
Chapter 4
Information Theory
4.1 IntroductionThis lecture covers entropy, joint entropy, mutual information and minimum descrip-tion length. See the texts by Cover [12] and Mackay [36] for a more comprehensivetreatment.
4.2 Measures of InformationInformation on a computer is represented by binary bit strings. Decimal numberscan be represented using the following encoding. The position of the binary digitBit 1 (23 = 8) Bit 2 (22 = 4) Bit 3 (21 = 2) Bit 4 (20 = 1) Decimal0 0 0 0 00 0 0 1 10 0 1 0 20 0 1 1 30 1 0 0 4. . . . .. . . . .0 1 1 1 141 1 1 1 15Table 4.1: Binary encodingindicates its decimal equivalent such that if there are N bits the ith bit representsthe decimal number 2N�i. Bit 1 is referred to as the most signi�cant bit and bit Nas the least signi�cant bit. To encode M di�erent messages requires log2M bits.53



54 Signal Processing Course, W.D. Penny, April 2000.4.3 EntropyThe table below shows the probability of occurrence p(xi) (to two decimal places) ofselected letters xi in the English alphabet. These statistics were taken from Mackay'sbook on Information Theory [36]. The table also shows the information content of axi p(xi) h(xi)a 0.06 4.1e 0.09 3.5j 0.00 10.7q 0.01 10.3t 0.07 3.8z 0.00 10.4Table 4.2: Probability and Information content of lettersletter h(xi) = log 1p(xi) (4.1)which is a measure of surprise; if we had to guess what a randomly chosen letter ofthe English alphabet was going to be, we'd say it was an A, E, T or other frequentlyoccuring letter. If it turned out to be a Z we'd be surprised. The letter E is socommon that it is unusual to �nd a sentence without one. An exception is the 267page novel `Gadsby' by Ernest Vincent Wright in which the author deliberately makesno use of the letter E (from Cover's book on Information Theory [12]). The entropyis the average information contentH(x) = MXi=1 p(xi)h(xi) (4.2)where M is the number of discrete values that xi can take. It is usually written asH(x) = � MXi=1 p(xi) log p(xi) (4.3)with the convention that 0 log 1=0 = 0. Entropy measures uncertainty.Entropy is maximised for a uniform distribution p(xi) = 1=M . The resulting entropyis H(x) = log2M which is the number of binary bits required to represent M di�erentmessages (�rst section). For M = 2, for example, the maximum entropy distributionis given by p(x1) = p(x2) = 0:5 (eg. an unbiased coin; biased coins have lowerentropy).The entropy of letters in the English language is 4.11 bits [12] (which is less thanlog226 = 4:7 bits). This is however, the information content due to considering justthe probability of occurence of letters. But, in language, our expectation of whatthe next letter will be is determined by what the previous letters have been. Tomeasure this we need the concept of joint entropy. Because H(x) is the entropy ofa 1-dimensional variable it is sometimes called the scalar entropy, to di�erentiate itfrom the joint entropy.



Signal Processing Course, W.D. Penny, April 2000. 554.4 Joint EntropyTable 2 shows the probability of occurence (to three decimal places) of selected pairsof letters xi and yi where xi is followed by yi. This is called the joint probabilityp(xi; yi). The table also shows the joint information contentxi yj p(xi; yj) h(xi; yj)t h 0.037 4.76t s 0.000 13.29t r 0.012 6.38Table 4.3: Probability and Information content of pairs of lettersh(xi; yj) = log 1p(xi; yj) (4.4)The average joint information content is given by the joint entropyH(x; y) = � MXi=1 MXj=1 p(xi; yj) log p(xi; yj) (4.5)If we �x x to, say xi then the probability of y taking on a particular value, say yj, isgiven by the conditional probabilityp(y = yjjx = xi) = p(x = xi; y = yj)p(x = xi) (4.6)For example, if xi = t and yj = h then the joint probability p(xi; yj) is just theprobability of occurrence of the pair (which from table 2 is 0:037). The conditionalprobability p(yjjxi), however, says that, given we've seen the letter t, what's theprobability that the next letter will be h (which from tables 1 and 2 is 0:037=0:07 =0:53). Re-arranging the above relationship (and dropping the y = yj notation) givesp(x; y) = p(yjx)p(x) (4.7)Now if y does not depend on x then p(yjx) = p(y). Hence, for independent variables,we have p(x; y) = p(y)p(x) (4.8)This means that, for independent variables, the joint entropy is the sum of the indi-vidual (or scalar entropies) H(x; y) = H(x) +H(y) (4.9)Consecutive letters in the English language are not independent (except either after orduring a bout of serious drinking). If we take into account the statistical dependenceon the previous letter, the entropy of English reduces to 3.67 bits per letter (from4.11). If we look at the statistics of not just pairs, but triplets and quadruplets ofletters or at the statistics of words then it is possible to calculate the entropy moreaccurately; as more and more contextual structure is taken into account the estimatesof entropy reduce. See Cover's book ([12] page 133) for more details.



56 Signal Processing Course, W.D. Penny, April 2000.4.5 Relative EntropyThe relative entropy or Kullback-Liebler Divergence between a distribution q(x) anda distribution p(x) is de�ned asD[qjjp] =Xx q(x) log q(x)p(x) (4.10)Jensen's inequality states that for any convex function 1 f(x) and set of M positivecoe�cients f�jg which sum to onef( MXj=1�jxj) � MXj=1�jf(xj) (4.11)A sketch of a proof of this is given in Bishop ([3], page 75). Using this inequality wecan show that �D[qjjp] = Xx q(x) log p(x)q(x) (4.12)� logXx p(x)� log 1Hence D[qjjp] � 0 (4.13)The KL-divergence will appear again in the discussion of the EM algorithm andVariational Bayesian learning (see later lectures).4.6 Mutual InformationThe mutual information is de�ned [12] as the relative entropy between the jointdistribution and the product of individual distributionsI(x; y) = D[p(X; Y )jjp(X)p(Y )] (4.14)Substuting these distributions into 4.10 allows us to express the mutual informationas the di�erence between the sum of the individual entropies and the joint entropyI(x; y) = H(x) +H(y)�H(x; y) (4.15)Therefore if x and y are independent the mutual information is zero. More generally,I(x; y) is a measure of the dependence between variables and this dependence will becaptured if the underlying relationship is linear or nonlinear. This is to be contrastedwith Pearsons correlation coe�cient, which measures only linear correlation (see �rstlecture).1A convex function has a negative second derivative.



Signal Processing Course, W.D. Penny, April 2000. 574.7 Minimum Description LengthGiven that a variable has a determinisitic component and a random component thecomplexity of that variable can be de�ned as the length of a concise description ofthat variables regularities [19].This de�nition has the merit that both random data and highly regular data willhave a low complexity and so we have a correspondence with our everyday notion ofcomplexity 2The length of a description can be measured by the number of binary bits requiredto encode it. If the probability of a set of measurements D is given by p(Dj�) where� are the parameters of a probabilistic model then the minimum length of a code forrepresenting D is, from Shannon's coding theorem [12], the same as the informationcontent of that data under the model (see eg. equation 4.1)L = � log p(Dj�) (4.16)However, for the recevier to decode the message they will need to know the parameters� which, being real numbers are encoded by truncating each to a �nite precision ��.We need a total of �k log�� bits to encode the This givesLtx = � log p(Dj�)� k log�� (4.17)The optimal precision can be found as follows. First, we expand the negative log-likelihood (ie. the error) using a Taylor series about the Maximum Likelihood (ML)solution �̂. This givesLtx = � log p(Dj�̂) + 12��TH�� � k log�� (4.18)where �� = �� �̂ and H is the Hessian of the error which is identical to the inversecovariance matrix (the �rst order term in the Taylor series disappears as the errorgradient is zero at the ML solution). The derivative is@Ltx@�� = H�� � k�� (4.19)If the covariance matrix is diagonal (and therefore the Hessian is diagonal) then, forthe case of linear regression (see equation 1.47) the diagonal elements arehi = N�2xi�2e (4.20)where �2e is the variance of the errors and �2xi is the variance of the ith input. Moregenerally, eg. nonlinear regression, this last variance will be replaced with the variance2This is not the case, however, with measures such as the Algorithm Information Content (AIC)or Entropy as these will be high even for purely random data.



58 Signal Processing Course, W.D. Penny, April 2000.of the derivative of the output wrt. the ith parameter. But the dependence on Nremains. Setting the above derivative to zero therefore gives us(��)2 = 1N � constant (4.21)where the constant depends on the variance terms (when we come to take logs of ��this constant becomes an additive term that does'nt scale with either the number ofdata points or the number of parameters in the model; we can therefore ignore it).The Minimum Description Length (MDL) is therefore given byMDL(k) = � log p(Dj�) + k2 logN (4.22)This may be minimised over the number of parameters k to get the optimal modelcomplexity.For a linear regression model � log p(Dj�) = N2 log �2e (4.23)Therefore MDLLinear(k) = N2 log �2e + k2 logN (4.24)which is seen to consist of an accuracy term and a complexity term. This criterion canbe used to select the optimal number of input variables and therefore o�ers a solutionto the bias-variance dilemma (see lecture 1). In later lectures the MDL criterion willbe used in autoregressive and wavelet models.The MDL complexity measure can be further re�ned by integrating out the depen-dence on � altogether. The resulting measure is known as the stochastic complexity[54] I(k) = � log p(Djk) (4.25)where p(Djk) = Z p(Dj�; k)p(�)d� (4.26)In Bayesian statistics this quantity is known as the `marginal likelihood' or `evidence'.The stochastic complexity measure is thus equivalent (after taking negative logs) tothe Bayesian model order selection criterion (see later). See Bishop ([3], page 429)for a further discussion of this relationship.


