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2 Laplace approximation

Laplace’s method approximates the integral of a func-
tion

∫
f(θ)dθ by fitting a Gaussian at the maximum θ̂ of

f(θ), and computing the volume of the Gaussian. The
covariance of the Gaussian is determined by the Hessian
matrix of log f(θ) at the maximum point θ̂ [3].

The term ‘Laplace approximation’ is used for the method
of approximating a posterior distribution with a Gaus-
sian centered at the Maximum a Posterior (MAP) esti-
mate. This is the application of Laplace’s method with
f(θ) = p(Y |θ)p(θ).

3 Kullback-Liebler divergence

For densities q(θ) and p(θ) the Relative Entropy or Kullback-
Liebler (KL) divergence from q to p is [2]

KL[q||p] =
∫

q(θ) log
q(θ)

p(θ)
dθ (1)
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The KL-divergence satisfies the Gibb’s inequality [4]

KL[q||p] ≥ 0 (2)

with equality only if q = p. In general KL[q||p] 6=
KL[p||q], so KL is not a distance measure.

4 Variational Bayes

Given a probabilistic model of some data, the log of the
‘evidence’ or ‘marginal likelihood’ can be written as

log p(Y ) =
∫

q(θ) log p(Y )dθ

=
∫

q(θ) log
p(Y, θ)

p(θ|Y )
dθ

=
∫

q(θ) log

p(Y, θ)q(θ)

q(θ)p(θ|Y )

 dθ

= F + KL(q(θ)||p(θ|Y )) (3)
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where q(θ) is considered, for the moment, as an arbitrary
density. We have

F =
∫

q(θ) log
p(Y, θ)

q(θ)
dθ, (4)

which in statistical physics is known as the negative vari-
ational free energy. The second term in equation 3 is the
KL-divergence between the density q(θ) and the true pos-
terior p(θ|Y ). Equation 3 is the fundamental equation
of the VB-framework and is shown graphically in Fig-
ure 1. Because KL is always positive, due to the Gibbs
inequality, F provides a lower bound on the model evi-
dence. Moreover, because KL is zero when two densities
are the same, F will become equal to the model evidence
when q(θ) is equal to the true posterior. For this reason
q(θ) can be viewed as an approximate posterior.

4.1 Example

The solid lines in Figure 2 show a posterior distribution
p which is a Gaussian mixture density comprising two
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Figure 1: The negative variational free energy, F , provides a lower bound on
the log-evidence of the model with equality when the approximate posterior equals
the true posterior.
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modes. The first contains the Maximimum A Posteriori
(MAP) value and the second contains the majority of the
probability mass.

The Laplace approximation to p is therefore given by
a Gaussian centred around the first, MAP mode. This
is shown in Figure 2(a).

Figure 2(b) shows a Laplace approximation to the sec-
ond mode, which could arise if MAP estimation found
a local, rather than a global, maximum. Finally, Fig-
ure 2(c) shows the minimum KL-divergence approxima-
tion, assuming that q is a Gaussian. This is a fixed-form
VB approximation, as we have fixed the form of the ap-
proximating density (ie. q is a Gaussian). This VB solu-
tion corresponds to a density q which is moment matched
to p.

Figure 3 plots KL[q||p] as a function of the mean and
standard deviation of q, showing a minimum around the
moment-matched values. These KL values were com-
puted by discretising p and q and approximating equa-
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(a)

(b)

(c)

Figure 2: Probability densities p(θ) (solid lines) and q(θ) (dashed lines) for a
Gaussian mixture p(θ) = 0.2× N(m1, σ

2
1) + 0.8× N(m2, σ

2
2) with m1 = 3,m2 =

5,σ1 = 0.3, σ2 = 1.3, and a single Gaussian q(θ) = N(µ, σ2) with (a) µ = µ1, σ =
σ1 which fits the first mode, (b) µ = µ2, σ = σ2 which fits the second mode and
(c) µ = 4.6, σ = 1.4 which is moment-matched to p(θ).
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Figure 3: KL-divergence, KL(q||p) for p as defined in Figure 2 and q being a
Gaussian with mean µ and standard deviation σ. The KL-divergences of the
approximations in Figure 2 are (a) 11.73 for the first mode (yellow ball), (b)
0.93 for the second mode (green ball) and (c) 0.71 for the moment-matched
solution (red ball).
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tion 1 by a discrete sum. The MAP mode, maximum
mass mode and moment-matched solutions have KL[q||p]
values of 11.7, 0.93 and 0.71 respectively. This shows
that low KL is achieved when q captures most of the
probability mass of p and, minimum KL when q is moment-
matched to p. The figure also shows that, for reasonable
values of the mean and standard deviation, there are no
local minima. This is to be contrasted with the posterior
distribution itself which has two maxima, one local and
one global.

This example provides a good motivation for VB. But
in higher dimensions due to (i) nature of KL and (ii)
factorisations (see later) VB is not so optimal. See Minka
[5] and Mackay [4] for further details.

4.2 Nonlinear functions of parameters

Capturing probability mass is particularly important if
one is interested in nonlinear functions of parameter val-
ues, such as model predictions. Figures 4 and 5 show
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histograms of model predictions for squared and logistic-
map functions indicating that VB predictions are quali-
tatively better than those from the Laplace approxima-
tion.

Often in Bayesian inference, one quotes posterior ex-
ceedance probabilities. For the squared function, Laplace
says 5% of samples are above g = 12.2. But in the
true density, 71% of samples are. For the logisitic func-
tion 62% are above Laplace’s 5% point. The percent-
age of samples above VB’s 5% points are 5.1% for the
squared function and 4.2% for the logistic-map function.
So for this example, Laplace can tell you the posterior
exceedance probability is 5% when, in reality it is an
order of magnitude greater. This is not the case for VB.

4.3 Factorised Approximations

To obtain a practical learning algorithm we must also
ensure that the integrals in F are tractable. One generic
procedure for attaining this goal is to assume that the
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Figure 4: Histograms of 10,000 samples drawn from g(θ) where the distribution
over θ is from the Laplace approximation (top), VB approximation (middle) and
true distribution, p, (bottom) for g(θ) = θ2.
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Figure 5: Histograms of 10,000 samples drawn from g(θ) where the distribution
over θ is from the Laplace approximation (top), VB approximation (middle) and
true distribution, p, (bottom) for g(θ) = θ ∗ (10 − θ). This is akin to a logistic
map function encountered in dynamical systems [6].12



approximating density factorizes over groups of parame-
ters. In physics, this is known as the mean field approx-
imation. Thus, we consider:

q(θ) =
∏
i

q(θi) (5)

where θi is the ith group of parameters. We can also
write this as

q(θ) = q(θi)q(θ\i) (6)

where θ\i denotes all parameters not in the ith group.
The distributions q(θi) which maximise F can then be
shown to be

q(θi) =
exp[I(θi)]

Z
(7)

where Z is the normalisation factor needed to make q(θi)
a valid probability distribution and

I(θi) =
∫

q(θ\i) log p(Y, θ)dθ\i (8)

For proof see [8].
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4.4 Model Inference

As we have seen earlier, the negative free energy, F , is
a lower bound on the model evidence. If this bound is
tight then F can be used as a surrogate for the model
evidence and so allow for Bayesian model selection and
averaging. Earlier, the negative free energy was written

F (m) =
∫

q(θ|m) log
p(Y, θ|m)

q(θ|m)
dθ (9)

By using p(Y, θ|m) = p(Y |θ,m)p(θ|m) we can express it
as the sum of two terms

F (m) =
∫

q(θ|m) log p(Y |θ,m)dθ −KL[q(θ|m)||p(θ|m)]

(10)
where the first term is the average likelihood of the data
and the second term is the KL between the approximat-
ing posterior and the prior.
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4.5 KL for Gaussians

The KL divergence for Normal densities q(x) = N(µq, Σq)
and p(x) = N(µp, Σp) is

KLN(µq, Σq; µp, Σp) = 0.5 log
|Σp|
|Σq|

+ 0.5Tr(Σ−1
p Σq)(11)

+ 0.5(µq − µp)
TΣ−1

p (µq − µp)−
d

2

where |Σp| denotes the determinant of the matrix Σp.
The KL will tend to increase with the dimension of x.

5 Single-subject fMRI: GLM-AR models

We generated data from a GLM-AR model having two
regression coefficients and three autoregressive coefficients

yt = xtw + et (12)

et =
m∑

j=1
ajet−j + zt (13)
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where xt is a two-element row vector, the first element
flipping between a ‘-1’ and ‘1’ with a period of 40 scans
(ie. 20 -1’s followed by 20 1’s) and the second element
being ‘1’ for all t. The two corresponding entries in w

reflect the size of the activation, w1 = 2, and the mean
signal level, w2 = 3. We used an AR(3) model for the
errors with parameters a1 = 0.8, a2 = −0.6 and a3 = 0.4.
See [9] for further details.
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(a)

(b)

Figure 6: The figures show (a) an example time series from a GLM-AR model
with AR model order m = 3 and (b) a plot of the average negative free energy
F (m), with error bars, versus m. This shows that F (m) picks out the correct
model order.
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Figure 7: Face data: plot (b) shows argmax F (m) as a function of voxel with
m = 0 in black and m = 3 in white.
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6 Mixture models

6.1 EM for mixture models

In this context EM is a maximum-likelihood algorithm
for models with observed variables Y and hidden vari-
ables H. Hidden variable denotes which Gaussian is used
to generate a data point. Select Gaussian k with proba-
bility k. That Gaussian has parameters µk and Σk.

Now, repeat ‘VB derivation’ but with eveything con-
ditioned on parameters β = {µk, Σk, πk} and replace θ

with H. This gives

log p(Y |β) = FEM + KL[q(H)||p(H|Y, β)] (14)

where

FEM =
∫

q(H) log
p(H, Y |β)

q(H)
dH (15)

This gives rise to the following algorithm.

• E-Step: Set q(H) = p(H|Y, β). This sets the KL
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term to zero. This can be done by letting

q(hn) = p(hn|yn, β) (16)

=
p(yn|hn, β)p(hn|β)

p(yn|β)
(17)

for all data points n. This is just Bayes rule. Write
γk

n = q(hn = k), the responsibilies ie. the proba-
bility that data point n was generated from the kth
Gaussian.

• M-step: Now, as KL = 0, FEM = log p(Y |β), so we
can maximise the likelihood wrt. β by maximising
FEM wrt. β. We have

FEM =
∑
k

∑
n

γn
k log p(yn|hn = k)p(hn = k) (18)

=
∑
k

∑
n

γn
k log p(yn|hn = k) +

∑
k

∑
n

γn
k p(hn = k)

Setting the derivatives dFEM/dβ to zero gives the
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following updates

µk =

∑
n γk

nyn∑
n γk

n

(19)

Σk =

∑
n γk

n(yn − µk)(yn − µk)
T∑

n γk
n

πk =

∑
n γk

n

N

See netlab demo demgmm1.m.

6.2 VB for mixture models

Allows for priors on model parameters eg. means of
Gaussians. Provides approximation to model evidence
based on the negative free energy. See Attias [1] and
tech report vbgmm.ps for details.

6.3 Cross-modal priming fMRI

Mixture models have been applied to an analysis of in-
tersubject variability in fMRI data. Model comparisons
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based on VB identified two overlapping degenerate neu-
ronal systems in subjects performing a crossmodal prim-
ing task [7].

SVD was applied to contrast images from 17 subjects
and the first 5 spatial modes were used. A cluster anal-
ysis was then implemented in this 5-dimensional space.

Due to the problem of local maxima the cluster anal-
ysis was run 10,000 times. On 9,308 the evidence (as
approximated using F (m)) for the 2-cluster model was
higher. This was also the case if 2, 3 or 4 spatial modes
were used.
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