Chapter 4

Information Theory

4.1 Introduction

This lecture covers entropy, joint entropy, mutual information and minimum descrip-
tion length. See the texts by Cover [12] and Mackay [36] for a more comprehensive
treatment.

4.2 Measures of Information

Information on a computer is represented by binary bit strings. Decimal numbers
can be represented using the following encoding. The position of the binary digit

Bit 1 (23 =8) Bit2(22=4) Bit3 (2! =2) Bit4(2°=1) Decimal

0 0 0 0 0
0 0 0 1 1
0 0 1 0 2
0 0 1 1 3
0 1 0 0 4
0 1 1 1 14
1 1 1 1 15

Table 4.1: Binary encoding

indicates its decimal equivalent such that if there are N bits the ith bit represents
the decimal number 2V¥=%. Bit 1 is referred to as the most significant bit and bit N
as the least significant bit. To encode M different messages requires log, M bits.
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4.3 Entropy

The table below shows the probability of occurrence p(z;) (to two decimal places) of
selected letters x; in the English alphabet. These statistics were taken from Mackay’s
book on Information Theory [36]. The table also shows the information content of a

Z; p(fﬁz) h(fﬁz)

a 006 4.1
e 009 35
i 000 10.7
q 001 10.3
t 007 3.8
z 0.00 104

Table 4.2: Probability and Information content of letters

letter
1

p(x;)
which is a measure of surprise; if we had to guess what a randomly chosen letter of
the English alphabet was going to be, we’d say it was an A, E, T or other frequently
occuring letter. If it turned out to be a Z we’d be surprised. The letter E is so
common that it is unusual to find a sentence without one. An exception is the 267
page novel ‘Gadsby’ by Ernest Vincent Wright in which the author deliberately makes
no use of the letter E (from Cover’s book on Information Theory [12]). The entropy
is the average information content

h(zi) = log

(4.1)

M

H(z) = Zp(a:z)h(:cz) (4.2)

i=1
where M is the number of discrete values that x; can take. It is usually written as

H(z) = =} pla:) log p(x:) (4.3)

=1

with the convention that 0log1/0 = 0. Entropy measures uncertainty.

Entropy is maximised for a uniform distribution p(x;) = 1/M. The resulting entropy
is H(z) = logoM which is the number of binary bits required to represent M different
messages (first section). For M = 2, for example, the maximum entropy distribution
is given by p(z1) = p(x2) = 0.5 (eg. an unbiased coin; biased coins have lower
entropy).

The entropy of letters in the English language is 4.11 bits [12] (which is less than
logs26 = 4.7 bits). This is however, the information content due to considering just
the probability of occurence of letters. But, in language, our expectation of what
the next letter will be is determined by what the previous letters have been. To
measure this we need the concept of joint entropy. Because H(z) is the entropy of
a 1-dimensional variable it is sometimes called the scalar entropy, to differentiate it
from the joint entropy.



4.4 Joint Entropy

Table 2 shows the probability of occurence (to three decimal places) of selected pairs
of letters z; and y; where x; is followed by y;. This is called the joint probability
p(x;,y;). The table also shows the joint information content

Ti Y P(Ii,yj) h(xi;yj)
t h 0.037 4.76
t s 0.000 13.29
t r 0.012 6.38

Table 4.3: Probability and Information content of pairs of letters

h(x;,y;) = logm (4.4)
The average joint information content is given by the joint entropy
M M
H(w,y) = — Z{ le(xi, y;) log p(xi, y;) (4.5)
i=1j=

If we fix x to, say z; then the probability of y taking on a particular value, say y;, is
given by the conditional probability
plz = x5,y = y,)

ply =yjlo = ;) = =) (4.6)

For example, if z; = t and y; = h then the joint probability p(x;,y;) is just the
probability of occurrence of the pair (which from table 2 is 0.037). The conditional
probability p(y;|z;), however, says that, given we’'ve seen the letter t, what’s the
probability that the next letter will be A (which from tables 1 and 2 is 0.037/0.07 =
0.53). Re-arranging the above relationship (and dropping the y = y; notation) gives

p(x,y) = p(ylz)p(z) (4.7)

Now if y does not depend on z then p(y|z) = p(y). Hence, for independent variables,
we have

p(z,y) = p(y)p(z) (4.8)

This means that, for independent variables, the joint entropy is the sum of the indi-
vidual (or scalar entropies)

H(z,y) = H(z) + H(y) (4.9)

Consecutive letters in the English language are not independent (except either after or
during a bout of serious drinking). If we take into account the statistical dependence
on the previous letter, the entropy of English reduces to 3.67 bits per letter (from
4.11). If we look at the statistics of not just pairs, but triplets and quadruplets of
letters or at the statistics of words then it is possible to calculate the entropy more
accurately; as more and more contextual structure is taken into account the estimates
of entropy reduce. See Cover’s book ([12] page 133) for more details.



4.5 Relative Entropy

The relative entropy or Kullback-Liebler Divergence between a distribution ¢(z) and
a distribution p(x) is defined as

q(z)

(@) (4.10)

Dlq|lp] = Zq )log T2

Jensen’s inequality states that for any convex function ! f(x) and set of M positive
coefficients {);} which sum to one

FE A 2 S ) (a11)

A sketch of a proof of this is given in Bishop ([3], page 75). Using this inequality we
can show that

~Dill] = Lalo)tos") (112)
< log)  p(x)
< logl
Hence
Dlg|lp] > 0 (4.13)

The KL-divergence will appear again in the discussion of the EM algorithm and
Variational Bayesian learning (see later lectures).

4.6 Mutual Information

The mutual information is defined [12] as the relative entropy between the joint
distribution and the product of individual distributions

I(z;y) = D[p(X,Y)|[p(X)p(Y)] (4.14)

Substuting these distributions into 4.10 allows us to express the mutual information
as the difference between the sum of the individual entropies and the joint entropy

I(w;y) = H(x) + H(y) — H(z,y) (4.15)

Therefore if z and y are independent the mutual information is zero. More generally,
I(x;y) is a measure of the dependence between variables and this dependence will be
captured if the underlying relationship is linear or nonlinear. This is to be contrasted
with Pearsons correlation coefficient, which measures only linear correlation (see first
lecture).

LA convex function has a negative second derivative.



4.7 Minimum Description Length

Given that a variable has a determinisitic component and a random component the
complexity of that variable can be defined as the length of a concise description of
that variables regularities [19].

This definition has the merit that both random data and highly regular data will
have a low complexity and so we have a correspondence with our everyday notion of
complexity 2

The length of a description can be measured by the number of binary bits required
to encode it. If the probability of a set of measurements D is given by p(D|6) where
0 are the parameters of a probabilistic model then the minimum length of a code for
representing D is, from Shannon’s coding theorem [12], the same as the information
content of that data under the model (see eg. equation 4.1)

L = —logp(D|0) (4.16)

However, for the recevier to decode the message they will need to know the parameters
0 which, being real numbers are encoded by truncating each to a finite precision A#.
We need a total of —klog Af bits to encode the This gives

L, = —logp(D|0) — klog Af (4.17)

The optimal precision can be found as follows. First, we expand the negative log-
likelihood (ie. the error) using a Taylor series about the Maximum Likelihood (ML)
solution @. This gives

1
L, = —logp(D|0) + 5A¢9THA0 — klog A9 (4.18)

where A@ = @ — 6 and H is the Hessian of the error which is identical to the inverse
covariance matrix (the first order term in the Taylor series disappears as the error
gradient is zero at the ML solution). The derivative is

0Ly k
ag = HAO — (4.19)

If the covariance matrix is diagonal (and therefore the Hessian is diagonal) then, for
the case of linear regression (see equation 1.47) the diagonal elements are

No?
hi - O_—g (420)
where o7 is the variance of the errors and o7, is the variance of the ith input. More
generally, eg. nonlinear regression, this last variance will be replaced with the variance

2This is not the case, however, with measures such as the Algorithm Information Content (AIC)
or Entropy as these will be high even for purely random data.



of the derivative of the output wrt. the ¢th parameter. But the dependence on N
remains. Setting the above derivative to zero therefore gives us

1
(A)? = N X constant (4.21)
where the constant depends on the variance terms (when we come to take logs of Af
this constant becomes an additive term that does’nt scale with either the number of
data points or the number of parameters in the model; we can therefore ignore it).
The Minimum Description Length (MDL) is therefore given by

MDL(k) = —logp(D|6) + g log N (4.22)

This may be minimised over the number of parameters £ to get the optimal model
complexity.

For a linear regression model
N
—logp(D|0) = 5} log o2 (4.23)

Therefore N L
MDLLinear(k) - EIOgUz + 510gN (424)

which is seen to consist of an accuracy term and a complexity term. This criterion can
be used to select the optimal number of input variables and therefore offers a solution
to the bias-variance dilemma (see lecture 1). In later lectures the MDL criterion will
be used in autoregressive and wavelet models.

The MDL complexity measure can be further refined by integrating out the depen-
dence on @ altogether. The resulting measure is known as the stochastic complexity
[54]

I(k) = —logp(D|k) (4.25)

where

p(DIk) = [ p(DI6, k)p(0)d6 (4.26)

In Bayesian statistics this quantity is known as the ‘marginal likelihood’ or ‘evidence’.
The stochastic complexity measure is thus equivalent (after taking negative logs) to
the Bayesian model order selection criterion (see later). See Bishop ([3], page 429)
for a further discussion of this relationship.



