
Chapter 3
Multivariate Statistics
3.1 IntroductionWe discuss covariance matrices, multivariate linear regression, feature selection, prin-cipal component analysis and singular value decomposition. See Chat�eld's book onmultivariate analysis for more details [10]. Also, a good practical introduction to thematerial on regression is presented by Kleinbaum et al. [32]. More details of matrixmanipulations are available in Weisberg [64] and Strang has a great in-depth intro tolinear algebra [58]. See also relevant material in Numerical Recipes [49].
3.2 Multivariate Linear RegressionFor a multivariate linear data set, the dependent variable yi is modelled as a linearcombination of the input variables xi and an error term 1yi = xiw + ei (3.1)where xi is a row vector, w is a column vector and ei is an error. The overall goodnessof �t can be assessed by the least squares cost functionE = NXi=1(yi � ŷi)2 (3.2)where ŷ = xiw.1The error term is introduced because, very often, given a particular data set it will not bepossible to �nd an exact linear relationship between xi and yi for every i. We therefore cannotdirectly estimate the weights as X�1y. 43



44 Signal Processing Course, W.D. Penny, April 2000.3.2.1 Estimating the weightsThe least squares cost function can be written in matrix notation asE = (y �Xw)T (y �Xw) (3.3)where X is an N-by-p matrix whose rows are made up of di�erent input vectors andy is a vector of targets. The weight vector that minimises this cost function can becalculated by setting the �rst derivative of the cost function to zero and solving theresulting equation.By expanding the brackets and collecting terms (using the matrix identity (AB)T =BTAT we get E = yTy � 2wXTy �wTXTXw (3.4)The derivative with respect to w is 2@E@w = �2XTy � 2XTXw (3.5)Equating this derivative to zero gives(XTX)w =XTy (3.6)which, in regression analysis, is known as the 'normal equation'. Hence,ŵ = (XTX)�1XTy (3.7)This is the general solution for multivariate linear regression 3. It is a unique minimumof the least squares error function (ie. this is the only solution).Once the weights have been estimated we can then estimate the error or noise variancefrom �2e = 1N � 1 NXi=1(yi � ŷi)2 (3.8)3.2.2 Understanding the solutionIf the inputs are zero mean then the input covariance matrix multiplied by N-1 isCx =XTX (3.9)The weights can therefore be written asŵ = C�1x XTy (3.10)ie. the inverse covariance matrix times the inner products of the inputs with theoutput (the ith weight will involve the inner product of the ith input with the output).2From matrix calculus [37] we know that the derivative of cTBc with respect to c is (BT +B)c.Also we note that XTX is symmetric.3In practice we can use the equivalent expression ŵ = X+1y where X+1 is the pseudo-inverse[58]. This method is related to Singular Value Decomposition and is discussed later.



Signal Processing Course, W.D. Penny, April 2000. 45Single inputFor a single input C�1x = 1=(N � 1)�2x1 and XTy = (N � 1)�x1y. Henceŵ1 = �x1y�2x1 (3.11)This is exactly the same as the estimate for the slope in linear regression (�rst lecture).This is re-assuring.Uncorrelated inputsFor two uncorrelated inputsC�1x = 24 1(N�1)�2x1 00 1(N�1)�2x2 35 (3.12)We also have XTy = " (N � 1)�x1;y(N � 1)�x2;y # (3.13)The two weights are therefore ŵ1 = �x1y�2x1 (3.14)ŵ2 = �x2y�2x2Again, these solutions are the same as for the univariate linear regression case.General caseIf the inputs are correlated then a coupling is introduced in the estimates of theweights; weight 1 becomes a function of �x2y as well as �x1yŵ = " �2x1 �x1x2�x1x2 �2x2 #�1 " �x1;y�x2;y # (3.15)3.2.3 Feature selectionSome of the inputs in a linear regression model may be very useful in predicting theoutput. Others, not so. So how do we �nd which inputs or features are useful ? Thisproblem is known as feature selection.



46 Signal Processing Course, W.D. Penny, April 2000.The problem is tackled by looking at the coe�cients of each input (ie. the weights) andseeing if they are signi�cantly non-zero. The procedure is identical to that describedfor univariate linear regression.The only added di�culty is that we have more inputs and more weights, but theprocedure is basically the same. Firstly, we have to estimate the variance on eachweight. This is done in the next section. We then compare each weight to zero usinga t-test.The weight covariance matrixDi�erent instantiations of target noise will generate di�erent estimated weight vectorsaccording to equation 3.7. For the case of Gaussian noise we do not actually haveto compute the weights on many instantiations of the target noise and then computethe sample covariance 4; the corresponding weight covariance matrix is given by theequation � = V ar((XTX)�1XTy) (3.16)In the appendix we show that this can be evaluated as� = �2e(XTX)�1 (3.17)The correlation in the inputs introduces a correlation in the weights; for uncorrelatedinputs the weights will be uncorrelated. The variance of the jth weight, wj, is thengiven by the jth diagonal entry in the covariance matrix�2wj = �jj (3.18)To see if a weight is signi�cantly non-zero we then compute CDFt(t) (the cumula-tive density function; see earlier lecture) where t = wj=�wj and if it is above somethreshold, say p = 0:05, the corresponding feature is removed.Note that this procedure, which is based on a t-test, is exactly equivalent to a similarprocedure based on a partial F-test (see, for example, [32] page 128).If we do remove a weight then we must recompute all the other weights (and variances)before deciding whether or not the other weights are signi�cantly non-zero. Thisusually proceeds in a stepwise manner where we start with a large number of featuresand reduce them as necessary (stepwise backward selection) or gradually build up thenumber of features (stepwise forward selection) [32].Note that, if the weights were uncorrelated we could do feature selection in a singlestep; we would not have to recompute weight values after each weight removal. Thisprovides one motivation for the use of orthogonal transforms in which the weights areuncorrelated. Such transforms include Fourier and Wavelet transforms as we shallsee in later lectures.4But this type of procedure is the basis of bootstrap estimates of parameter variances. See [17].



Signal Processing Course, W.D. Penny, April 2000. 473.2.4 ExampleSuppose we wish to predict a time series x3 from two other time series x1 and x2. Wecan do this with the following regression model 5x3 = w0 + w1x1 + w2x2 (3.19)and the weights can be found using the previous formulae. To cope with the constant,w0, we augment the X vector with an additional column of 1's.We analyse data having covariance matrixC1 and mean vectorm1 (see equations 2.15and 2.14 in an earlier lecture). N = 50 data points were generated and are shown inFigure 3.1. The weights were then estimated from equation 3.7 asŵ = [w1; w2; w0]T (3.20)= [1:7906;�0:0554; 0:6293]TNote that w1 is much bigger than w2. The weight covariance matrix was estimatedfrom equation B.27 as� = 264 0:0267 0:0041 �0:41970:0041 0:0506 �0:9174�0:4197 �0:9174 21:2066 375 (3.21)giving �w1 = 0:1634 and �w2 = 0:2249. The corresponding t-statistics are t1 = 10:96and t2 = �0:2464 giving p-values of 10�15 and 0:4032. This indicates that the �rstweight is signi�cantly di�erent from zero but the second weight is not ie. x1 is a goodpredictor of x3 but x2 is not. We can therefore remove x2 from our regression model.Question: But what does linear regression tell us about the data that the correla-tion/covariance matrix does'nt ? Answer: Partial correlations.3.2.5 Partial CorrelationRemember (see eg. equation 1.36 from lecture 1), the square of the correlation coef-�cient between two variables x1 and y is given byr2x1y = �2y � �2e(x1)�2y (3.22)where �2e(x1) is the variance of the errors from using a linear regression model basedon x1 to predict y. Writing �2y = �2e(0), ie. the error with no predictive variablesr2x1y = �2e(0)� �2e(x1)�2e(0) (3.23)5Strictly, we can only apply this model if the samples within each time series are independent (seelater). To make them independent we can randomize the time index thus removing any correlationbetween lagged samples. We therefore end up with a random variables rather than time series.
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tFigure 3.1: Three time series having the correlation matrix C1 and mean vector m1shown in the text. The dotted line shows the value of the third time series as predictedfrom the other two using a regression model.When we have a second predictive variable x2, the square of the partial correlationbetween x2 and y is de�ned asr2x2yjx1 = �2e(x1)� �2e(x1; x2)�2e(x1) (3.24)where �2e(x1; x2) is the variance of the errors from the regression model based on x1and x2. It's the extra proportion of variance in y explained by x2. It's di�erent tor2x2y because x2 may be correlated to x1 which itself explains some of the variance iny. After controlling for this, the resulting proportionate reduction in variance is givenby r2x2yjx1. More generally, we can de�ne pth order partial correlations which are thecorrelations between two variables after controlling for p variables.The sign of the partial correlation is given by the sign of the corresponding regressioncoe�cient.
Relation to regression coe�cientsPartial correlations are to regression coe�cients what the correlation is to the slopein univariate linear regression. If the partial correlation is signi�cantly non-zero thenthe corresponding regression coe�cient will also be. And vice-versa.



Signal Processing Course, W.D. Penny, April 2000. 493.3 Principal Component AnalysisGiven a set of data vectors fxng we can construct a covariance matrixC = 1N Xn (xn � �x)(xn � �x)T (3.25)or, if we construct a matrix X with rows equal to xn � �x thenC = 1NXTX (3.26)Because covariance matrices are real and symmetric we can apply the spectral theoremC = Q�QT (3.27)If the eigenvectors (columns of Q) are normalised to unit length, they constitutean orthonormal basis. If the eigenvalues are then ordered in magnitude such that�1 � �2 � ::: � �d then the decomposition is known as Principal Component Analysis(PCA). The projection of a data point xn onto the principal components isyn = QTxn (3.28)The mean projection is �y = QT �x (3.29)The covariance of the projections is given by the matrixCy = 1N Xn (yn � �y)(yn � �y)T (3.30)Substituting in the previous two expressions givesCy = 1N Xn QT (xn � �x)(xn � �x)TQ (3.31)= QTCQ= �where � is the diagonal eigenvalue matrix with entries �k (�2k = �k). This showsthat the variance of the kth projection is given by the kth eigenvalue. Moreover, itsays that the projections are uncorrelated. PCA may therefore be viewed as a lineartransform y = QTx (3.32)which produces uncorrelated data.3.3.1 The Multivariate Gaussian DensityIn d dimensions the general multivariate normal probability density can be writtenp(x) = 1(2�)d=2jCj1=2 exp��12(x� �x)TC�1(x� �x)� (3.33)



50 Signal Processing Course, W.D. Penny, April 2000.where the mean �x is a d-dimensional vector, C is a d� d covariance matrix, and jCjdenotes the determinant of C. Because the determinant of a matrix is the productof its eigenvalues then for covariance matrices, where the eigenvalues correspond tovariances, the determinant is a single number which represents the total volume ofvariance. The quantity M(x) = (x� �x)TC�1(x� �x) (3.34)which appears in the exponent is called the Mahalanobis distance from x to �x. Thisis the equation for an ellipse (see earlier). The directions of the axes are given by theprincipal components and the lengths are given by �iM(x) where �i is the standarddeviation of the data in the ith direction (see earlier section on quadratic forms andnote that �i = �2i ). We can therefore map a given probability p(x) to a Mahalanobisdistance (using equation E.9) and from that plot the ellipse axes. See the �gure inthe appendix.3.3.2 Dimensionality ReductionGiven that the eigenvalues in PCA are ordered and that they correspond to the vari-ance of the data in orthogonal directions then it would seem plausible that a reason-able data reconstruction could be obtained from just a few of the larger componentsand this is indeed the case.If we retain only a subset M < d of the basis vectors then a data point can bereconstructed as x̂n = MXk=1wnkqk + dXk=M+1 bkqk (3.35)where the bk are constants (they don't depend on n) and, as we have seen, wnk = qTkxn.If we keep only the projections wnk and the associated eigenvectors qk we have reducedthe dimension of our data set from d to M . Now, given that the actual data pointcan be written as xn = dXk=1wnkqk (3.36)where the sum is over all d components (not just M) then the reconstruction error isxn � x̂n = dXk=M+1(wnk � bk)qk (3.37)It is the cost of replacing the variable wnk by a constant bk. The reconstruction erroraveraged over the whole data set isEM = 1N NXn=1 jjxn � x̂njj (3.38)= 1N NXn=1 dXk=M+1(wnk � bk)2



Signal Processing Course, W.D. Penny, April 2000. 51where the qk's disappear because qTk qk = 1. We can minimise EM by settingbk = 1N NXn=1wnk (3.39)= qTk �xwhich is the mean projection in direction qk. The error is thereforeEM = 1N NXn=1 dXk=M+1 hqTk (xn � �x)i2 (3.40)= NN dXk=M+1qTkCqk= dXk=M+1�kThe reconstruction error is therefore minimised, for a given M , by throwing away thed �M smallest components, as you would expect. The corresponding error is justthe sum of the corresponding eigenvalues.3.3.3 Singular Value DecompositionThe eigenvalue-eigenvector factorisation (see equation 2.85)A = Q�QT (3.41)applies to square symmetric matrices only. There is an equivalent factorisation forrectangular matrices, having N rows and d columns, called Singular Value Decompo-sition (SVD) A = Q1DQT2 (3.42)where Q1 is an orthonormal N -by-N matrix, Q2 is an orthonormal d-by-d matrix,Dis a diagonal matrix of dimension N -by-d and the kth diagonal entry in D is knownas the kth singular value, �k.If we substitute the SVD of A into ATA, after some rearranging, we getATA = Q2DTDQT2 (3.43)which is of the form A = Q�QT where Q = Q2 and � = DTD. This shows thatthe columns of Q2 contain the eigenvectors of ATA and that D contains the squareroots of the corresponding eigenvalues. Similarly, by substituting the SVD of A intoAAT we can show that the columns of Q1 are the eigenvectors of AAT .



52 Signal Processing Course, W.D. Penny, April 2000.Relation to PCAGiven a data matrix X constructed as before (see PCA section), except that thematrix is scaled by a normalisation factor q1=N , then XTX is equivalent to thecovariance matrix C. If we therefore decompose X using SVD, the principal com-ponents will apear in Q2 and the square roots of the corresponding eigenvalues willappear in D.Therefore we can implement PCA in one of two ways (i) compute the covariance ma-trix and perform an eigendecomposition or (ii) use SVD directly on the (normalised)data matrix.The Pseudo-InverseGiven the SVD of a matrix A = Q1DQT2 (3.44)the Pseudo-Inverse of A is de�ned asA+ = Q2D+QT1 (3.45)where D+ is a d-by-N matrix with diagonal entries 1=�1; 1=�2; :::; 1=�d. The matrixD+ can be computed as D+ = (DTD)�1DT (3.46)The Pseudo-Inverse is used in the solution of the multivariate linear regression prob-lem (see equation 3.7) ŵ = (XTX)�1XTy (3.47)We can substitute the SVD for X into the above expression in a series of steps togive XTX = Q2DTDQT2 (3.48)The inverse is (XTX)�1 = Q2(DTD)�1QT2 (3.49)Hence (XTX)�1XT = Q2(DTD)�1DTQT1 (3.50)Substituting for D+ gives (XTX)�1XT = Q2D+QT1 (3.51)= X+Therefore, the linear regression weights can be computed by projecting the targetsonto the Pseudo-Inverse of the input data matrixŵ =X+y (3.52)


