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Bayesian model selection (BMS) is a powerful method for determining the most likely among a set of
competing hypotheses about the mechanisms that generated observed data. BMS has recently found
widespread application in neuroimaging, particularly in the context of dynamic causal modelling (DCM).
However, so far, combining BMS results from several subjects has relied on simple (fixed effects) metrics, e.g.
the group Bayes factor (GBF), that do not account for group heterogeneity or outliers. In this paper, we
compare the GBF with two random effects methods for BMS at the between-subject or group level. These
methods provide inference on model-space using a classical and Bayesian perspective respectively. First, a
classical (frequentist) approach uses the log model evidence as a subject-specific summary statistic. This
enables one to use analysis of variance to test for differences in log-evidences over models, relative to inter-
subject differences. We then consider the same problem in Bayesian terms and describe a novel hierarchical
model, which is optimised to furnish a probability density on the models themselves. This new variational
Bayes method rests on treating the model as a random variable and estimating the parameters of a Dirichlet
distribution which describes the probabilities for all models considered. These probabilities then define a
multinomial distribution over model space, allowing one to compute how likely it is that a specific model
generated the data of a randomly chosen subject as well as the exceedance probability of one model being
more likely than any other model. Using empirical and synthetic data, we show that optimising a conditional
density of the model probabilities, given the log-evidences for each model over subjects, is more informative
and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we found that the
hierarchical Bayesian approach is considerably more robust than either of the other approaches in the
presence of outliers. We expect that this new random effects method will prove useful for a wide range of
group studies, not only in the context of DCM, but also for other modelling endeavours, e.g. comparing
different source reconstruction methods for EEG/MEG or selecting among competing computational models
of learning and decision-making.

© 2009 Elsevier Inc. All rights reserved.
Introduction
Model comparison and selection is central to the scientific process,
in that it allows one to evaluate different hypotheses about the way
data are caused (Pitt and Myung, 2002). Nearly all scientific reporting
rests upon some form of model comparison, which represents a
probabilistic statement about the beliefs in one hypothesis relative to
some other(s), given observations or data. The fundamental Neyman–
Pearson lemma states that the best statistic uponwhich to base model
selection is simply the probability of observing the data under one
model, divided by the probability under another model (Neyman and
Pearson, 1933). This is known as a log-likelihood ratio. In a classical
(frequentist) setting, the distribution of the log-likelihood ratio, under
the null hypothesis that there is no difference between models, can be
computed relatively easy for somemodels. Common examples include
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Wilk's Lambda for linear multivariate models and the F- and t-
statistics for univariate models. In a Bayesian setting, the equivalent to
the log-likelihood ratio is the log-evidence ratio, which is commonly
known as a Bayes factor (Kass and Raftery, 1995). An important
property of Bayes factors are that they can deal both with nested and
non-nested models. In contrast, frequentist model comparison can be
seen as a special case of Bayes factors where, under certain
hierarchical restrictions on the models, their null distribution is
readily available.

In this paper, we will consider the general case of how to use the
model evidence for analyses at the group level, without putting any
constraints on the models compared. These models can be non-
linear, possibly dynamic and, critically, do not necessarily bear a
hierarchical relationship to each other, i.e. they are not necessarily
nested. The application domain we have in mind is the comparison
of dynamic causal models (DCMs) for fMRI or electrophysiological
data (Friston et al., 2003; Stephan et al., 2007a) that have been
inverted for each subject. However, the theoretical framework
described in this paper can be applied to any model, for example
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1 Due to the monotonic nature of the logarithmic function, model comparisons yield
equivalent results regardless whether one maximises the model evidence or the log-
evidence. Since the latter is numerically easier, it is usually the preferred metric.

1005K.E. Stephan et al. / NeuroImage 46 (2009) 1004–1017
when comparing different source reconstruction methods for EEG/
MEG or selecting among competing computational models of
learning and decision-making.

This paper is structured as follows. First, to ensure this paper is
self-contained, particularly for readers without an in-depth knowl-
edge of Bayesian statistics, we summarise the concept of log-
evidence as a measure of model goodness and review commonly
used approximations to it, i.e. the Akaike Information Criterion (AIC;
Akaike, 1974), the Bayesian Information Criterion (BIC; Schwarz,
1978), and the negative free-energy (F). These approximations,
which are described in Appendix A, differ in how they trade-off
model fit against model complexity. Given any of these approxima-
tions to the log-evidence, we then consider model comparison at the
group level. We address this issue both from a classical and Bayesian
perspective. First, in a frequentist setting, we consider classical
inference on the log-evidences themselves by treating them as
summary statistics that reflect the evidence for each model for a
given subject. Subsequently, using a hierarchical model and varia-
tional Bayes (VB), we describe a novel technique for inference on the
conditional density of the models per se, given data (or log-
evidences) from all subjects. This rests on treating the model as a
random variable and estimating the parameters of a Dirichlet
distribution, which describes the probabilities for all models
considered. These probabilities then define a multinomial distribu-
tion over model space, allowing one to compute how likely it is that
a specific model generated the data of a subject chosen at random.

We compare and contrast these random effects approaches to
the conventional use of the group Bayes factor (GBF), an approach
for model comparison at the between-subject level that has been
used extensively in previous group studies in neuroimaging. For
example, the GBF has been used frequently to decide between
competing dynamic causal models fitted to fMRI (Acs and Greenlee,
2008; Allen et al., 2008; Grol et al., 2007; Heim et al., 2008; Kumar
et al., 2007; Leff et al., 2008; Smith et al., 2006; Stephan et al.,
2007b,c; Summerfield and Koechlin 2008) and EEG data (Garrido et
al., 2007, 2008). While the GBF is a simple and straightforward
index for model comparison at the group level, it assumes that all
the subjects' data are generated by the same model (i.e. a fixed
effects approach) and can be influenced adversely by violations of
this assumption.

The novel Bayesian framework presented in this paper does not
suffer from these shortcomings: it can quantify the probability that
a particular model generated the data for any randomly selected
subject, relative to other models, and it is robust to the presence
of outliers. In the analyses below, we illustrate the advantages of
this new approach using synthetic and empirical data. We show
that computing a conditional density of the model probabilities,
given the log-evidences for all subjects, can be superior to both
the GBF and frequentist tests applied to the log-evidences. In
particular, we found that our Bayesian approach is markedly more
robust than either of the other approaches in the presence of
outlying subjects.

Methods

The model evidence and its approximations

The model evidence p(y|m) is the probability of obtaining
observed data y given a particular model m. It can be considered the
holy grail of anymodel inversion and is necessary to compare different
models or hypotheses. The evidence for some models can be
computed relatively easily (e.g., for linear models); however, in
general, computing the model evidence entails integrating out any
dependency on the model parameters ϑ:

p y jmð Þ = R
p y jϑ;mð Þp ϑ jmð Þdϑ: ð1Þ
In many cases, this integration is analytically intractable and
numerically difficult to compute. Usually, it is therefore necessary to
use computationally tractable approximations to the model evidence
(or the log-evidence1). A detailed description of some of the most
common approximations is contained by Appendix A.

A systematic evaluation of the relative usefulness of different
approximations to the log-evidence is not at the focus of this paper
and will be presented in forthcoming work. This article deals with a
different question, namely: given a particular approximation to the
log-evidence and a number of inverted models, how can we infer
which of several competing models is most likely to have generated
the data from a group of subjects? In other words, how can we make
inference on model space at the group level, taking into account
potential heterogeneity across the group?

Inference on model space

In this section, we consider inference at the group level, using
subject-specific model-evidences obtained by inverting a generative
model for each subject. We will first describe a classical approach,
testing the null hypothesis that there are no differences among the
relative log-evidences for variousmodels over subjects.We thenmove
on to more formal Bayesian inference on model space per se. In
contrast to the GBF, which, as described above, represents a fixed
effects analysis, both the classical and Bayesian approaches are
random effects procedures and thus consider inter-subject hetero-
geneity explicitly.

Classical (frequentist) inference
A straightforward random effects procedure to evaluate the

between-subject consistency of evidence for one model relative to
others is to use the log-evidences across subjects as the basis for a
classical log-likelihood ratio statistic, testing the null hypothesis that
no single model is better (in terms of their log-evidences) than any
other. This essentially involves performing an ANOVA, using the log-
evidence as a summary statistic of model adequacy for each subject.
This ANOVA then compares the differences among models to the
differences among subjects with a classical F-statistic. If this statistic is
significant one can then compare the best model with the second best
using a post hoc t-test. Effectively, this tests for differences between
models that are consistent and large in relation to differences within
models over subjects. The most general implementation would be a
repeated-measures ANOVA, where the log-evidences for the different
models represent the repeated measure. At its simplest, the
comparison of just two models over subjects reduces to a simple
paired t-test on the log-evidences (or a one-sample t-test on the log-
evidence differences). Log-evidences tend to be fairly well behaved,
and the residuals of a simple ANOVA model, or tests of normality like
Kolmogorov–Smirnoff, usually indicate that parametric assumptions
are appropriate. In those cases when they are not, e.g. due to outlier
subjects, one can use robust regression methods that are less sensitive
to violations of normality (Diedrichsen and Shadmehr, 2005; Wager
et al., 2005a,b) or non-parametric tests that do not make any
distributional assumptions (e.g. a Wilcoxon signed rank test; see
one of our examples below).

This classical random effects approach is simple to implement,
straightforward and easily interpreted. In this sense, there seems little
reason not to use it. However, as shown in the empirical examples
below, this type of inference can be affected markedly by group
heterogeneity, evenwhen the distribution of log-evidence differences
is normal. A more robust analysis is obtained by quantifying the



Fig. 1. Bayesian dependency graphs for fixed effects (A) and random effects generative models for multi-subject data (B, C). The graphical model in panels B and C are equivalent; we
show both because 1B is more intuitive for readers unfamiliar with graphical models whereas 1C uses a more compact notation where rectangles denote deterministic parameters
and shaded circles represent observed values. α=parameters of the Dirichlet distribution (number of model “occurrences”); r=parameters of the multinomial distribution
(probabilities of the models); m=model labels; y=observed data; k=model index; K=number of models; n=subject index; N=number of subjects.
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density on model space itself, using a Bayesian approach as described
in the next section.

Bayesian inference on model space
Previously, we have suggested the use of a group Bayes factor (GBF)

that is simply the product of Bayes factors over N subjects (Stephan et
al., 2007b). This is equivalent to a fixed effects analysis that rests on
multiplying the marginal likelihoods over subjects to furnish the
probability of the multi-subject data, conditioned on each model:

GBFi; j =
YN
n=1

BF nð Þ
i; j : ð2Þ

Here, the subscripts i,j refer to the models being compared, and
the bracketed superscript refers to the n-th subject. The reason one
can simply multiply the probabilities (or add the log-evidences) is
that the measured data can be regarded as conditionally independent
samples over subjects. However, this does not represent a formal
evaluation of the conditional density of a particular model given data
from all subjects. Furthermore, it rests upon a very particular
generative model for group data: first, select one of K models from
a multinomial distribution and then generate data, under this model,
for each of the N subjects. This is fundamentally different from a
generative model which treats subjects as random effects: here we
would select a model for each subject by sampling from a
multinomial distribution, and then generate data under that
subject-specific model. The distinction between these two generative
models is illustrated graphically in Fig. 1.

In short, the GBF encodes the relative probability that the data
were generated by one model relative to another, assuming the data
were generated by the same model for all subjects. What we often
want, however, is the density from which models are sampled to
generate subject-specific data. In other words, we seek the conditional
estimates of the multinomial parameters, i.e. the model probabilities
r=[r1,…,rK], that generate switches or indicator variables, mn=
[mn1,…,mnK], where mnk∈{0,1} for any given subject n∈ {1,…,N}, and
only one of these switches is equal to one; i.e., PK

k=1
mnk = 1. These

indicator variables prescribe the model for the n-th subject; where p
(mnk=1)=rk. In the following, we describe a hierarchical Bayesian
model that can be inverted to obtain an estimate of the posterior
density over r.
A variational Bayesian approach for inferring model probabilities

Wewill deal with Kmodels with probabilities r=[r1,…,rK] that are
described by a Dirichlet distribution:

p r jαð Þ = Dir r;αð Þ = 1
Z αð Þ

Y
k

rαk − 1
k

Z αð Þ =
Q

k Γ αkð Þ
ΓðP

k
αkÞ

: ð3Þ

Here, α=[α1,…,αK] are related to the unobserved “occurrences” of
models in the population; i.e. αk−1 can be thought of as the effective
number of subjects in which model k generated the observed data.
Given the probabilities r, the distribution of themultinomial variablemn

describes the probability that model k generated the data of subject n:

p mn jrð Þ =
Y
k

rmnk
k : ð4Þ

For any given subject n, we can sample from this multinomial
distribution to obtain a particular model k. The marginal likelihood of
the data in the n-th subject, given this model k, is then obtained by
integrating over the parameters of the model selected:

p yn jmnkð Þ = R
p y jϑð Þp ϑ jmnkð Þdϑ: ð5Þ

The graphical model summarising the dependencies among r, m
and y as described by Eqs. (3)–(5) is shown in Figs. 1B and C. Our goal
is to invert this hierarchical model and estimate the posterior
distribution over r.

Given the structure of the hierarchical model in Fig. 1, the joint
probability of the parameters and the data y can be written as:

p y;r;mð Þ = p y jmð Þp m jrð Þp r jα0ð Þ

= p r jα0ð Þ
Y
n
p yn jmnð Þp mn jrð Þ

" #

=
1

Z α0ð Þ
Y
k

rα0k − 1
k

" # Y
n

p yn jmnð Þ
Y
k

rmnk
k

" #

=
1

Z α0ð Þ
Y
n

Y
k

p yn jmnkð Þrk½ �mnk rα0k − 1
k

" #
: ð6Þ
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The log joint probability is therefore given by:

lnp y;r;mð Þ = − ln Z α0ð Þ +
X
n

X
k

ð α0k − 1ð Þ ln rk

+ mnk ln p yn jmnkð Þ + ln rkð ÞÞ: ð7Þ

The inversion of our hierarchical model relies on the following
variational Bayesian (VB) approach in which we assume that an
approximate posterior density q can be described by the following
mean-field factorisation:

q r;mð Þ = q rð Þq mð Þ
q rð Þ~ exp I rð Þð Þ
q mð Þ~ exp I mð Þð Þ
I rð Þ = hln p y;r;mð Þiq mð Þ

I mð Þ = hln p y;r;mð Þiq rð Þ: ð8Þ

Here, I(r) and I(r) are variational energies for the mean-field
partition. Note that throughout the paper we use "log" and "ln"
interchangeably to refer to the natural logarithm. The mean-field
assumption in Eq. (8) means that the VB posterior will only be
approximate but, as we shall see, it provides a particularly simple and
intuitive algorithm (c.f. Eq. (14)). This algorithm provides precise
estimates of the parameters α defining the approximate Dirichlet
posterior q(r)≈p(r|y); this was verified by comparisons with a
sampling method which is described in Appendix B.

To obtain the approximate posterior q(m)≈p(m|y), we have to
do two things: first, compute I(m) and second, determine the
normalizing constant or partition function for exp(I(m)), which
renders q(m) a probability density. Making use of the log joint
probability in Eq. (7) and omitting terms that do not depend on m,
the variational energy is:

I mð Þ = R
q rð Þ lnp y;r;mð Þdr

=
X
n

X
k

mnk lnp yn jmnkð Þ + R
q rkð Þ ln rkdrk

� �

=
X
n

X
k

mnk lnp yn jmnkð Þ + W αkð Þ− W αSð Þð Þ: ð9Þ

Here, αS =
P
k
αk and Ψ is the digamma function.2

W αkð Þ = B ln C αkð Þ
Bαk

: ð10Þ

The next step is to obtain the approximate posterior, q(m): If gnk is
our (normalized) posterior belief that model k generated the data
from subject n, i.e. gnk=q(mnk=1), then Eq. (9) tells us that:

gnk =
unk

un

unk = exp lnp yn jmnkð Þ + W αkð Þ− W αSð Þð Þ

un =
X
k

unk ð11Þ

where unk is the equivalent (non-normalized) belief and un is the
partition function for exp(I(m)) that ensures that the posterior
probabilities sum to one.
2 See Appendix B in Bishop (2006) concerning the use of the digamma function in
Eq. 10.
We now repeat the above procedure but this time for the
approximate posterior over r. By substituting in the log joint
probability from Eq. (7) and omitting terms that do not depend on
r, we have:

I rð Þ = R
q mð Þ ln p y; r;mð Þdm

=
X
k

α0k − 1ð Þ ln rk +
X
n

gnk ln rk

" #

=
X
k

α0k + βk − 1ð Þ ln rk: ð12Þ

Here, βk=Σgnk is the expected number of subjects whose data we
believewere generated bymodel k. Now, fromEq. (8)we have ln q(r)=
I(r)+… and from Eq. (3) we see that the log of a Dirichlet density is
given by lnDir r;að Þ = P

k
αk − 1ð Þ ln rk + N . Hence, by comparing

terms we see that the approximate posterior q(r)=Dir(r; α) where:

α = α0 + β: ð13Þ

In short, Eq. (13) simply adds the ‘data counts’, β, to the ‘prior
counts’, α0. This is an example of a free-form VB approximation,
where the optimal form of the approximate posterior (in this case
a Dirichlet), has been derived rather than assumed before-hand
(c.f. fixed-form VB approximations; Friston et al., 2007). It should be
stressed, however, that due to the mean-field assumption used by our
VB approach (see Eq. (8)), q(r) is only an approximate posterior and
the true posterior distribution p(r|y) does not necessarily have the
exact form of a Dirichlet distribution.

The above equations can be implemented as an optimisation
algorithmwhich updates estimates of α iteratively until convergence.
By combining Eqs. (11), (12) and (13) we get the following pseudo-
code of a simple algorithm that gives us the parameters of the
conditional density we seek, i.e. q(r)=Dir(r; α):

α = α0:

Until convergence:

unk = exp lnp yn jmnkð Þ + W αkð Þ− W
X
k

αk

 ! !

βk =
X
n

unkP
k unk

α = α0 + β ð14Þ

end.

We make the usual assumption that, a priori; no models have been
“seen” (i.e. the Dirichlet prior is α0=[1,…,1]).3 Critically, this scheme
requires only the log-evidences over models and subjects (c.f.
Eq. (11)).

Using the Dirichlet density p(r|y; α) for model comparison

After the above optimisation of the Dirichlet parameters, α, the
Dirichlet density p(r|y; α) can be used for model comparisons at the
group level. There are several ways to report this comparison that
3 Note that this choice of Dirichlet prior is a “flat” prior, assigning uniform
probabilities to all models. In contrast, a Dirichlet prior with elements below unity
results in a highly concave probability density that concentrates the probability mass
around zero and one, respectively.
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result in equivalent model rankings. The simplest option is to report
the estimates of the Dirichlet parameter estimates α. Another
possibility is to use those estimates to compute the expected
multinomial parameters 〈rk〉 and thus the expected likelihood of
obtaining the k-th model, i.e. p(mnk=1|r)=Mult(m; 1,r), for any
randomly selected subject4:

hrkiq = αk = α1 + N + αKð Þ: ð15Þ

A third option is to use the conditional model probability p(r|y; α)
to quantify an exceedance probability, i.e. our belief that a particular
model k is more likely than any other model (of the K models tested),
given the group data:

8ja 1 N K j j ≠ kf g:

uk = p rk N rj jy;α
� �

: ð16Þ

The exceedance probabilities φk sum to one over all models
tested. They are particularly intuitive when comparing two models
(or model subsets, see below). In this case, because the
conditional probabilities of the models 〈rk〉 also sum to one, the
exceedance probability of one model, compared to another, can be
written as:

u1 = p r1 N r2 jy;αð Þ
= p r1 N 0:5 jy;αð Þ: ð17Þ

The analyses of empirical data below include several examples
where two models are compared; the associated exceedance
probabilities are shown in Figs. 3, 6, 9 and 13.

Either the Dirichlet parameter estimates α, the conditional
expectations of model probabilities 〈rk〉 or the exceedance probabil-
ities φk can be used to rank models at the group level. In the next
section, we present several practical examples of our method,
applying it to both synthetic and empirical data. In this paper, we
focus on comparing two models (or two model subsets) and largely
rely on exceedance probabilities when discussing the results of our
analyses. However, for each analysis we also report the estimates of α
and the conditional expectations of model probabilities, 〈rk〉; these are
shown in the figures.

Model space partitioning

A particular strength of the approach presented in this paper is
that it cannot only be used to compare specific models, but also to
compare particular classes or subsets of models, resulting from a
partition of model space. For example, one may want to compute the
probability that a specific model attribute, say the presence vs.
absence of a particular connection in a DCM, improves or reduces
model performance, regardless of any other differences among the
models considered. This type of inference rests on comparing two (or
more) subsets of model space, pooling information over all models in
these subsets. This effectively removes uncertainty about any aspect
of model structure, other than the attribute of interest (which
defines the partition). Heuristically, this sort of analysis can be
considered a Bayesian analogue of tests for “main effects” in classical
ANOVA.
4 For the special case of “drawing” a single “sample” (model), the multinomial
distribution of models reduces to p(mnk=1|r)= rk. Therefore, for any given subject, 〈rk〉
represents the conditional expectation that the k-th model generated the subject's data.
Within our framework this type of analysis can be performed by
exploiting the agglomerative property of the Dirichlet distribution.
Generally, for any partition of model space into J disjoint subsets, N1,
N2,…,NJ, this property ensures that:

r1;r2; N ;rKð ÞfDir α1;α2; N ;αKð Þ

Zr41 =
X
kaN1

rk;r
4
2 =

X
kaN2

rk; N ;r
4
J =

X
kaNJ

rk

fDir α4
1 =

X
kaN1

αk;α
4
2 =

X
kaN2

αk; N ;α
4
J =

X
kaNJ

αk

0
@

1
A: ð18Þ

In other words, oncewe have estimates of the Dirichlet parameters
αk for all K models, it is easy to evaluate the relative importance of
different model subspaces: for any given partition of model space, a
newDirichlet density reflecting this partition can be defined by simply
adding αk for all models k belonging to the same subset. The resulting
Dirichlet can then be used to compare different subsets ofmodel space
in exactly the same way as one compares individual models, e.g. using
exceedance probabilities. An example of this application is shown in
Figs. 12 and 13.

Results

In what follows, we compare classical inference, the GBF (fixed
effects) and inference on model space (random effects) using both
synthetic and real data. These data have been previously published
and have been analysed in various ways, including group level model
inference using GBFs (Stephan et al., 2007b,c, 2008).

Synthetic data: nonlinear vs. bilinear modulation

To demonstrate the face validity of our method, we used simulated
data, where the true model was known. Specifically, we used one of
Fig. 2. Synthetic data consisting of twenty time-series that were generated using a
three-area nonlinear DCM and adding random observation noise (see Stephan et al.,
2008 for details). To each of these time-series, two models were fitted and compared:
(i) a nonlinear DCM with the same structure as the model that generated the data
(“correct model” m1), and a bilinear model (“incorrect model” m2). The difference in
log-evidences for all twenty data sets is plotted as a bar chart.



Fig. 4. Confirmation of our VB estimate for α1 (vertical dotted line) in Fig. 3 by
comparing it against the result obtained by a sampling approach (solid line); see main
text for details.
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the synthetic data sets described by Stephan et al. (2008), consisting
of twenty synthetic BOLD time-series that were generated using a
three-area nonlinear DCMwith fixed parameters and adding Gaussian
observation noise to achieve a signal-to-noise ratio (SNR) of two. Each
time-series consisted of 100 data points that were obtained by
sampling the model output at a frequency of 1 Hz over a period of
100 s. For each time-series, we fitted (i) a nonlinear DCM with the
same model structure as the model that generated the data (“correct
model” in Fig. 2, modelm1), and (ii) a second DCM that was similar in
structure but included a bilinear (instead of a nonlinear) modulatory
influence (“incorrect model” in Fig. 2, model m2). Using the negative
free-energy approximation to the log-evidence, the differences in log-
evidences for all twenty time-series are plotted in the lower part of
Fig. 2. It can be seen that in 17 out of 20 cases the nonlinear model was
correctly identified as the more likely model. The overall GBF
(9×1014) was also clearly in favour of the correct model.

Here, we revisit this synthetic data set using random effects BMS
procedures. We first used classical inference, applying a paired t-test
to the log-evidences of the two models. This test rejected the null
hypothesis of no difference in model goodness (t=4.615, df=19,
pb10−4). Applying the novel hierarchical BMS approach gave an even
clearer (and arguably also more useful) answer: the exceedance
probability φ1, i.e. the probability of m1 being a more likely model
than m2, was 100% (Fig. 3). In other words, using the exceedance
probability φ as a criterion, the correct model was identified perfectly,
given all twenty data sets and the chosen level of noise. To further
corroborate this result, we compared the result from our VB algorithm
to an independent method which estimates the parameters α by
sampling from the approximate Dirichlet posterior q(r)≈p(r|y). This
comparison showed that the VB estimate of α resulted in an estimate
of the negative free-energy F(y,α)≤ ln p(y|α) that was consistent with
the results from the sampling approach (Fig. 4). This provides an
additional validation of our VB technique. We used this sampling
approach to verify the correctness of our VB estimates in all
subsequent analyses.

It should be noted that this simulation study concerned the
extreme case that only one model had generated all data, i.e.
r1=100% and r2=0%, making it easy to intuitively understand the
performance of the proposed model selection procedure. However,
this simulation did not probe the robustness of our method when
Fig. 3. The Dirichlet density describing the probability of the nonlinear model m1 in
Fig. 2 given the synthetic data across the 20 realisations. The shaded area represents
the exceedance probability φ1 of m1 being a more likely model than the (incorrect)
bilinear model m2 (compare Fig. 2). α=VB estimates of the Dirichlet parameters; 〈r1〉,
〈r2〉=conditional expectations of the probabilities of the two models.
randomly sampling from a heterogeneous population of subjects
whose data had been generated by different models. We will revisit
this scenario in a later section of this paper once we have introduced
and compared two alternative DCMs of inter-hemispheric interactions
using empirical data.

Comparing different six-area DCMs of the ventral visual stream

As a first empirical application, we investigated a case we had
encountered in our previous research (Stephan et al., 2007b) and
which had actually triggered our interest in developingmore powerful
group level inference about models. This model comparison con-
cerned DCMs describing alternative mechanisms of inter-hemispheric
integration in terms of context-dependent modulation of connections.
In one of the analyses of the original report (Stephan et al., 2007b),
competing DCMs had been constructed for the ventral stream of the
visual system by systematically changing which of the experimentally
controlled conditions modulated the intra- and/or the inter-hemi-
spheric connections.

First, we focused on the six-area model of the ventral stream,
comprising the lingual gyrus (LG), middle occipital gyrus (MOG) and
fusiform gyrus (FG) in both hemispheres, and revisited the compar-
ison of the best two models as indexed by the GBF. In the first model,
m1, inter-hemispheric connections were modulated by a letter
decision task, but conditional on the visual field of stimulus
presentation (LD|VF); intra-hemispheric connections weremodulated
by LD alone (see right side of Fig. 5). In the second model, m2, these
modulations were reversed: inter-hemispheric connections were
modulated by LD and intra-hemispheric connections were modulated
by LD|VF (see left side of Fig. 5). The distribution of log-evidence
differences (approximated by AIC/BIC, following the procedure
suggested by Penny et al., 2004) is shown in the centre of Fig. 5:
Although m1 was robustly superior in 11 of the 12 subjects, a single
outlier was so extreme that the GBF indicated an overall superiority of
m2 (GBF=15 in favour of m2). In contrast, model comparison using
our novel Bayesian method was not affected by this outlier: the
exceedance probability in favour of m1 was very high (φ1=99.7%),
and the conditional expectation 〈r1〉 thatm1 generated the data of any
randomly selected subject was 84.3% (Fig. 6). The estimates of our VB
method were confirmed by the sampling approach (Fig. 7).

For comparison, we also applied frequentist statistics to the log-
evidences as described above. The single outlier subject made
the distribution of the log-evidence differences non-normal (Kolmo-
gorov–Smirnov test: pb10−7, DN=0.822), and thus prevented



Fig. 5. Comparison of DCMs describing alternative mechanisms of inter-hemispheric integration in terms of context-dependent modulation of connections (Stephan et al., 2007b).
Two variants of a six-areamodel of the ventral stream, comprising the lingual gyrus (LG), middle occipital gyrus (MOG) and fusiform gyrus (FG) in both hemispheres were compared.
In the first model, m1, inter-hemispheric connections were modulated by a letter decision (LD) task, but conditional on the visual field of stimulus presentation (LD|VF); intra-
hemispheric connections were modulated by LD alone. In the second model,m2, these modulations were reversed: inter-hemispheric connections were modulated by LD and intra-
hemispheric connections were modulated by LD|VF alone. The distribution of log-evidence differences across the 12 subjects is shown at the bottom: althoughm1 was superior in 11
of the 12 subjects, a single outlier was so extreme that model comparison based on the GBF favoured m2 (GBF=15 in favour of m2).
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detection of a significant difference between the two models by a
one-tailed paired t-test (t=0.073, df=11, p=0.471). Given this
deviation from normality, we applied a nonparametric Wilcoxon
signed rank test which makes no distributional assumptions; this test
was indeed able to find a significant difference between the models
(p=0.034).
Fig. 6. The Dirichlet density describing the probability of model m1 in Fig. 5 given the
measured data across the group. The shaded area represents the exceedance probability
φ1=p(r1N0.5|y; α) of m1 being a more likely model than the alternative model m2

(compare Fig. 5). In contrast to the conventional GBF or inference based on frequentist
statistics, our variational Bayesianmethod was not affected by the strong outlier subject
shown by Fig. 5: the exceedance probability in favour of m1 was φ1=99.7%.
Comparing different four-area DCMs of the ventral visual stream

Next, we investigated a variant of the previous case where the
distribution of log-evidences across subjects was more heteroge-
neous. This model comparison was essentially identical to the
previous one, except that the models in question only contained
four areas (LG and FG in both hemispheres), instead of six. Visual
inspection of the distribution of log-evidence differences (Fig. 8)
shows that the same subject as in the previous example favoured m2,
albeit far less strongly; in addition, three more subjects showed
evidence in favour of m2, albeit only weakly. Given this constellation,
the original analysis by Stephan et al. (2007b) only found a relatively
Fig. 7. Confirmation of our VB estimate for α1 (vertical dotted line) in Fig. 6 by
comparing it against the result obtained by a sampling approach (solid line); see main
text for details.



Fig. 8. A variant of the model comparison shown by Fig. 5; here the models in question
contained four areas (LG and FG in both hemispheres). The distribution of log-evidence
differences shows that the same subject as in Fig. 5 constituted an outlier; in addition
three more subjects showed weak evidence in favour of m2.

Fig. 9. The Dirichlet density describing the probability of model m1 in Fig. 8 given the
measured data across the group. The shaded area represents the exceedance probability
φ1=p(r1N0.5|y; α) of m1 being a more likely model than the alternative model m2

(compare Fig. 8). Despite the strong outlier subject shown by Fig. 8, the exceedance
probability of φ1=92.8% was favouring m1 as a more likely model than m2.
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weak superiority of m1 (GBF=8). In contrast, the VB method gave an
exceedance probability of φ1=92.8% in favour of m1, indicating more
clearly that m1 is a superior model (Fig. 9). As above, the estimates of
our VB method were confirmed by sampling (Fig. 10).

When comparing this result to the frequentist random effects
approach, a one-tailed paired t-test was unable to detect a significant
difference between the two models (t=0.165, df=11, p=0.436). In
contrast to the previous example, this failure was not due to outlier-
induced deviations from normality: a Kolmogorov–Smirnov test
applied to the log-evidences was unable to reject the null hypothesis
that they were normally distributed (p=0.743). Here, the between-
subject variability, while in accordance with normality assumptions,
was simply too large to reject the null hypothesis with the classical t-
test. A nonparametric Wilcoxon signed rank test did not fare any
better (p=0.266).

Synthetic data: randomly sampling from a heterogeneous population

In a second simulation study, we examined the robustness of our
method when randomly sampling from a heterogeneous population
of subjects. Specifically, we dealt with a population in which 70% of
subjects showed brain responses as generated by model m1 shown in
Fig. 8, whereas brain activity in the remaining 30% of the population
was generated by model m2. We randomly sampled 20 subjects from
this population and generated synthetic fMRI data by integrating the
state equations of the associated models with fixed parameters and
inputs5 and adding Gaussian observation noise to achieve an SNR of
two. Each synthetic data set had exactly the same structure as the
empirical data described in the previous section (700 data points,
TR=3 s). Both m1 and m2 were then fitted to all 20 synthetic data
sets, and the resulting log-evidences were used to perform both fixed
5 The coupling parameters of all endogenous connections were set to 0.1 s−1, except
for the inhibitory self-connections whose strengths were set to −1 s−1. Furthermore,
the strengths of all modulatory and driving inputs were set to 0.3 s−1. The input
functions were the same as in the empirical dataset described above.
effects BMS and random effects BMS, using the VB method described
in this paper. This sampling and data generation procedure was
repeated 20 times, resulting in a total of 400 generated data sets and
800 fitted models. For each of the 20 sets of 20 subjects, we
computed the different indices provided by random effects BMS (i.e.,
α, 〈r〉, φ) and fixed effects BMS (log GBF). The means of these indices
are plotted in Fig. 11, together with 95% confidence intervals (CI). If
our random effects BMS method were perfect in uncovering the
underlying structure of the population we sampled from, one
would expect to find the following average estimates: (i)
α1=22×0.7=15.4, α2=22×0.3=6.6 for the Dirichlet parameters,
(ii) 〈r1〉=0.7, 〈r2〉=0.3 for the posterior expectations of model
probabilities, and (iii) φ1=1, φ2=0 as exceedance probabilities
(note that the exceedance probability is not the posterior model
probability itself, but a statement of belief about the posterior
probability of one model being higher than the posterior probability
of any other model). The actual estimates of the BMS indices for the
simulated data were (i) α1=15.4 (CI: 14.1–16.7) and α2=6.6 (CI:
5.3–7.9), (ii) 〈r1〉=0.7 (CI: 0.64–0.76) and 〈r2〉=0.3 (CI: 0.24–0.36),
and (iii) φ1=0.89 (CI: 0.83–0.96) and φ1=0.11 (CI: 0.04–0.17). For
Fig. 10. Confirmation of our VB estimate for α1 (vertical dotted line) in Fig. 9 by
comparing it against the result obtained by a sampling approach (solid line); see main
text for details.



Fig. 11. Summary of the results from a simulation study in which we examined the robustness of our method when randomly sampling from a heterogeneous population of subjects.
Specifically, we dealt with a population inwhich 70% of the subjects showed brain responses as generated bymodelm1 shown in Fig. 8, whereas brain activity in the remaining 30% of
the population was generated by model m2. We randomly sampled 20 subjects from this population and generated synthetic fMRI data by integrating the state equations of the
associated models with fixed parameters and inputs and adding Gaussian observation noise to achieve an SNR of two. Both m1 and m2 were then fitted to all 20 synthetic data sets.
This sampling and data generation procedure was repeated 20 times, resulting in a total of 400 generated data sets and 800 fitted models. For each of the 20 sets of 20 subjects, we
computed the different indices provided by random effects BMS (i.e., α, 〈r〉, φ) and fixed effects BMS (log GBF). This figure shows the mean of these indices together with their 95%
confidence intervals (CI).
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comparison, the average log GBF in favour of model m1 was 548.9
(CI: 446.2–651.6).

In conclusion, while our random effects BMS method provides a
slightly overconservative estimate of exceedance probabilities for the
chosen sample size, it shows very good performance overall,
providing BMS indices that accurately reflect the structure of the
population we sampled from. In particular, the Dirichlet parameters
and posterior expectations of model probabilities (which represent
the expected probability of obtaining the k-th model when randomly
selecting a subject) were estimated very precisely. This result not
only validates the results obtained for the empirical data set
described above, but demonstrates more generally that our BMS
procedure is robust when randomly sampling from a heterogeneous
population of subjects.

Comparing different hemodynamic models by model space partitioning

Finally, we revisited a comparison of DCMs, which were identical
in network architecture (the same as m1 in Fig. 8) but differed in the
hemodynamic forward model employed (Stephan et al., 2007c). A
three-factor design was used to construct 8 different models: (i)
nonlinear vs. linear BOLD equations, (ii) classical vs. revised
coefficients of the BOLD equation, and (iii) free vs. fixed parameter
(ɛ) for the ratio of intra- and extravascular signal changes. In the
original analysis by Stephan et al. (2007c), the GBF (based on the
negative free-energy approximation) was used to establish the best
among the eight models. The best model, abbreviated as RBMN(ɛ) in
Fig. 12, was characterised by (i) a nonlinear BOLD equation, (ii)
revised coefficients of the BOLD equation, and (iii) free ɛ. The
difference of its summed log-evidence compared to the second-best
model, its linear counterpart RBML(ɛ), was 5.26, corresponding to a
GBF of 192 in favour of the nonlinear model. The summed log-
evidences for all 8 models are shown in Fig. 12A.

Here, we demonstrate how one can use the agglomerative
property of the Dirichlet distribution (Eq. (18)) to go beyond selective
comparisons of specific models and instead examine the relative
importance of particular model attributes or model subspaces. Given
the three factors above, we focused on the importance of nonlinea-
rities: what is the posterior probability that nonlinear BOLD equations
improve the model compared to linear BOLD equations, regardless of
any other dimensions of model space (i.e., classical vs. revised
coefficients and free vs. fixed ɛ)?

Following Eq. (18), this question is addressed easily. In a first
step, the VB procedure was applied to the entire set of eight
models, yielding posterior estimates of the Dirichlet parameters
α1,…,α8 (see Fig. 12B). Subsequently, a new Dirichlet density
reflecting the partition of model space into nonlinear and linear
subspaces was computed by summing αk separately for the
nonlinear and linear models (Fig. 12C; for simplicity the ordering
of the models in Fig. 12 has been chosen such that the first four
models are nonlinear [left of the dashed line], whereas the last
four models are linear [right of the dashed line]) The resulting
Dirichlet can then be used to compare nonlinear and linear models
in exactly the same way as one compares two models; e.g. using
exceedance probabilities. Fig. 13 shows the result of this compar-
ison: the probability that nonlinear hemodynamic models are
better than linear models, regardless of other model attributes, was
φ1=98.6%.



Fig. 12. An example of model space partitioning applied to the case of DCMs which were
identical in network architecture (the same as m1 in Fig. 8) but differed in the
hemodynamic forward model employed (for details, see Stephan et al., 2007c). (A)
Eight different models were constructed by means of a three-factorial process: (i)
nonlinear vs. linear BOLD equations (subscript N), (ii) classical (CBM) vs. revised (RBM)
coefficients of the BOLD equation, and (iii) free vs. fixed parameter (ɛ) for the ratio of
intra- and extravascular signal changes. The bar plot shows the summed log-evidences
for all eight models, relative to the worst model (RBML). The dashed line separates the
nonlinear models (on the left) from the linearmodels (on the right). (B) VB estimates of
the Dirichlet parameters for all eight models. (C) VB estimates of the Dirichlet
parameters for nonlinear and linear partitions of model space.

Fig. 13. The Dirichlet density for the nonlinear subpart of model space, defined by the
parameter estimates shown by Fig. 12C. The exceedance probability of φ1=98.6%
(shaded area) indicates the probability that nonlinear hemodynamic models were
better than linear models, regardless of any other aspect of model structure.
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For comparison, we also used classical inference, applying a
repeated-measure ANOVA (with Greenhouse–Geisser correction for
non-sphericity) to the log-evidences of the eight models. The result of
this test was compatible with the above analysis, rejecting the null
hypothesis that linear and nonlinear models were equal in log-
evidence (F=24.330, df=1,11, pb0.0004).

Discussion

In this paper, we have introduced a novel approach for model
selection at the group level. Provisional experience suggests that this
approach represents a more powerful way of quantifying one's belief
that a particularmodel is more likely than any other at the group level,
relative to the conventional GBF. Critically, this variational Bayesian
approach rests on treating the model switches mi as a random
variable, within a full hierarchical model for multi-subject data (see
Fig.1), and thus accommodates random effects at the between-subject
level. Notably, this inference procedure needs only the log-evidences
for each model and subject.

In the empirical examples above, we showed two cases where
frequentist tests failed to indicate clear differences between models,
while the novel Bayesian approach succeeded. In one case (the six-
area ventral stream model), a strong outlier subject made the
distribution of log-evidences non-normal and thus rendered the t-
test (but not a non-parametric test) unable to find a significant
difference between models. In another case (the four-area ventral
streammodel), the distribution of log-evidences was normal, but with
a between-subject variance that was big enough to prevent significant
results by frequentist tests (parametric or non-parametric). It should
be noted, however, that the frequentist and Bayesian approaches do
not test the same thing. The frequentist approach tries to reject the
null hypothesis that there are no differences in log-evidence across
models. In contrast, the Bayesian approach estimates the models'
probabilities, given the data, and enables inference in terms of
exceedance probabilities: the exceedance probability φk is the
probability that a given model k is more likely than any other model
(of the K models tested). Furthermore, we can compute the posterior
probabilities of themodels themselves: 〈rk〉 is the expected probability
that the k-th model generated the data for a randomly selected
subject.

The exceedance probability of a model differs in a subtle but
important way from the conventional posterior probability of a model
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in Bayesian model comparison: because we have a hierarchical model,
the posterior probability that any particular model caused the data
from a subject chosen at random, is itself a random variable (r in the
derivations above). This means that the exceedance probability is a
statement of belief about the posterior probability, not the posterior
probability itself. So, for example, when we say that the exceedance
probability is 98%, we mean that we can be 98% confident that the
favoured model has a greater posterior probability than any other
model tested. This is not the same as saying that the posterior
probability of the favoured model is 98%. The advantage of using
exceedance probabilities is that they are sensitive to the confidence in
the posterior probability and easily interpretable (since they sum to
unity over all models tested).

As can be seen from Eqs. (9) and (11), our method is sensitive to
both the distribution and the magnitude of log-evidence differences.
The same is true for frequentist tests applied to log-evidence
differences, e.g. t-tests. However, a critical difference between these
frequentist approaches and the VB method is that for the latter the
influence of outliers has a natural bound. There is a simple and
intuitive reason for this nice property of the VB method: if we keep
increasing the log-evidence of model k for a particular subject n, our
posterior belief that k generated the data of subject n (that is, gnk=q
(mnk=1); see Eq. (11)) will asymptote to one. Once it has reached
unity (which corresponds to complete certainty), any further increase
in the log-evidence of model k for subject n has no further influence.
This is because the model probabilities are distributed according to
the approximate posterior Dirichlet Dir(r; α0+β)=q(r), where βk

represents the conditional expectation of the number of subjects
whose data we believe were generated by model k and is simply the
sum of the subject-specific posterior probabilities that model k
generated their individual data. In contrast, frequentist tests like t-
tests do not show this bounded behaviour with regard to outliers. This
is because the sample variance increases monotonically with the
magnitude of the outlier, leading to a monotonic decrease of the t-
statistic. We demonstrated this difference between frequentist
approaches and our VB method by two empirical examples with
outliers.

Another important advantage of the method proposed here is that
it can go beyond the selective comparison of specific models and
enables one to assess the importance of changes along any specific
dimension of model space. This type of inference, which could be seen
as a Bayesian analogue of testing for “main effects” in classical ANOVA,
rests on comparing two (or more) subsets of models (i.e., model
subspaces). These partitions would typically reflect those components
of model structure that one seeks inference about; e.g. whether a
specific connection should be included in the model or not, whether a
particular connection is modulated by one experimental condition or
another, or whether certain effects are linear or nonlinear. We used
this approach to demonstrate that hemodynamic models with
nonlinear BOLD equations are superior to those with linear ones.
This result is in accordance with previous studies that highlight the
importance of nonlinearities in the BOLD signal (Deneux and
Faugeras, 2006; Friston et al., 2000; Miller et al., 2001; Stephan et
al., 2007c; Vazquez and Noll, 1998; Wager et al., 2005a,b). However, in
these earlier studies, this conclusion was based on comparisons of
specific and single instances of linear and nonlinear hemodynamic
models. The inferential advance achieved by the present method is
that an arbitrarily large set of models can be considered together,
allowing one to integrate out uncertainty over any aspect of model
structure, other than the one of interest.

At first glance, it may appear surprising that the hierarchical model
described above has been introduced as a generative model for the
data y, given its inversion does not need the data but the model
evidence, p(y|m). This apparent contradiction could be resolved by
noting that the log-evidence is a function of the data and represents a
sufficient ‘summary statistic’. To generate data, one would need to
introduce the model parameters ϑk to the graphical model shown in
Figs. 1B,C. In the context of DCM, for example, once one has drawn a
model k from the multinomial distribution for a specific subject n (i.e.,
generated a label mnk=1), one could generate fMRI time-series by
drawing model parameters ϑk from their prior distributions and
adding some observation error. However, because the model evidence
p(y|m) results from integrating out the influence of the parameters ϑk

on the data y (see Eq. (1)), this component is unnecessary during
inversion of the generative model.

One property of the method proposed in this paper is that for each
subject n our posterior beliefs about model k having generated their
data sum to one over all models that are considered, that is
8n :

PK
k=1

gnk = 1 (c.f. Eq. (11)). In other words, our posterior belief about
which model k is most likely to have generated the data for a given
subject n is a function of the entire set of models considered. This
means that reducing or extending model space can change our
inference about which model is most likely at the group level.
Although this is a fairly trivial corollary, it should not be forgotten
when using this method in practice. In short, one should infer the
most likely model by comparing the entire set of plausible models at
once, instead of selectively analysing subparts of model space.

To our knowledge, there has been relatively little work on group
level methods for Bayesianmodel comparison so far. In addition to the
GBF (Stephan et al., 2007b), we had previously suggested a metric
called the “positive evidence ratio” (PER; Stephan et al., 2007b,c).
Based on the conventional definition of “positive evidence” as a Bayes
factor larger than three (Kass and Raftery, 1995), the PER is simply the
number of subjects where there is positive (or stronger) evidence for
model 1 divided by the number of subjects with positive (or stronger)
evidence for model 2. While the PER is insensitive to outliers, it is also
insensitive to the magnitude of the differences across subjects. More
importantly, however, it is only a descriptive index that does not allow
for probabilistic inference in a straightforward manner. In the
approach described in this paper, the sufficient statistics for the
model frequencies are the posterior estimates of the Dirichlet
parameters (α). When the differences in model evidences are very
strong, these simply boil down to the number of subjects with positive
(and more) evidence in favour of a particular model. In that case
where for each subject there is one highly superior model, the
expected model frequencies become identical to the PER. From this
perspective, the present approach can be considered a (probabilistic)
generalisation of the PER.

The only other work on group level methods for Bayesian model
comparison that we are aware of is a recent paper by Li et al. (2008)
who suggested a “group-level BIC score”. This score is derived by
summing the BIC for each model across subjects. As explained in
Appendix A, the BIC is a well-known approximation to the log-
evidence (Schwarz, 1978). The group-level BIC score by Li et al. (2008)
thus approximates the sum of log-evidences and simply corresponds
to the log GBF. Effectively, the analysis by Li et al. (2008) thus used a
fixed effects analysis across models that is formally identical to that
used in reports of DCM studies (e.g. Acs and Greenlee, 2008; Allen et
al., 2008; Grol et al., 2007; Heim et al., 2008; Kumar et al., 2007; Smith
et al., 2006; Stephan et al., 2007a,b; Summerfield and Koechlin, 2008).

Finally, it should be noted that a random effects model selection
approach is not necessarily preferable to a fixed effects approach. The
choice between fixed and random effects BMS depends on the specific
scientific question addressed. In the context of basic mechanisms that
are unlikely to differ across subjects, the conventional GBF is both
sufficient and appropriate. For example, it is unlikely that subjects
differ with regard to basic physiological mechanisms such as the
involvement of sodium ion channels in action potential generation or
the presence of certain types of connections in the brain. In this
context, it is perfectly tenable to assume that all subjects generate data
under the samemodel; and the data from all subjects can be pooled to
select this model in the usual way. In contrast, whenever subjects can
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exhibit different models or functional architectures, the random
effects BMS technique presented in this paper is a more appropriate
method. For example, there is evidence that many higher cognitive
functions can rely onmore than one neurobiological system (Price and
Friston, 2002). Also, it is likely that in some mental diseases, e.g.
schizophrenia, patients with identical symptoms show heterogeneity
with regard to the pathophysiological processes involved (Stephan
et al., 2006).

In summary, in contrast to the GBF and other established
approaches for group-level model comparison, the approach sug-
gested in this paper rests on a hierarchical model for multi-subject
data that accommodates random effects at the between-subject level
(Fig. 1) and thus provides a generic framework for hypothesis testing.
We expect this method to be a useful tool for group studies, not only in
the context of dynamic causal modelling, but also for a range of other
modelling endeavours; for example, comparing different source
reconstruction methods for EEG/MEG at the group level (Henson et
al., 2007; Litvak and Friston, 2008; Mattout et al., 2007), or selecting
among competing computational models of learning and decision-
making, given data from a group of subjects (Brodersen et al., 2008;
Hampton et al., 2006).

Software note

The method described in this paper is freely available to the
community as part of the open-source software package Statistical
Parametric Mapping (SPM8; http://www.fil.ion.ucl.ac.uk/spm).
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Appendix A. Approximations to the log model evidence

With the exception of some special cases (e.g., linear models), the
integral expression for the model evidence (Eq. (1)) is analytically
intractable and numerically difficult to compute. Under these
circumstances, people generally adopt a bound approach where,
instead of evaluating the integral above, one optimises a bound on the
integral using iterative sampling or analytic techniques. The most
common approach of the latter kind is variational Bayes. In this
framework, one posits an approximating conditional or posterior
density on the unknown parameters, q(ϑ), and optimises this density
with respect to a free-energy bound, F, on the log-evidence6:

F = logp y jmð Þ− KL q ϑð Þ;p ϑ jy;mð Þ½ �: ðA:1Þ

Because of its relation to variational calculus and Gibb's free-
energy in statistical physics, this free-energy bound F is often referred
to as the “negative free-energy” or “variational free-energy” (Friston
et al., 2007; MacKay, 2003; Neal and Hinton, 1998). Its second term is
the Kullback–Leibler (KL) divergence (Kullback and Leibler, 1951)
6 Because of the monotonic nature of the logarithm, one can maximise the model
evidence or the log-evidence; the latter, however, is numerically more convenient to
deal with. Please note that for simplicity and clarity we have removed constant terms
from the definition of all approximations to the log-evidence discussed in this paper.
between the approximating posterior density q(ϑ) and the true
posterior p(ϑ|y,m), which is always positive (or zero when q(ϑ)
becomes identical to p(ϑ|y,m)). By iterative optimisation, the negative
free-energy F is made an increasingly tighter lower bound on the
desired log-evidence, ln p(y|m); as a consequence, the KL divergence
between the approximating and true posterior is minimised. There are
a number of approximations that are usedwhen specifying the form of
q(ϑ). These include the ubiquitous mean-field approximation, where
various sets of unknown parameters are assumed to be independent,
so that the conditional density can be factorised. A common example
herewould be a bipartition into the regression coefficients of a general
linear model and the parameters controlling random effects or error
variance. Another common approximation within the mean-field
framework is to assume that the conditional density is multivariate
Gaussian. This is also known as the Laplace approximation, a full
treatment of which can be found in Friston et al. (2007).

For any approximation to the conditional density, the free-energy
bound on the log-evidence can be re-written as a mixture of accuracy
and complexity:

F = hlogp y jϑ;mð Þiq − KL q ϑð Þ;p ϑ jmð Þ½ �: ðA:2Þ

The accuracy (first term) is simply the log-likelihood of the data
expected under the conditional density. The complexity (second term) is
the Kullback–Leibler divergence between the approximating posterior
and prior density. In other words, it reflects the amount of information
obtained about the model parameters, from the data. Clearly, model
complexity will increase with the number of parameters (provided that
they can be estimated precisely and that they diverge from their prior
values). However, model complexity depends on factors other than the
mere number of parameters, e.g. how much these parameters are
dependent on each other, botha priori and a posteriori. This is seen easily
under the Laplace approximation, i.e. assuming that the conditional
density is multivariate Gaussian. In this case, the complexity can be
written as follows (see the Appendix of Penny et al., 2004):

KL q ϑð Þ;p ϑ jmð Þ½ � = 1
2
jCϑ j − 1

2
jCϑ jy j + 1

2
μϑ jy−μϑ

� �T
C−1
ϑ μϑ jy − μϑ

� �
:

ðA:3Þ

Here, |Cϑ| and |Cϑ|y| are the determinants of the prior and posterior
covariance matrices and μϑ|y and μϑ are the posterior and prior means,
respectively. The first term shows that the penalty conveyed by model
complexity increases the more independent the parameters are a priori;7

this is equivalent to saying that the penalty increases with the effective
degrees of freedom of the model. Conversely, additional parameters
whose effects are redundant in relation to existing parameters do not
increase model complexity. The second term says that complexity
decreases with the degree of independence that the parameters have a
posteriori. This accords with the general notion that the parameter
estimates of a good model should be as precise and uncorrelated as
possible. The final term shows that the complexity increases with the
distance between the prior and posterior means. In other words, model
goodness decreases if one makes bad assumptions about the parameter
values a priori (i.e., using suboptimal priors), thus forcing the posterior
estimates to diverge markedly from the prior means.

In addition to the free-energy bound approximation, there are two
other commonly used approximations to the log-evidence, which
appeal to the behaviour of the complexity term as the number of
observations becomes infinite. We will call these limit-approximations.
These include theAIC andBIC (see Pennyet al., 2004). The key difference
between the free-energy bound and these limit approximations is that
7 It is helpful to note that the determinant of a covariance matrix can be treated as a
measure of the volume spanned by a set of vectors (Woodruff 2005). This volume
increases with the degree of independence amongst the vectors.

http://www.fil.ion.ucl.ac.uk/spm
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the latter assume a much simpler approximation to the complexity.
Under Gaussian assumptions about the error:

BIC = hlog p y jϑ;mð Þiq −
p
2
logn

AIC = hlogp y jϑ;mð Þiq − p: ðA:4Þ

It can be seen that the AIC and BIC approximate the complexity with
the number of parameters or the number of parameters p, scaled by the
logof thenumberof observations,n. These canbeuseful approximations
when it is difficult to invert the model or optimise the free-energy
bound, because one only needs to compute the accuracy or fit of the
model to provide an estimate of the log-evidence. However, comparing
the complexity terms in these expressions to Eq. (A.3), shows that both
the AIC and BIC will fail in various situations. An obvious example is
redundant parameterisation; the true complexity will not changewhen
we add a parameter whose effect is identical to another parameter in
measurement space. While the free-energy bound would take this
redundancy into account, retaining the same complexity, the AIC and
BIC approximations would indicate that complexity has increased. In
practice, manymodels show partial dependencies amongst parameters,
meaning that AIC and BIC routinely over-estimate the effect that adding
or removing parameters has on model complexity.

Appendix B. Sampling approach to estimating the Dirichlet
parameters

In this appendix, we introduce a sampling procedure that provides
an approximation to the negative free energy F(y,α)≤ ln p(y|α) which
is independent from the VB approach described in the main text. This
sampling procedure can be used to demonstrate the correctness of the
proposed VB procedure by verifying that the algorithm described by
Eq. (14) provides an accurate solution for the variational energies in
the mean-field approximation of Eq. (8). In this context, it should be
noted that we are assuming that the exact posterior p(r|y) can be
adequately approximated by a Dirichlet density q(r); therefore, the
procedure proposed in this appendix samples from the approximate
posterior q(r), not from the exact posterior p(r|y).

We seek the posterior density on the multinomial parameters r=
[r1,…,rK] that generate switches or indicator variables, mnk∈ {0,1},
prescribing the n-th subject's model; i.e., p(mnk=1)=rk. To simplify
things, we will assume an approximating form, q(r; α) for this
density, with sufficient statistics α. Specifically, we assume a Dirichlet
density:

q r;αð Þ = D αð Þ = 1
Z αð Þ

YK
k=1

rαk − 1
k

Z lnq r;αð Þ = − lnZ αð Þ +
X
k

αk − 1ð Þ ln rk ðB:1Þ

where the expected multinomial parameters (i.e., conditional
expectation that the k-th model will be selected at random) are:

hrkiq =
αk

αS

αS =
XK
k=1

αk: ðB:2Þ

Note that a Dirichlet form ensures that
PK
k=1

rk = 1. The normal-
ising or partition coefficient in Eq. (B.1) is:

Z αð Þ =

Q
k
C αkð Þ

C αSð Þ Z ln Z αð Þ = − lnC αSð Þ +
X
k

lnC αkð Þ: ðB:3Þ
We can now construct a free-energy bound in the usual way,
assuming Dirichlet priors α0 (which would usually be α0=[1,…,1]
unless one had prior beliefs about which model is more likely to be
selected):

F y;αð Þ = hlnp y1 jrð Þ + N + lnp yN jrð Þ + lnp r jα0ð Þ− ln q r jαð Þiq:
ðB:4Þ

This can be decomposed into three terms:

hlnp yn jrð Þiq = hln
X
k

p yn jmnk=1ð Þrkiq

hln q r jαð Þiq = − ln Z αð Þ +
X
k

αk − 1ð Þ W αkð Þ− W αSð Þ½ �

hln p r jα0ð Þiq = − ln Z α0ð Þ +
X
k

α0k − 1ð Þ W αkð Þ− W αSð Þ½ �: ðB:5Þ

The last two terms only depend on the priors α0k and the
parameters α of the Dirichlet and can thus be computed directly. The
first term can be computed numerically by drawing a large number of
samples from q(r; α). In this paper, we gridded the possible range for
values of αk, i.e. [1… K+1], using a bin size of 0.1, and then drew 1000
samples per bin, exploiting a relationship between Gamma and
Dirichlet distributions described by Ferguson (1973). Given those
samples, the Dirichlet parameters are those that maximise F:

α = argmax
α

F y;αð Þ: ðB:6Þ

As a final note, we would like to point out that one could also use
Jensen's inequality to simplify the first term in Eq. (B.5):

hlnp yn jrð Þiq = hln
X
k

p yn jmnk=1ð Þrkiq

zh
X
k

rk ln p yn jmnk=1ð Þiq

=
X
k

αk

αS
ln p yn jmnk = 1ð Þ: ðB:7Þ

This effectively provides a lower-bound on a lower-bound, which
can be simplified to give

F̃ y;αð Þ =
P
k

αk

αS

X
n

ln p yn jmnk = 1ð Þ− αk − α0
k

� �
W αkð Þ− W αSð Þ½ � + lnC αkð Þ

 !
− ln C αSð Þ:

ðB:8Þ

Given the priors, α0, and the log-evidences ln p(yn|mnk=1) for
each subject and model, ˜F̃ could be used as an alternative method to
estimate the Dirichlet parameters α using conventional nonlinear
optimisation. In practice, however, we have found the VB method
described in the main text to be superior.
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