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1 Inference for random fields

A random field is a set of random variables defined at
every point in space. To find out if our z-score is ‘sig-
nificant’ we need to find out the probability of getting a
score that size (or greater) in the abscence of signal. In
the absence of signal, we have just error fields. In brain
imaging the error fields are spatially correlated and can
be described by stochastic processes over space.
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Figure 1: Face data: U1 effect.
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1.1 Family Wise Error

We wish to find the probability, under the null hypoth-
esis, that the maximum statistic over the field is larger
than some threshold u. That is

p(Umax > u|H0) (1)

This is the probability of a Family Wise Error (FWE).
An FWE is a false positive anywhere in the image.
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2 Gaussian processes

A stochastic process x(v) is a Gaussian process if for any
N samples the joint distribution p(x(v1), x(v2), ..., x(vN))
is a multivariate Gaussian.

A Gaussian random field/process has a Gaussian dis-
tribution at every point and at every collection of points.

Gaussian processes (GPs) are therefore defined by a
mean function m(v) and a covariance function

r(u, v) = E
(
[x(u) − m(u)]T [x(v) − m(v)]

)
(2)

A Gaussian process is stationary if r(u, v) = r(u− v).
We can then write the covariance function as r(d) where
d = r−v. In what follows we will assume the mean func-
tion to be zero at all points. GPs and their properties
are then defined solely by their covariance function.
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2.1 Example 1

A Gaussian covariance function is given by

r(d) = σ2 exp

− d2

2s2

 (3)

with power σ2 = 0.5 and smoothness s2 = 0.12
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Figure 2: 100 realisations of a Gaussian process with previous Gaussian covari-
ance function. See also NETLAB demo.
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2.2 Power and roughness

For stationary processes, the distribution of the max
statistic is determined solely by the power and rough-
ness.

The power or variance of a stationary zero-mean Gaus-
sian process is given by the covariance function at lag 0

E(|x(v)|2) = rx(0) (4)

Given any Gaussian process we can create a new one
by taking derivatives eg. y = x′(v) = dx(v)/dv. Using
Fourier methods (see eg. page 325 in [3]) or making use
of symmetry properties of the covariance function (see
eg. page 314 in [3]) it can be shown that the covariance
function of y is given by

ry(v) = −r
′′

x(v) (5)

The power of the stochastic process y is

E(|y(v)|2) = ry(0) (6)
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Combining this with the result above shows that variance
of the slope is given by

E(|dx(v)

dv
|2) = −r

′′

x(0) (7)

The ‘roughness’, λ is then given by the following ratio

λ1/2 =
−r

′′

x(0)

r(0)
(8)

For unit power fields we have λ1/2 = −r
′′

x(0). The ‘smooth-
ness’ is defined as the inverse of the roughness.

For the results that follow, the covariance function can
be chosen arbitrarily. However, some results are simpli-
fied if the covariance function has a particular form. For
example, the covariance function could itself be Gaus-
sian.
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2.3 Gaussian covariance function

A Gaussian covariance function is given by

r(d) = σ2 exp

− d2

2s2

 (9)

At distance 0, r(0) = σ2. Spatial derivatives are then
given by

r′(d) = − d

s2r(d) (10)

Hence, r′(0) = 0. The second derivative is given by

r
′′
(d) = − d

s2 ×− d

s2r(d) − 1

s2r(d) (11)

=

d2 − s2

s4

 r(d)

Re-arranging shows that the roughness is given by,

λ1/2 = −r
′′
(0)

r(0)
(12)

=
1

s2
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The roughness of a GP with a Gaussian CF is therefore
1/s2. The smoothness is then the square of the length
scale s.

3 Crossings of one-dimensional processes

In a stationary 1-dimensional zero-mean Gaussian field
the expected number of crossings, Nc, in the interval [0, 1]
of the level u is (page 606, [3])

E(Nc) = px(u)E(|x′(t)|) (13)

That is the density at u multiplied by the expected slope.
The density is the usual Gaussian

px(u) =
1

(2π)1/2σ
exp

− u2

2σ2

 (14)

and it can be shown that

E(|x′(t)|)2 =
−2r

′′
(0)

π
(15)
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Figure 3: Crossings of a 1D field
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The crossing density is therefore

E(Nc) =
λ1/2

πσ
exp

− u2

2σ2

 (16)

The expected number of upcrossings, Nu, is therefore
half that (see also page 67, [1])

E(Nu) =
λ1/2

2πσ
exp

− u2

2σ2

 (17)

where σ2 = E(|x(v)|2) = r(0) is the power and λ1/2 =
−r

′′
(0) is the roughness. So, the greater the roughness

the more upcrossings we expect. At high thresholds, u,
E(c) is the probability that the maximum of the process
is larger than u.

4 Multi-dimensional processes

We assume standard Gaussian variates at each location
(ie. σ = r(0) = 1). We first define an excursion set as
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Figure 4: Crossings of a rougher higher power 1D field
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the set of voxels where the statistical field exceeds a fixed
threshold u.

4.1 Euler characteristic

See eg. [4]. The Euler characteristic, c, counts the num-
ber of disconnected components minus the number of
‘holes’ plus the number of ‘hollows’. For high thresh-
olds u the holes and hollows disappear and c counts the
number of local maxima.

For large x the Euler characteristic, c, approaches the
number of local maxima. Raising the threshold further
either the global maxima is above threshold or it is not.
So the expected value of c is then the probability that the
global maximum exceeds the threshold u.
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Figure 5: Thresholding a 2D field
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4.2 Expected Euler characteristic

The expected value of c for an N -dimensional stationary
Gaussian process is given by (page 111 [1])

E[c] = V |Λ|1/2(2π)−(N+1)/2b(N, u) exp

−u2

2

 (18)

where

b(N, u) =
(N−1)/2∑

j=0
(−1)j (2j)!

j!2j
uN−1−2j (19)

This general result rests on a theorem from differential
topology known as Morse’s theorem. Results for dimen-
sions N < 3 can be derived without this.

For N = 1 we have b(N, u) = 1

E[c] = V
λ1/2

2π
exp

−u2

2

 (20)

which is the same result as earlier for the expected num-
ber of upcrossings (assuming V = 1, σ = 1).
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For N = 2 (eg. brain slice) we have b(N, u) = u and

E[c] = V |Λ|1/2(2π)−3/2u exp

−u2

2

 (21)

For N = 3 (eg. brain volume) we have b(N, u) = u2−1
and

E[c] = V |Λ|1/2(2π)−2(u2 − 1) exp

−u2

2

 (22)

4.3 Gaussian smoothing

One can create a Gaussian process by convolving IID
Gaussian noise with a Gaussian kernel (ie. a Gaussian
with covariance matrix Λ−1. For a 3D field, if the princi-
pal axes of Λ coincide with the x, y and z directions then
the off-diagonal elements of Λ are zero. If fx, fy and fz

are the Full Width at Half Maximums (FWHMs) in the
x, y and z directions then the roughness is given by [7]

|Λ|1/2 = (fxfyfz)
−1(4 ln 2)3/2 (23)
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If we then define the number of resels as

R =
V

fxfyfz
(24)

then for volumetric data we can write (see eg. [])

E[c] = R(4 ln 2)3/2(2π)−2(u2 − 1) exp

−u2

2

 (25)

The above formula only applies to stationary Gaussian
fields with Gaussian CFs (these can be created by smooth-
ing IID data with a Gaussian kernel). But because rough-
ness is a property at zero lag, in practice the above for-
mula works well if the covariance function at zero lag is
similar to that of a Gaussian CF. It does’nt matter what
the tails of the CF look like. So the result can be used for
non-Gaussian covariance functions as long as the above
holds [6].

4.4 Slice data
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Figure 6:
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Figure 7:
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Figure 8:
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Figure 9:
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Figure 10:
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5 Further issues

5.1 Estimating roughness

Roughness can be estimated using numerical derivatives
of the residuals in each of the x, y and z directions. These
are then averaged over different residual images (SPM
uses 64). These are stored as a Resels Per Voxel (RPV)
image, then averaged over voxels [7]. See eg. face data.

5.2 Discretisation

The application of continuous theory to data sampled at
discrete points requires that voxel size be eg. 3 times as
small as the smoothness of the field. The theory in [7]
also requires the search region to be considerably larger
than the smoothness (see below).
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5.3 Non-Gaussian processes

The results have been extended to t, χ2 and F random
fields [6]. This extension also provides accurate approxi-
mations for small search volumes (see Small Volume Cor-
rection (SVC) button in SPM). In this work Worsley de-
rives the ‘unified formula’

E(c) =
3∑

N=1
RN(V )pN(u) (26)

where N is the dimension of the field, V is the search vol-
ume, RN(V ) is the number of resels in dimension V , and
pN(V ) is the EC density for threshold u. The above equa-
tion can be solved for u to find the appropriate threshold.

5.4 Inferences about extent

For a given level u, one can work out the probability
that the extent of an activation is greater than k. This
is known as a cluster-level inference [2].
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5.5 Nonstationary fields

The assumption of stationarity is reasonable for PET
or smoothed fMRI data. But functional data projected
onto unfolded or flattened cortical surfaces or anatom-
ical data such as deformation vectors are highly non-
isotropic. Such data can be dealt with by warping voxel
coordinates so the effective FWHM is constant [5]. The
method has a minor impact on height inferences but a
major impact on extent inferences. It is therefore most
useful for eg. cluster-level inference for VBM.
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