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Fisher Information

If the log likelihood is R = log p(y|w) then the Fisher score is the gradient

g =
∂R

∂w
(1)

The Fisher information matrix is then the covariance of the score

F = Cov [g] (2)

= Ep(y|w)

[
ggT

]
where the second line follows as the expected score is zero.

For multivariate Gaussian likelihoods (with precision Γ) about predictions f(t) we
have

g(t) = ST
t Γ[y(t)− f(t)] (3)

g =

T∑
t=1

g(t)

where t indexes the observation, and St is the sensitivity matrix, or derivative of the
predictions with respect to the parameters. The Fisher Information can then be
computed by taking expectations, giving

F =

T∑
t=1

ST
t ΓSt (4)

A sample-based or ‘observed’ Fisher information matrix can be computed as

F obs =

T∑
t=1

g(t)g(t)T (5)

The Fisher Information matrix can also be written as the expected curvature of the
likelihood

F = −Ep(y|w)

[
∂2R

∂w2

]
(6)

A general expression for the observed Fisher Information [1] is

F obs = −H (7)
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where H is the Hessian (matrix of second order partial derivatives) of R. This can be
evaluated numerically and is used when analytic expressions for F are unavailable. A
drawback of this approach is that it is expensive computationally, with evaluation time
being quadratic in the number of model parameters. A concern with the observed Fisher
Information is that it is not necessarily positive definite, however, this is ameliorated in
a Bayesian setting where the prior precision is added to it before matrix inversion.
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