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Given probabilities p(A), p(B), and the joint proba-
bility p(A, B), we can write the conditional probabilities

p(B|A) =
p(A, B)

p(A)

p(A|B) =
p(A, B)

p(B)

Eliminating p(A, B) gives Bayes rule

p(B|A) =
p(A|B)p(B)

p(A)
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1.1 Gaussians

’Precision’ is inverse variance eg. variance of 0.1 is pre-
cision of 10.

For a Gaussian prior with mean m0 and precision p0,
and a Gaussian likelihood with mean mD and precision
pD the posterior is Gaussian with

p = p0 + pD

m =
p0

p
m0 +

pD

p
mD

So, (1) precisions add and (2) the posterior mean is the
sum of the prior and data means, but each weighted by
their relative precision.
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Figure 1: Bayes rule for univariate Gaussians. The two solid curves show the
probability densities for the prior m0 = 20, p0 = 1 and the likelihood mD = 25
and pD = 3. The dotted curve shows the posterior distribution with m = 23.75
and p = 4. The posterior is closer to the likelihood because the likelihood has
higher precision.
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1.2 Bayesian GLM

If p(x) = N(m, Σ) then

p(x) ∝ exp

(
−1

2
(x−m)TΣ−1(x−m)

)
(1)

A Bayesian GLM is defined as

y = Xβ + e1 (2)

β = µ + e2

where the errors are zero mean Gaussian with covari-
ances Cov[e1] = C1 and Cov[e2] = C2.

p(y|β) ∝ exp
(
−1

2(y −Xβ)TC−1
1 (y −Xβ)

)
(3)

p(β) ∝ exp
(
−1

2(β − µ)TC−1
2 (β − µ)

)
The posterior distribution is then

p(β|y) ∝ p(y|β)p(β) (4)

Taking logs and keeping only those terms that depend
on β gives
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log p(β|y) = −1

2
(y −Xβ)TC−1

1 (y −Xβ) (5)

− 1

2
(β − µ)TC−1

2 (β − µ) + ..

= −1

2
βT (XTC−1

1 X + C−1
2 )β

+ βT (XTC−1
1 y + C−1

2 µ) + ..

Taking logs of the Gaussian density p(x) in equation 2
and keeping only those terms that depend on x gives

log p(x) = −1

2
xTΣ−1x + xTΣ−1m + .. (6)

Comparing equation 5 with terms in the above equation
shows that

p(β|y) = N(m, Σ) (7)

Σ−1 = XTC−1
1 X + C−1

2

m = Σ(XTC−1
1 y + C−1

2 µ)
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Figure 2: GLMs with two parameters. The prior (dashed line) has mean µ =
[0, 0]T (cross) and precision C−1

1 = diag([1, 1]). The likelihood (dotted line)
has mean XT y = [3, 2]T (circle) and precision (XT C−1

1 X)−1 = diag([10, 1]).
The posterior (solid line) has mean m = [2.73, 1]T (cross) and precision Σ−1 =
diag([11, 2]). In this example, the measurements are more informative about
β(1) than β(2). This is reflected in the posterior distribution.
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1.3 Augmented Form

From before

p(β|y) = N(m, Σ) (8)

Σ−1 = XTC−1
1 X + C−1

2

m = Σ(XTC−1
1 y + C−1

2 µ)

This can also be written as

Σ−1 = X̄TV −1X̄ (9)

m = Σ(X̄TV −1ȳ)

where

X̄ =

 X

I

 (10)

V =

 C1 0
0 C2


ȳ =

 y
µ


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where we’ve augmented the data matrix with prior ex-
pectations. Estimation in a Bayesian GLM is there-
fore equivalent to Maximum Likelihood estimation (ie.
for IID covariances this is the same as Weighted Least
Squares) with augmented data. Our prior beliefs can be
thought of as extra data points.

2 Parametric Empirical Bayes

For a Bayesian GLM

y = Xβ + e1 (11)

β = µ + e2

with linear covariance constraints

C1 =
∑
i

λiQi (12)

C2 =
∑
j

λjQj

the covariance components can be estimated using ReML
(last lecture). We can then make inferences about inter-
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mediate level parameters eg. β using Bayes rule (earlier
in this lecture).

Also, the ReML algorithm can be reformulated into
two steps (i) estimation the posterior distribution over
β’s and (ii) hyperparameter estimation (λ’s). This refor-
mulation is known as Parametric Empirical Bayes (PEB).
The difference is that, in ReML, step (i) is embedded into
step (ii). For ReML the goal is to estimate variance com-
ponents, for PEB the goal is to estimate (intermediate
level) parameters.

PEB is a special case of an Expectation-Maximisation
(EM) algorithm where (i) E-Step: estimate posterior dis-
tribution over β’s (ii) M-Step: update λ’s. PEB/ReML
are specific to linear Gaussian models but EM is generic,
ie. there is an EM algorithm for mixture models, hidden
Markov models etc.

For hierarchical linear models the PEB/EM algorithm
is
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• E-Step: Update distribution over parameters β

Σ−1 = X̄TV −1X̄ (13)

m = Σ(X̄TV −1ȳ)

• M-Step: Update hyperparameters λi (and therefore
V ) by following gradient gi

r = ȳ − X̄m (14)

gi = −1

2
Tr(V −1Qi) +

1

2
Tr(ΣX̄TV −1QiV

−1X̄)

+
1

2
rTV −1QiV

−1r

The M-Step is identical to ReML (last lecture) as the
gradient can be expressed as

gi = −1

2
Tr(PQi) +

1

2
yTP TQiPy (15)

P = V −1 − V −1X̄(X̄TV −1X̄)−1X̄TV −1

Whether or not EM or ReML is more computationally
efficient for estimating variance components depends on
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the sparsity of the covariance constraints Qi. For more
details (and Fisher scoring implementation) see [3].
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Figure 3: EM and ReML estimate hyperparameters λi by following the gradient
to the (local) maximum.

14



2.1 Global Shrinkage Priors

Used in eg. fMRI analysis [2]. Special case of hierarchical
model

y = Xβ + e1 (16)

β = µ + e2

with 20 voxels and 10 data points per voxel

X = I20 ⊗ 110 (17)

C1 =
20∑
i=1

1

vi
Qi

C2 =
1

α
I20

(18)

The parameter β(i) encodes the effect size at voxel i.
This model assumes that across the brain (i) average
effect size is zero, µ = 0, and (ii) the variability of re-
sponses follows a Gaussian with precision α. Hyperpa-
rameters are λ = {vi, α}.
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Figure 4: Across the 20-voxel brain (i) average effect size is zero, µ = 0, the
variability of responses follows a Gaussian with precision α. True effect sizes
(red circles).
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Figure 5: Data at each voxel are normally distributed about the effect size at
that voxel with precision λi eg. voxels 2, 5 and 15 have noisier data than others.

17



Figure 6: Previous graph but with sample means (blue crosses) also at each
voxel.
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Figure 7: Sample means (also ML estimates - blue crosses) and true effect sizes
(red circles). Estimation error =0.71.
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For this model the PEB algorithm has a simple form.
By setting the gradients gi to zero we can get the follow-
ing updates for the hyperparameters λ = {vi, α}.

β(i) =
γi

N

N∑
n=1

yin (19)

1

vi
=

1

N − γi

N∑
n=1

(yin − β(i))2

γi =
Nvi

Nvi + α
1

α
=

1∑
i γi

V∑
i=1

β(i)2

where yin is the nth scan at the ith voxel, γi is the ratio
of the data precision to the posterior precision.

Without a prior, γi = 1 we get

1

vi
=

1

N − 1

N∑
n=1

(yin − β(i))2 (20)

This is the familiar ’unbiased’ estimate, if we only have
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to estimate variance components at a single level. The
PEB updates partition the total degrees of freedom N

into those used to estimate first or second level hyperpa-
rameters.

See code em1.m.
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Figure 8: After PEB iteration 3
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Figure 9: After PEB iteration 7. Estimation error =0.34.
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On average, across the brain, PEB is more accurate
than ML. It does better at most voxels at the expense of
being worse at a minority eg. voxel 2.

For most voxels we have γi = 0.9, but for the noisy
voxels 2, 15 and 18 we have γi = 0.5. PEB thus relies
more on prior information where data are unreliable.
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2.2 EEG Source Reconstruction

To ‘reconstruct’ EEG data at a single time point use the
model

y = Xβ + e1 (21)

β = µ + e2

where X is a lead-field matrix transforming Current Source
Density (CSD) β at V voxels in brain space into EEG
voltages y at S electrodes. For more on this see eg. [1].

C1 =
∑
i

λiQi (22)

C2 =
∑
j

λjQj

(23)

where Qi defines structure of sensor noise, and Qj source
noise ie. uncertainty in sources. In the application that
follows we use Qi = I and Qj = L, a ‘Laplacian’ matrix
set up so that we expect the squared difference between
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neighboring voxels to be λj ie. this enforces a smoothness
constraint.

The data in this analysis is from [4].
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Figure 10: Subjects are presented images of faces and scrambled faces and are
asked to make symmetry judgements.
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Figure 11: Electrode voltages at 160ms post-stimulus, y. This is an Event-
Related Potential (ERP), the result of averaging the responses to many (86)
trials.
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Figure 12: Voltages at two different electrodes for faces (blue) and scrambled
faces (red). These are Event-Related Potentials (ERPs), the result of averaging
the responses to many (86) trials.
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Figure 13: Estimate of CSD, β. Computed as the CSD difference for faces minus
scrambled faces.
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