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1 GLMs with multiple covariance components

Given the usual GLM

y = Xβ + e (1)

where β are the true but unknown parameters, and Cov(e) =
V (λ) is the error covariance parameterised by unknown
parameters λ ie. ‘hyperparameters’. These more general
models are useful for eg. (a) fMRI analysis allowing for
correlated errors and (b) analysis of data from a group
of subjects.
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We now address two questions

• If we know V how do we estimate β ?

• How do we estimate V ?

The two answers are (i) WLS and (ii) ReML.

2 Weighted Least Squares

If we know V then we can estimate β by maximising the
likelihood

L = −N

2
log 2π − 1

2
log |V | − 1

2
(y −Xβ)TV −1(y −Xβ)

We can derive the normal equations in the usual way, by
setting the appropriate derivatives to zero.

dL

dβ
= XTV −1y −XTV −1Xβ (2)

This leads to the solution

β̂ML = (XTV −1X)−1XTV −1y (3)
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This is often referred to as Weighted Least Squares (WLS),
β̂ML = β̂WLS.

For isotropic error covariance V = λI, β̂ML = β̂OLS,
the Ordinary Least Squares (OLS) solution

β̂OLS = (XTX)−1XTy (4)

3 Restricted Maximum Likelihood (ReML)

If we don’t know V we can estimate it using ReML. In
Maximum Likelihood (ML), λ are estimated by maximis-
ing the likelihood

p(y|β, λ) (5)

The idea behind ReML is to find λ that maximise the
restricted likelihood

p(y|λ) (6)

This does not depend on the parameters β. We can write
it as

p(y|λ) =
∫

p(y|β, λ)dβ (7)
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We will now use a quadratic identity, derived in the fol-
lowing section, to solve the integral.

3.1 Quadratic Identity

Let yt = Xβ be the true, but unknown, mean data val-
ues. And ŷ = Xβ̂ be the predictions of the fitted model

Then

(y −Xβ)TV −1(y −Xβ) = (y − yt)
TV −1(y − yt) (8)

= (y − yt + ŷ − ŷ)TV −1(y − yt + ŷ − ŷ)

= (y − ŷ)TV −1(y − ŷ) + (−yt + ŷ)TV −1(−yt + ŷ)

= (y − ŷ)TV −1(y − ŷ) + (yt − ŷ)TV −1(yt − ŷ)

= (y −Xβ̂)TV −1(y −Xβ̂) + (Xβ −Xβ̂)TV −1(Xβ −Xβ̂)

= (y −Xβ̂)TV −1(y −Xβ̂) + (β − β̂)T (XTV −1X)(β − β̂)

So, we have shown that

(y−Xβ)TV −1(y−Xβ) = (y−Xβ̂)TV −1(y−Xβ̂)+(β−β̂)T (XTV −1X)(β−β̂)
(9)
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The second term depends on the parameters β but the
first does not.

3.2 ReML integral

For an N × p full-rank design matrix, the likelihood is

p(y|β, λ) = (2π)−N/2|V |−1/2 exp

(
1

2
(y −Xβ)TV −1(y −Xβ)

)
(10)

Using our quadratic identity we can write

p(y|β, λ) = (2π)−N/2|V |−1/2 (11)

× exp

(
1

2
(y −Xβ̂)TV −1(y −Xβ̂)

)

× exp

(
1

2
(β − β̂)T (XTV −1X)(β − β̂)

)

The restricted likelihood is then given by

p(y|λ) =
∫

p(y|β, λ)dβ (12)

= (2π)−N/2|V |−1/2
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× exp

(
1

2
(y −Xβ̂)TV −1(y −Xβ̂)

)

×
∫

exp

(
1

2
(β − β̂)T (XTV −1X)(β − β̂)

)
dβ

= (2π)−N/2|V |−1/2

× exp

(
1

2
(y −Xβ̂)TV −1(y −Xβ̂)

)

× (2π)p/2|XTV −1X|−1/2

where we’ve noted that the integral is just the normal-
ising constant for a multivariate Gaussian. Taking logs
gives the ReML objective function

LR(λ) = log p(y|λ) (13)

= −N − p

2
log 2π − 1

2
log |V | − 1

2
log |XTV −1X|

− 1

2
(y −Xβ̂)TV −1(y −Xβ̂)

This does not depend on the parameters β. It does de-
pend on β̂, but we can substitute in expressions for this
from earlier, so that LR is just a function of X, y and λ.
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3.3 Single variance component

For a single variance component

V (λ) = λQ (14)

an analytic expression for λ can be found

3.3.1 Maximum Likelihood

The likelihood function is

L(λ) = −1

2
log |V | − 1

2
rTV −1r + ... (15)

where the residuals are r = y − Xβ. The gradient with
respect to λ is

g = −1

2
Tr(V −1Q) +

1

2
rTV −1QV −1r (16)

For a single variance component we get the estimate

λ =
rTQ−1r

N
(17)
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For isotropic errors Q = I we have

λ =
rTr

N
(18)

This is biased.

3.3.2 ReML

We write gR = dLR(λ)
dλ as the gradient of the ReML func-

tion. This can be shown to be

gR = −1

2
Tr(PQ) +

1

2
yTP TQPy (19)

where the projection matrix P = V −1RWLS and

RWLS = I −X(XTV −1X)−1XTV −1 (20)

It’s the same as the ML gradient but with P instead
of V −1 - we are working in a subspace of V −1 that is
orthogonal to the WLS estimates.

Setting g = 0 gives

λ =
rTQ−1r

Tr(R)
(21)
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where
R = I −X(XTQ−1X)−1XTQ−1 (22)

is the residual forming matirx and r = Ry are the resid-
uals.

If Q = I, ie. isotropic error, R = I − X(XTX)−1XT

and

λ =
rTr

N − k
(23)

which is an unbiased estimate of the error variance (un-
like the ML estimate).
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3.4 Linear constraints

If the error covariance takes the following form

V (λ) =
∑
k

λkQk (24)

where Qk is a known matrix and λk is the kth unknown
hyperparameter, then λ can be found by maximising the
ReML objective function. This could be implemented
by any optimisation method eg. one could follow the
gradient g where (see appendix)

gk = −1

2
Tr(PQk) +

1

2
yTP TQkPy (25)

A better algorithm, based on Fisher scoring, has been
derived by Harville [4]. See also Friston et al. [3][1] for
applications to brain imaging. This algorithm is imple-
mented in spm_reml.m.
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3.5 fMRI time series

Correlated fMRI time series can be dealt with by having
eg. two covariance components: one for the additive
noise, Q1, and a second for the temporal autocorrelation,
Q2. Q2 is based on a first-order autoregressive model et =
aet−1 +zt with a fixed coefficient a = 0.2. Variations in a

can be accomodated by specifying a third basis function
Q3 which is a Taylor expansion of Q2 [1].
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4 Hierarchical General Linear Models

Given the hierarchical model (eg. 3 levels)

y = X1β1 + e1 (26)

β1 = X2β2 + e2

β2 = X3β3 + e3

In the analysis of group data this can enable us, for ex-
ample, to relate population effects, β3, to subject effects
β2 to session effects β1. The vector y contains the data
from all trials in all sessions from all subjects.

The error covariances at each level C3, C2 and C1

describe between-subject variance, between-session vari-
ance and between-trial variance.

We can substitute from β2 into the second equation,
then β1 into the first to give a collapsed model

y = Xβ3 + e (27)
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where

X = X1X2X3 (28)

e = e1 + X1e2 + X1X2e3

The error covariance, Cov(e) = C is

C = C1 + X1C2X
T
2 + X1X2C3X

T
2 XT

1 (29)

The hierarchical structure introduces this particular struc-
ture into the error covariance of the collapsed model.

We can then run ReML to estimate the variance com-
ponents λ (parameters of C). The population effect is
then estimated using WLS in the usual way.
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4.1 Example

Two-level hierarchical model

y = X1β1 + e1 (30)

β1 = X2β2 + e2

where β1 contains subject effects, β2 the population ef-
fect. The errors are between-trial errors e1 and between-
subject errors e2. In brain imaging such a model is known
as a Random-Effects (RFX) analysis, as the subject ef-
fects are viewed as random variables (there is a between-
subject error). The aim is to make an inference about
the population effect.
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Figure 1: Synthetic data illustrating the probability model underlying random
effects analysis. The dotted line is the Gaussian distribution underlying the
second level model with mean β2, the population effect, and variance σ2

b , the
between-subject variance. The mean subject effects, β1(i), are drawn from this
distribution. The solid lines are the Gaussians underlying the first level models
with means β1(i) and variances σ2

w. In this example the within-subject/between-
trial variance is the same for all subjects. The crosses are the observed effects
yij which are drawn from the solid Gaussians.
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4.2 Summary statistic approach

This involves simply taking a Summary Statistic (SS) eg.
the mean, from one level and using it as data for the level
above. For ‘balanced designs’, this gives us the correct
results on average [5]. This requires the same number of
trials per subject and the same between-trial error vari-
ance. The two-level hierarchical model is approximated
as two separate single level models

y = X1β̂1 + e1 (31)

β̂1 = X2β2 + e2

The first level effects are estimated for each subject,
saved as ‘contrast images’ and entered as data for a sep-
arate 2nd-level model.
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5 fMRI data from multiple sessions

This section compares RFX analysis as implemented us-
ing SS versus ReML. The dataset comprises 1,200 images
that were acquired in 10 sessions of 120 scans each. These
data have been described elsewhere [2].

Each session contained a different number of events,
so strictly, violates SS assumptoions. The experimental
design involved 30-second epochs of single word streams
and a passive listening task. The words were concrete,
monosyllabic nouns presented at a number of different
rates. The word rate was varied pseudo-randomly over
epochs within each session. Further details of the par-
adigm and analysis details are given in [?]. The results
of the SS and ReML analyses have been thresholded at
p < 0.05, corrected for the entire search volume.
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Figure 2: Within-session variance as (a) assumed by SS and (b) estimated using
ReML. This shows that within-session variance can vary by up to a factor of
four, although this makes little difference to the final inference.
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Figure 3: SPMs showing the effect of words in the population using (a) SS and
(b) ReML approaches.
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