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Introduction

This report has three components. Firstly, we describe Bayesian inference for
GLMs where we assume T-priors over regression coefficients. This naturally
leads to T-posteriors. Previously in neuroimaging, Gaussian posteriors have
been widely used. But in the limit of small samples, eg. typically N = 12
for population inference, the Gaussian approximation may not be sufficiently
accurate. Secondly, we describe the use of loss functions, showing that the
Bayes estimate of an effect is one that minimises the posterior expected loss.
Thirdly, we compare Bayesian inferences based on Bayes factors to classical
inferences based on p-values.

Theory

We consider the General Linear Model (GLM)

y = Xw + e (1)

where y is an N × 1 vector of data points, X is an N ×K design matrix, w is
a K × 1 vector of regression coefficients and e is an N × 1 vector of zero mean
Gaussian errors with precision λ. This gives rise to the following likelihood

p(y|w, λ) = N(y;Xw, λIN ) (2)

Priors

We assume a Normal-Gamma prior over regression coefficients and noise preci-
sion

p(w, λ) = p(w|λ)p(λ) (3)

p(λ) = Ga(λ; b0, c0)

p(w|λ) = N(w;w0, B0λ)
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The prior mean and variance over the precision is

λ0 ≡ E[λ] = b0c0 (4)

V [λ] = b20c0

This implicitly defines a multivariate non-central t-distribution over regression
coefficients [1]

p(w) =

∫
p(w|λ)p(λ)dλ (5)

= Stk(w;w0, B0λ0, 2c0)

The prior mean and variance over regression coefficients is therefore

E[w] = w0 (6)

V [w] =
c0

λ0(c0 − 1)
B−1

0

Posteriors

For the precisions we have

p(λ|y) = Ga(λ; bN , cN ) (7)

1

bN
=

1

b0
+

1

2
(y −XwN )T (y −XwN )

+
1

2
(wN − w0)TB0(wN − w0)

cN = c0 +
N

2
λN = bNcN

For the regression coefficients we have

p(w|y) = Stk(w;wN , BNλN , 2cN ) (8)

BN = B0 +XTX

wN = B−1
N (B0w0 +XT y)

The posterior mean and variance over regression coefficients is therefore

E[w] = wN (9)

V [w] =
cN

λN (cN − 1)
B−1

N

Contrasts

For a contrast
u = mTw (10)
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with contrast vector m, we have

p(u) = St1(u; û, λ̂, 2cN ) (11)

= St(z; 2cN )

where

z = λ̂1/2(u− û) (12)

û = mTwN

λ̂ =
λN

mTB−1
N m

Evidence

The evidence is given by (see eg. Equation 3.34 in [?])

p(y) =
Γ(cN )

(
2
b0

)c0
Γ(c0)πN/2

(
|B0|
|BN |

)1/2(
2

bN

)−cN

(13)

If the evidence for model mi is p(y|mi) then the Bayes factor is defined as

BFij =
p(y|mi)

p(y|mj)
(14)

Loss functions

If we define a Loss Function, L(w, a), which is the ’cost’ of estimating a param-
eter to be w when the true value is a, then the Posterior Expected Loss (PEL)
is given by (see eg. page 113 in [2])

PEL(a) =

∫
L(w, a)p(w|Y )dw (15)

A ‘Bayes estimate’ is then one that minimises this loss

wB = argmin
a

PEL(a) (16)

For the quadratic loss function L(a,w) = (w − a)2 the Bayes estimate is the
posterior mean. For L(a,w) = |w − a| its the posterior median.

For neuroimaging we might expect an asymmetric cost to be more appropri-
ate. In this paper we use

L(w, a) =

{
−k0(a− w) if w ≥ a
k1(a− w) if w < a

(17)

A Bayes estimate is then given by the k0/(k0 + k1) quantile. For example, if
k0 = 1 and k1 = 19 then its 19 times worse to overestimate than underestimate
the effect. The Bayes estimate is given by the 5th percentile.
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Results

One sample t-test

A one-sample t-test can be implemented by setting X = 1N . Notice we have
degrees of freedom DF = N + 2c0, whereas for classical inference we have
DF=N−1. Figure 1 shows the posterior distribution for p(w|y) for two different
sized data sets N = 4 and N = 12 with w = 1 and λ = 1. We used b0 = 10, c0 =
0.1, B = 1.

The t-posteriors are compared to a Normal approximation to the posterior.
This shows that, as is well known, the posterior is better approximated by a
Normal as N increases.

We also computed the cost function given in equation 17 with k0 = 1 and
k1 = 19 for different point estimates of the effect size. These were (a) the
posterior mean, (b) the Bayes estimate (here, given by the 5th percentile) and
(c) the null w = 0. Averaged over 1000 data sets these gave losses of (a)
L = 1.63, (b) L = 0.60 and (c) L = 11.

Two sample t-test

This section compares Bayesian and classical inference for two-sample t-tests.
This is implemented in a GLM by specifying X2T = I2 ⊗ 1N where ⊗ denotes
the Kronecker product and 1N denotes a column vector of ones.

We generate 100 data sets using N = 12, w = [2, 1]T and λ = 1. For the
Bayesian analysis we used b0 = 10, c0 = 0.1 and fitted two models to the data.
Model 1 used a design matrix X = 12N and prior precision B = 1. Model 2
used X = X2T with B = I2. The evidence was computed for each model using
equation 13. A Bayes Factor BF21 greater than 3 provides (weak) evidence in
favour of an effect. For the classical inference we used the F-test described in
[3].

Figure 2 plots log Bayes factor versus log p-value showing a good correla-
tion between classical and Bayesian inference. Classical inferences with smaller
p-values (ie. higher significance) correspond to larger Bayes factors. The fig-
ure also plots decision boundaries corresponding to p-values of 0.05 and Bayes
factors of 3. Points in the lower left quadrant of Figure 2 are data sets where
Bayesian and classical inference disagree. Agreement would be better with a
cut-off of eg. p < 0.01

Figures 3 and 4 show how this correlation changes as a function of sample
size and effect variability. To produce Figure 4 (a) we used λ = 10. This is
a strong signal. Here all p-values were less than 0.05 and most Bayes Factors
were greater than 3.

1This does not show that the Bayes estimate minimises the posterior expected loss. Here
we are averaging over multiple realisations of data.
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Appendix

The multivariate Normal density is given by

N(µ,Λ) = (2π)−d/2|Λ|1/2 exp

(
−1

2
(x− µ)T Λ(x− µ)

)
(18)

The Gamma density is defined as

Ga(b, c) =
1

Γ(c)

xc−1

bc
exp

(
−x
b

)
(19)

The multivariate non-central T-distribution, Stk(x;µ,B, α), has mean and
variance

E[x] = µ (20)

V [x] =
α

α− 2
B−1

Of course the expression for the variance only holds if α ≥ 2.
For k = 1 we have a univariate non-central t-distribution. If

p(x) = St1(x;µ, b, α) (21)

and
y = b1/2(x− µ) (22)

then y has a t-distribution with degrees of freedom α. This standard, univariate,
central form is what is usually referred to as a t-distribution in neuroimaging.
We denote this as

p(y) = St(y;α) (23)

Unit Information Prior

Rouder et al [4] recommend the use of a ‘unit information prior’ to define a
Bayesian one-sample t-test. This first defines an ‘effect-size’, δ, as the ratio of
the mean to the standard deviation. In the above notation, the mean will be
the regression coefficent, w, (assuming the design matrix is a single column of
ones), and the standard deviation of the data is given by the standard deviation
of the ‘observation noise’ , λ1/2. Thus

δ = λ1/2w (24)

A unit information prior is then specified by setting the prior variance of δ to
unity. We have

V ar[δ] = λ1/2V [w] (25)

=
λ1/2c0

λ0(c0 − 1)
B−1

0
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First of all we set λ equal to the observed data precision from a GLM fit. If
we then set c0 = 2, λ0 = λ, b0 = λ/2, and B0 =

√
2/
√
b0 then V ar[δ] = 1.

Thus, a Bayesian GLM with a T-prior can be reduced to the unit information
prior. Note that the empirical results in this report do not use this approach.
See Wetzels et al [5] for a comparison of these Bayesian t-tests to those from
classical inference.
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(a)

(b)

Figure 1. Posterior distribution over effect size w for t-posteriors (blue) and Normal posteriors
(red) for (a) N=4 and (b) N=12 samples.
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Figure 2. Plot of log Bayes factor versus log p-value for inference with a two-sample t-test with
common noise precision λ = 1. Each dot is the value for a single data set. The horizontal lines
correspond to a Bayes factor of 3 and the vertical lines to a p-value of 0.05.
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(a)

(b)

(c)

Figure 3. Plots of log Bayes factor versus log p-value for inference with a two-sample t-test with
(a) N = 6, (b) N = 12 and (c) N = 24 subjects per group. Each dot is the value for a single
data set. The horizontal lines correspond to a Bayes factor of 3 and the vertical lines to a p-value
of 0.05.
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(a)

(b)

(c)

Figure 4. Plots of log Bayes factor versus log p-value for inference with a two-sample t-test with
common noise precision (a) λ = 10, (b) λ = 1 and (c) λ = 0.1. Each dot is the value for a single
data set. The horizontal lines correspond to a Bayes factor of 3 and the vertical lines to a p-value
of 0.05.
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