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2 Central Limit Theorem

Given n samples from any probability distribution, the
distribution of the sample mean becomes Gaussian as
n → ∞. For proof see [6]. A caveat is that the sample
variance must be finite.

More formally, if y1, y2, ..., yn are Independent and Iden-
tically Distributed (IID) random variables with E[yi] =
µ and V ar[yi] = σ2 < ∞ and

ȳn =
1

n

n∑
i=1

yi (1)

un =
√

n

(
ȳn − µ

σ

)

then p(un) converges to a standard Gaussian density as
n →∞. This is the Central Limit Theorem (CLT).

The CLT can be extended to Independent and Non-
Identically Disributed (IND) random variables, as long
as E[yi] and V ar[yi] are finite.

This implies that if you have a Gaussian observation
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then its a ‘mixture’ (average or weighted average) of non-
Gaussian signals. ICA attempts to find the underlying
signals by looking for projections of the observations that
are most non-Gaussian. This is implemented either (i)
informally, by maximising an index of non-Gaussianity
such as kurtosis, E[(yi − µ)4] (a Gaussian has zero kur-
tosis) or (ii) formally by specifying a probability model
where the sources are non-Gaussian.
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Figure 1: Take n samples from an exponential PDF, compute the sample mean.
Do this multiple times to get an empirical estimate of the distribution of the
sample mean. As n increases, the distribution becomes Gaussian.
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Figure 2: Take n/2 samples from an exponential PDF and n/2 from a uniform
PDF, compute the sample mean. Do this multiple times to get an empirical
estimate of the distribution of the sample mean. As n increases, the distribution
becomes Gaussian. 5



3 Independent Component Analysis

In Independent Component Analysis (ICA) an M-dimensional
vector observation y is modelled as

y = Xβ (2)

where X is an unknown mixing matrix and β an un-
known M -dimensional source vector. The matrix X is
therefore M × M . If we know p(β), then using the
method of transforming probability densities we can write
the likelihood of an observation as

p(y) =
p(β)

| det X|
(3)

The determinant measures the volume of a matrix. So
Eq 3. takes into account volumetric changes in the trans-
formation, so that probability mass is preserved as we
transform β into y.

ICA assumes the sources to be Independent (this is
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the I in ICA)

p(β) =
M∏
i=1

ps(βi) (4)

We can therefore write the likelihood as

p(y) =

∏M
i=1 ps(βi)

| det X|
(5)

The log-likelihood is then given by

log p(y) = − log | det X|+
M∑
i=1

log ps(βi) (6)

We can write the unknown sources as

β = X−1y (7)

= Ay

where A = X−1 is the inverse mixing matrix. We can
also write βi =

∑M
j=1 Aijyj and express the log-likelihood

as

log p(y) = log | det A|+
M∑
i=1

log ps(
M∑

j=1
Aijyj) (8)
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The log-likelihood is now a function of the data and the
inverse mixing matrix.

If we have n = 1..N independent samples of data, Y ,
the likelihood is

log p(Y ) = N log | det A|+
N∑

n=1

M∑
i=1

log ps(
M∑

j=1
Aijynj) (9)

We can find A by giving this function to any optimisation
algorithm. As elements of A become co-linear | det A| →
0, and the likelihood reduces. Maximising the likelihood
therefore encourages sources to be different (via the first
term) and encourages them to be similar to ps ie. non-
Gaussian (via the second term).

3.1 Source densities

Different ICA models result from different assumptions
about the source densities ps(βi). One possibility is the
generalised exponential family. Another is the ‘inverse

8



cosh’ density

ps(βi) =
1

cosh(βi)
(10)

=
1

exp βi + exp−βi

This latter choice gives rise to the original ‘Infomax’ al-
gorithm [1].
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Figure 3: Generalised exponential densities ps(βi) ∝ exp
(
−|βi

σ |
R
)
with R = 1

(Blue, ’Laplacian density’), R = 2 (Green, ’Gaussian density’), R > 20 (Red,
’Uniform density’). The parameter σ defines the width of the density.
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Figure 4: Inverse Cosh, 1
exp βi+exp−βi

(Blue) and Gaussian, exp−β2
i (Green)
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(a)

(b)

Figure 5: Probability contours, p(y), from 2D-ICA models with (a) Gaussian
sources and (b) Heavy-tailed sources. The mixing matrices X are the same.
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3.2 Removing EEG artefacts

Jung et al. [5] use ICA to remove artefacts from EEG
data recorded from 20 scalp electrodes placed according
to the 10/20 system and 2 EOG electrodes, all refer-
ences to the left mastoid. The sampling rate was 256Hz.
An ICA decomposition was implemented by applying an
extended Infomax algorithm to 10-second EEG epochs
to produce sources with time series that are maximally
independent.

This artefact removal method compares favourably to
PCA and filtering approaches, and approaches for eye-
movement correction based on dipole models and regres-
sion [5]. It has been incorporated in the EEGLAB avail-
able from http://sccn.ucsd.edu/eeglab/.
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Figure 6: Original 5-second EEG record, containing prominent slow eye-
movement (seconds 2 to 4).
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Figure 7: Left panel: Time course of source estimates βni for n=1..N samples
(N=5 x 256), and i=1..22 sources. Right panel: Spatial topographies (rows of
mixing matrix X) for 5 selected components. The top two components account
for eye movement and the bottom three for muscle activity over fronto-temporal
regions. 15



Figure 8: Corrected EEG formed by subtracting five selected components from
original data. This data is free from EOG and muscle artifacts. We can now
see activity in T3/T4 that was previously masked by muscle artifact.
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4 Discriminant analysis

4.1 Linear decision boundary

The aim of discriminant analysis is to estimate class label
y = {1, 2} given multivariate data x. This could be eg.
y = 1 for patients and y = 2 for controls. One approach
is to use labelled data to form a likelihood model for each
class, p(x|y). New data points are then assigned to the
class with the highest likelihood. Another way of saying
this is to form the Likelihood Ratio (LR)

LR12 =
p(x|y = 1)

p(x|y = 2)
(11)

and assign to class 1, if LR12 is greater than one. Ac-
cording to the Neymann-Pearson Lemma (see eg. [3])
this test has the highest sensitivity, for any given level
of specificity. Any monotonic function of LR12 will pro-
vide as good a test as the likelihood, and the logarithm
is often used.

If, additionally, we have prior probabilities for each
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category, p(y) then the optimal decision is to assign to
the class with the highest posterior probability. For class
1 we have

p(y = 1|x) =
p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = 2)p(y = 2)
(12)

For equal priors this reduces to an LR test.
A simple likelihood model for each class is a Gaus-

sian. The above posterior probability is then the same
as the ‘responsibilty’ in a Gaussian mixture model (see
last lecture). It can be re-written as

p(y = 1|x) =
1

1 + p(x|y=2)p(y=2)
p(x|y=1)p(y=1)

(13)

=
1

1 + exp(−a)

= g(a)
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where g(a) is the ‘sigmoid’ or ‘logistic’ function and

a = log

p(x|y = 1)p(y = 1)

p(x|y = 2)p(y = 2)

 (14)

For Gaussians with equal covariances Σ1 = Σ2 = Σ we
have

log p(x|y = 1) =
d

2
log 2π +

1

2
log |Σ| (15)

− 1

2
(x− µ1)

TΣ−1(x− µ1)

log p(x|y = 2) =
d

2
log 2π +

1

2
log |Σ|

− 1

2
(x− µ2)

TΣ−1(x− µ2)

This gives
a = wTx + w0 (16)

where

w = Σ−1(µ1 − µ2) (17)

19



w0 = −1

2
µT

1 Σµ1 +
1

2
µT

2 Σµ2 + log
p(y = 1)

p(y = 2)

This approach is known as logistic discrimination or lo-
gistic classification. The decision boundary is given by
a = 0.

4.2 Nonlinear decision boundary

If the Gaussians do not have equal covariance then the
decision boundary becomes quadratic. If Gaussians are
not good models of the class probability densities then
another approach is required eg. Nearest Neighbour clas-
sifiers, or Multi-Layer Perceptrons (MLPs). An MLP
comprises nested logistic functions.
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A two-layer MLP is given by

p(y = 1|x) = g

 H∑
h=1

w
(2)
h zh

 (18)

zh = g

 D∑
d=1

w
(1)
hd xd)


with D is the dimension of the input x, H is the number
of ’hidden units’ in the ’first layer’, and zh is the output
of the hth unit. Superscripts 1 and 2 denote 1st and
2nd layer weights. This allows for classification using
arbitrary decision boundaries. There is no closed form
for the parameters w, but they can be estimated using
an optimisation algorithm as described in [2]. This is an
example of an Artificial Neural Network (ANN).
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Figure 9: Tremor data. Crosses represent data points from patients y = 1,
circles data points from normal subjects, y = 2. The solid line shows the overall
decision boundary formed by an MLP with three hidden units. The shade of
gray codes the output, p(y = 1|x) and the features, x, are from autoregressive
modelling of EMG data.
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5 Estimating perceptual state from fMRI

Haynes and Rees [4] used Linear Discriminant Analy-
sis (LDA) to classify perceptual state during binocular
rivalry from fMRI data.

Retinotopic mapping and functional localisers (revers-
ing checkerboard stimuli) were used to identify the V1,
V2, V3 and V5 regions of visual cortex. The 50 most vi-
sually responsive voxels in each region were then selected
for subsequent analysis.

Subjects then viewed rivalrous stimuli, and pressed
buttons to indicate perceptual state, yt = 1 for red per-
cept and yt = 2 for blue percept. Activity in selected
voxels xt were then used to estimate yt. The labels yt

were time-shifted to accomodate the delay in the hemo-
dynamic response.

Estimates of perceptual state were then formed using

ŷt = wTxt (19)

w = Σ−1(µred − µblue)
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Figure 10: Functional localiser (4Hz reversing checkerboard) is used to select 50
visually responsive voxels in each region.
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where Σ is the within group sample covariance (esti-
mated from both red and blue fMRI samples) and mred

and mblue are the mean fMRI vectors for each condition.
These estimates were then time-shifted, by convolving
with a ‘Canonical HRF’ before comparison with true val-
ues. Cross-validation was used to assess accuracy.
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Figure 11: A: Superimposed gratings viewed through red/blue filtering glasses.
B: Subjects pressed buttons indicating perceptual state. C: Percept durations
for four subjects.
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Figure 12: Accuracy by region assessed using cross-validation.
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Figure 13: Accuracy by number of voxels assessed using cross-validation.
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