known as either the evidence framework [35]
or Mazimimum Likelihood II (ML II) [2]. In this approach a and (3 are set so as to
maximise the evidence (also known as marginal likelihood)

p(De, 8 /p Dlw, B)p(wla)dw (10.40)

Substituting in our earlier expressions for the prior and likelihood gives

p(D|a, B) = <ﬂ> o (ﬁ) p/z/exp(—E(w))d'w (10.41)

27 27

where

E(w) = BEp + aE, (10.42)



Bishop shows that ([3], page 398 and further details in Appendix B) the integral in
equation 10.41 can be evaluated as

[ exp(=E(w))dw = (27)2|5] /2 exp(~ E(w)) (10.43)
The log of the evidence can then be written as
4 N N
EV(p) = —aEw — BEp + 0.51og | 2| + 3 loga + 5} log 6 — B log 21 (10.44)

The values of a and # which maximise the evidence are

= 10.4
a=g B (10.45)
N—~y
= 10.46
= (10.46)
where 7, the number of ‘well-determined’ coefficients, is given by
v=p—alrace(X) (10.47)

which is calculated using the ‘old’ value of cr. The update for « is therefore an implicit
equation. We can also write it as the explicit update

_ p
“= 2Ew + Trace(X)

(10.48)

See Bishop ([3], chapter 10) or Mackay [35] for a derivation of the above equations.

To summarise, the evidence framework works as follows. The weights are first es-
timated using equation 10.40. The hyperparmeters are then estimated using equa-
tions 10.46 and 10.48. This weights are then re-estimated and so are the hyperpa-
rameters until the procedure converges. This usually takes ten or so cycles.

Once the above procedure has converged we can use the evidence as a model order
selection criterion.

10.5.2 Example

The following figures compare the MDL and Bayesian Evidence model order selection
criteria. The first figure shows that, for low model order (relative to the number
of data samples) both methods work equally well. The second figure shows that,
at high model order, the Bayesian evidence is superior. The last figure shows that
EEG recordings from an awake subject can be differentiated from those of an anaes-
thetised subject. Differentiation was good using the Bayesian evidence criterion but
insignificant using MDL.
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Figure 10.2: Model Order Selection for AR(6) data with (a) MDL and (b) Bayesian
Evidence with 3-second blocks of data.
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Figure 10.3: Model Order Selection for AR(25) data with (a) MDL and (b) Bayesian
Evidence with 3-second blocks of data.
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Figure 10.4: Bayesian Evidence model order selection on EEG data from (a) awake
subject and (b) anaesthetised subject.



