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a b s t r a c t

The neurophysiology of eyemovements has been studied extensively, and several computational models
have been proposed for decision-making processes that underlie the generation of eye movements
towards a visual stimulus in a situation of uncertainty. One class of models, known as linear rise-
to-threshold models, provides an economical, yet broadly applicable, explanation for the observed
variability in the latency between the onset of a peripheral visual target and the saccade towards it. So
far, however, these models do not account for the dynamics of learning across a sequence of stimuli, and
they do not apply to situations in which subjects are exposed to events with conditional probabilities.
In this methodological paper, we extend the class of linear rise-to-threshold models to address these
limitations. Specifically, we reformulate previous models in terms of a generative, hierarchical model, by
combining two separate sub-models that account for the interplay between learning of target locations
across trials and the decision-making process within trials. We derive a maximum-likelihood scheme for
parameter estimation as well as model comparison on the basis of log likelihood ratios. The utility of the
integrated model is demonstrated by applying it to empirical saccade data acquired from three healthy
subjects. Model comparison is used (i) to show that eye movements do not only reflect marginal but also
conditional probabilities of target locations, and (ii) to reveal subject-specific learning profiles over trials.
These individual learning profiles are sufficiently distinct that test samples can be successfully mapped
onto the correct subject by a naïve Bayes classifier. Altogether, our approach extends the class of linear
rise-to-threshold models of saccadic decision making, overcomes some of their previous limitations, and
enables statistical inference both about learning of target locations across trials and the decision-making
process within trials.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In order to survive in a competitive, dynamic environment, an-
imals must be able to integrate past experience with sensory ev-
idence to infer the current state of the world and execute a be-
havioural response. Marked progress in our understanding of the
neural basis of decision making has been achieved by focusing on
sensory-driven decisions, such as the simple question of where to
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look next. Studying decision making in sensorimotor systems like
the oculomotor system has the advantage that one can exploit a
large body of neuroanatomical and neurophysiological knowledge
that has been accumulated over the past decades. It seems conceiv-
able that studying the neuronal mechanisms of visual-saccadic de-
cision making could provide us with a blueprint of how the brain
implements other sensorimotor decisions, or evendeliver ‘‘amodel
for understanding decision making in general’’ (Glimcher, 2003).
The decision processes that underlie rapid eye movements

towards a target have been studied in a variety of experimental
paradigms. One seminal series of studies is based on the random
dot-motion task designed by Newsome and colleagues (Newsome
& Pare, 1988). In an initial fixed-duration version of this task,
monkeys were trained to discriminate the motion direction
of a set of moving dots with varying degrees of coherence,
and indicate the perceived motion by a leftward or rightward
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saccade (Newsome, 1997; Newsome, Britten, & Movshon, 1989;
Newsome, Britten, Salzman, & Movshon, 1990; Salzman, Britten,
& Newsome, 1990). Subsequently, Shadlen, Britten, Newsome,
and Movshon (1996) suggested a computational explanation of
the neuronal mechanisms producing the resulting saccade and
provided experimental verification of its key assumptions (Gold &
Shadlen, 2000; Kim & Shadlen, 1999; Shadlen et al., 1996; Shadlen
& Newsome, 2001). In particular, they identified a gradual rise of
spiking activity in the lateral intraparietal (LIP) area integrating
motion direction-specific signals from the middle temporal (MT)
area (Shadlen & Newsome, 1996, 2001).
Based on a reaction time version of the same task (Roitman &

Shadlen, 2002), Shadlen and colleagues advanced the hypothesis
that rising activity before a saccade, which had also been
observed in the frontal eye fields (FEF), represented the ratio
of the log likelihoods that the two possible eye movements
would be executed (Gold & Shadlen, 2000, 2001). Based on their
decision-theoretic analysis, they suggested that log likelihood
ratios might be used as ‘‘a natural currency for trading off sensory
information, prior probability and expected value to form a
perceptual decision’’ (Gold & Shadlen, 2001).
Another key series of studies was carried out by Hanes, Schall,

and colleagues, who investigated an oddball task (as well as the
countermanding paradigm; Hanes and Carpenter (1999)) to study
how neural signals in the FEFs would finally trigger the initiation
of saccades (Hanes & Schall, 1996; Hanes, Thompson, & Schall,
1995; Schall & Thompson, 1999; Thompson, Bichot, & Schall, 1997;
Thompson, Hanes, Bichot, & Schall, 1996). In their oddball task,
monkeys were trained to indicate, by an eye movement, the
location of the oddball within a circular arrangement of visual
stimuli around a central fixation dot. They showed that FEF activity
was consistentwith psychophysicalmodels about oddball reaction
time tasks (Luce, 1986; Ratcliff, 1978; Sternberg, 1969a, 1969b).
Specifically, their findings supported the notion that the saccadic
decision would be made as soon as gradually increasing neural
activity in the FEFs had crossed a biophysical threshold (Hanes,
Patterson, & Schall, 1998; Schall & Thompson, 1999).
Motivated by the question of why saccadic latencies displayed

large variance in all of the above tasks, an even simpler
reaction time paradigm was investigated by Carpenter and
colleagues (Carpenter &Williams, 1995; Reddi & Carpenter, 2000).
In their saccade-to-target reaction time task, human subjects were
asked to shift their gaze from a central fixation stimulus to an
eccentric target as soon as it appeared on the screen. The critical
manipulation was to vary the uncertainty about where the target
would appear (Basso & Wurtz, 1997, 1998). It was found that
saccade latencies became shorter with increasing prior probability
of the corresponding target location. Specifically, response speed
was found to be proportional to the log prior probability of target
location (Basso &Wurtz, 1997, 1998; Carpenter &Williams, 1995).
The behavioural and electrophysiological findings fromall three

paradigms described above are consistent with the notion of a sac-
cade being elicited once some gradually rising neuronal activity
crosses a biophysical threshold. This idea has been formalized in
terms of various mechanisms known as rise-to-threshold accumu-
lator models. These models aim to provide a computational ab-
straction of a biophysically conceivable mechanism that explains
saccade latencies and their variability across trials (for reviews
see Glimcher (2001, 2003), Gold and Shadlen (2001), Platt (2002),
Ratcliff and Smith (2004), Schall (2001, 2003), Smith and Ratcliff
(2004) and Usher and McClelland (2001)).
In the context of saccadic decision making with a fixed set of

potential target locations, rise-to-threshold models assume that
subjects maintain a set of hypotheses each of which corresponds
to one such location (Carpenter &Williams, 1995; Gold & Shadlen,
2002; McMillen & Holmes, 2006; Shadlen & Gold, 2004). As
the stimulus appears, a measure of evidence for each of these
hypotheses is continuously refined, implemented as a competition
between alternative decision signals in the brain. At any given
point in post-stimulus time, these decision signals might, for
example, represent the posterior probabilities of the target
hypotheses, as derived from the subject’s prior (Basso & Wurtz,
1997, 1998; Platt & Glimcher, 1999) and the sensory evidence
(i.e., the likelihood of the data) collected up to that point in
time (Carpenter, 2004; Carpenter & Williams, 1995). As soon as
one such signal reaches a preset threshold, a saccade is elicited
towards the corresponding target. Depending on the way in which
information is assumed to be accumulated over time, two specific
types of rise-to-threshold model are often distinguished: random-
walk models and linear rise-to-threshold models.
Random-walk or diffusion models are fundamentally based

on a sequential probability ratio test that is being carried out
continually (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff &
Smith, 2004; Ratcliff, Zandt, & McKoon, 1999; Wald, 1945). In
these models, each new incoming piece of sensory evidence
either increases or decreases a single decision variable until
it has drifted beyond a threshold associated with the saccadic
movement towards a particular target. The decision variable
represents the relative evidence for the two alternatives (Ratcliff
& Rouder, 1998). However, in the case of a simple saccade-to-
target task in a high-contrast setting with highly salient targets,
it has been questioned whether a random-walk process for target
detection provides a sufficient explanation for the large variability
in latencies (Carpenter, 2004; Carpenter & Reddi, 2001; Reddi,
2001).
In linear rise-to-threshold models, randomness is introduced

as trial-by-trial changes in the otherwise constant rate of rise of
the decision signal. This notion has been formalized by Carpenter
in a model termed ‘LATER’ (linear approach to threshold with
ergodic rate; Carpenter and Williams (1995), Leach and Carpenter
(2001), Reddi, Asrress, and Carpenter (2003)). Like other rise-
to-threshold models, LATER proposes that a saccade towards
a target is elicited as soon as a neural decision signal has
reached a particular threshold. But unlike other rise-to-threshold
models (e. g., Grice (1968) and Nazir and Jacobs (1991)), it assumes
a fixed threshold and a linear increase whose rate is subject to
variation across trials, yet fixedwithin a given trial (for a debate on
the relationship between the two approaches see Carpenter and
Reddi (2001), Ratcliff (2001), Usher and McClelland (2001)). The
neurophysiological recordings by Schall and colleagues (Hanes &
Schall, 1996; Schall & Thompson, 1999) are consistent with these
key assumptions of the LATER model: they had observed that the
threshold for saccade release seemed to be constant, whereas the
slope of the rise in activity varied considerably across trials (see
Fig. 2a).
In their experiments on the saccade-to-target task, Carpen-

ter and colleagues found that the observed saccadic latency was
a function of the log probability of the corresponding target lo-
cation: the more likely the target location, the shorter the la-
tency (Carpenter & Williams, 1995). LATER accounts for this rela-
tionship by assuming that the learned a priori target probabilities
determine the baseline levels of the decision signals, but not their
rates of rise (cf. biased choice theory by Luce (1963)). Carpenter and
colleagues used LATER to produce remarkably accurate predictions
of human latency distributions in the saccade-to-target task as
well as variations of it (Asrress & Carpenter, 2001; Carpenter &
Williams, 1995; Leach & Carpenter, 2001; Reddi et al., 2003; Reddi
& Carpenter, 2000).
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A strength of the LATER model is the straightforward inter-
pretability of its parameters. LATER has thus been used to re-
late various features of observed latency distributions to the puta-
tive underlying neurophysiological process (Anderson, 2008; As-
rress & Carpenter, 2001; Carpenter & McDonald, 2007; Kurata &
Aizawa, 2004; Leach & Carpenter, 2001; Loon, Hooge, Berg, & den,
2002;Madelain, Champrenaut, & Chauvin, 2007; Reddi et al., 2003;
Sinha, Brown, & Carpenter, 2006). Furthermore, various extensions
have been proposed, such as arrangements ofmultiple LATER units
in parallel (Carpenter, 2004; Robinson, 1973), mixture models
(Nakahara, Nakamura, & Hikosaka, 2006), or the assumption that
both the rate of rise and the baseline level of the decision signal are
trial-by-trial random variables (Nakahara et al., 2006).
However, the simplicity of this model limits its applicability

in three ways. First, linear rise-to-threshold models like LATER
have only been applied to saccade-to-target situations in which
no learning took place: in previous studies, prior probabilities
of target location were always fixed in a given experimental
session, and subjects were initially given extensive training until
their performance levelled off. During learning, by contrast, the
baseline levels of the decision signals are expected to change
across trials. Even though the notion of variable baseline levels
has been discussed before (Glimcher, 2001; Nakahara et al., 2006),
no specific model has been put forward how they might evolve
dynamically depending on the history of previous trials. Second,
LATER only accounts for simple marginal probabilities, where
the probability distribution of target locations is described by
a single vector of probabilities. It does not account for higher-
order contingencies, that is, situations in which the target location
probability depends on the target location during the previous
trial. Third, within the class of linear rise-to-threshold models,
no generative model has been proposed so far that would allow
for statistical inference about parameter estimates and for model
comparison (e.g., with regard to the type of learning that occurs
across trials).
In this study, we propose a more general linear rise-to-

threshold model for visual-saccadic decision making that over-
comes the restrictions outlined above. First, we explicitly model
how subjects’ priors are systematically altered by the sequence of
stimuli observed so far. This approach makes it possible to investi-
gate how learning dynamically shapes decision making about sac-
cades. Second, our model is able to account for different forms of
learning which can be evaluated by model comparison. In partic-
ular, this allows us to investigate whether subjects’ behaviour is
not only driven by marginal but also by conditional probabilities.
Third, based on computational considerations, we propose a spe-
cific parameterization of the model. This enables parameter esti-
mation within a maximum likelihood scheme and the subsequent
construction of a classifier that can be used to distinguish subjects
with different learning profiles.

2. Methods

2.1. Task

For the present study, subjects were engaged in a sequential
reaction time task (SRTT) during which they had to elicit saccades
towards a given target in quick succession. The predictability
of the target location was modified between blocks to induce
varying forms of learning. The degree to which subjects learned
the underlying contingency of a particular block was measured by
the latencies of their saccades, that is, the time between stimulus
onset and the beginning of the saccade towards the stimulus.
The specific setup adopted in this study was based on the

saccade-to-target task proposed by Carpenter and Williams
(1995). Subjects placed their heads on a chinrest in front of a
computer screen in a dark, soundproof booth. At the beginning of
a trial, they focused on a red fixation dot (hue 0◦, luminance 0.5) at
the centre of a black screen. After a randomwaiting period between
500 and 1500 ms, a second red dot, the target, appeared on the
screen, either located at 15◦ to the left or to the right. Since the
original fixation dot remained visible, this design represented an
overlap task rather than a gap task (alternative types of waiting-
period probability distribution are examined in Oswal, Ogden, and
Carpenter (2007)). Subjects were asked to foveate the target as
quickly as possible, but not at the cost of errors. After another
700 ms, both dots disappeared, and the screen remained blank for
an inter-trial interval of 500 ms.
Based on this design, Carpenter and Williams (1995) investi-

gated the effects of fixed state probabilities for the two target lo-
cations on saccadic reaction times. For example, prior to the actual
experiment, subjectswere trained extensively on a sequence of tri-
als during which the target appeared on the left-hand side with a
probability of 70%, and on the right-hand side with a probability of
30%.
In our study, we extended this experimental design in two

ways (see Fig. 1). First, each block contained a comparatively small
number of trials, and subjects were not trained on a particular
setting before the beginning of data acquisition. In this way, data
were acquired while learning was in progress. Experimental pilots
showed that 150 trials allowed for the subjects’ performance
to stabilize sufficiently. Second, in addition to modifying target
probabilities across blocks, the probability structure underlying the
sequence of target locations was varied.
In a state-oriented block, as in previous experiments, the

sequence of target locationswas generated according to fixed state
probabilities. They were specified as a vector (p, 1−p), 0 ≤ p ≤ 1,
where p and 1 − p denote the marginal probabilities of leftward
and rightward targets, respectively.
In a transition-oriented block, the probability distribution of the

target location of the current trial was conditional on the target
location of the previous trial. Thus, given a sequence of past trials,
the probability distribution of the target on the next trial depended
on the last item of the sequence, and only on this one. A sequence
with this property is known as a first-order Markov chain, and the
change from one trial to the next as a transition. The probability
that the next target location is j, given that the current target
location is i, is given by pi,j. Thus, the sequence of target locations
was specified by the transition matrix of its underlying Markov
chain, P = [pi,j]1≤i,j≤2, where pi,1 and pi,2 denote the probabilities
of leftward and rightward targets, respectively, given that the
target of the previous trial appeared at location i. The first target
in the sequence was drawn from a uniform initial distribution π =
(0.5, 0.5); that is, the sequence of target locations was initialized
randomly, either with a leftward or with a rightward target. The
example in Table 1 shows a short sequence of trials generated from
the transition matrix

P =
[
0.7 0.3
0.3 0.7

]
.

For each trial, the table shows the probability distribution
vector fromwhich the current target location is drawn. For the first
trial, it is (0.5, 0.5). In all subsequent trials, it is either the top or
the bottom row of P , depending on whether the previous target
location was ‘left’ (top row) or ‘right’ (bottom row). The example
illustrates that, given a transition matrix with high diagonal
probabilities (a ‘stable’ transition matrix), the target tends to stay
where it was on the previous trial, and only occasionally switches
to the other side.
Finally, in a uniform block, target locations occurred on the left-

hand side and the right-hand sidewith equal chance, rendering the
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Fig. 1. Experimental design. A complete session consists of 5 blocks, each of which contains 150 trials generated from the same block-specific transitionmatrix. All matrices
shown in the main text were used to generate samples in each session. A trial consists of three consecutive stages: a fixation screen (showing a central red fixation dot); a
target screen (showing both the fixation dot and an additional leftward or rightward target dot); an inter-trial interval (showing a black screen until the beginning of the
next trial).
Table 1

Example of a sequence of target locations generated from the transition matrix
[
0.7 0.3
0.3 0.7

]
Trial 1 2 3 4 5 6 . . .

Target probabilities (0.5, 0.5) (0.7, 0.3) (0.7, 0.3) (0.7, 0.3) (0.3, 0.7) (0.3, 0.7) (0.7, 0.3)
Target location drawn Left (1) Left (1) Left (1) Right (2) Right (2) Left (1) . . .

On trial 1, the target location is always drawn from a uniform distribution (0.5, 0.5). On all subsequent trials, its probability distribution depends on the target location of
the previous trial.
sequence of targets maximally unpredictable. This block structure
served as a control condition inwhich no statistical learning across
trials should take place.
In order to avoid drowsiness, which subjects in pilot experi-

ments had displayed after 30 min of constant testing, a single ex-
perimental session was chosen to contain only 5 blocks. A break of
3 min between any two blocks was introduced to reduce the po-
tential confound of learning effects carrying over from one block
to another.
In order to allow for a unified formalism, all blocks were

specified in terms of a transition matrix P . The blocks for each
session were chosen according to the scheme in Box I.
Each session contained all five block types. Their order was

randomized in each session, and the two alternative matrices
underlying the state-oriented blocks were counterbalanced across
subjects. In order to distinguish transition-oriented learning from
simpler state-oriented learning, all transition-oriented blockswere
designed in such away that the states of the impliedMarkov chain,
1 and 2, had a uniform steady state distribution π∗ = (0.5, 0.5)
(see Papoulis (1991)). Hence, in transition-oriented blocks, targets
would, on average, appear equally often on either side, and no
state-oriented learning should take place.
Experimental data were collected from three healthy male

right-handed authors of this article with normal vision aged
between 23 and 40 years (KHB, KES, WDP; see Table 2). Eye
movements were recorded at a sampling frequency of 120 Hz
using an ASL 504 infrared remote optics eye tracker. Targets were
presented on a 27 cm × 37 cm CRT screen at a viewing distance
of 67 cm. Data acquisition and analysis were implemented using
MATLAB, Cogent 2000, and ILAB (Gitelman, 2002).
Before extracting latencies from eye recordings, blinks were

filtered by searching for invalid pupil size values. Pupil coordinates
within a time window of 25 ms around the beginning and the
end of a blink were removed. Saccades were then detected using
a standard algorithm by Fischer, Biscaldi, and Otto (1993): in the
raw recorded eye coordinateswe looked for an initial pupil velocity
of 250◦/s and searched the consecutive 100 ms time window for a
saccade of at least 10◦ that resulted in a fixation of at least 100 ms.
Any latencies below 10 ms or above 800 ms were interpreted as
artifacts and removed, as were blocks with an overall recognition
rate below 80%. Altogether, 15% of the recorded blocks were
rejected, as were 4% of the trials from accepted blocks. For the
remaining trials, we computed the latency between target onset
and the beginning of the first detected saccade.
In order to reduce the variance of latencies, each subject took

part in many sessions with an overall number of more than 20000
trials.

2.2. Modelling

Various models have been proposed over the past two decades
to explain the variability in the latencies between the appearance
of a target and the initiation of an eye movement towards it. In
one class of models, a decision signal is assumed to rise at a linear
rate until reaching a fixed threshold. The release of a saccade is
then modelled as the final outcome of this linear rise-to-threshold
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[
0.5 0.5
0.5 0.5

] [
0.7 0.3
0.7 0.3

]
or[

0.3 0.7
0.3 0.7

]
[
0.9 0.1
0.9 0.1

]
or[

0.1 0.9
0.1 0.9

] [
0.7 0.3
0.3 0.7

] [
0.9 0.1
0.1 0.9

]

‘uniform’ ‘weak state orienta-
tion’

‘strong state orientation’ ‘unstable transi-
tion orientation’

‘stable transition
orientation’

Box I.
Table 2
Number of blocks (B) and trials (T) with successfully extracted saccade latencies, per subject and type of transition matrix

Subject Uniform Weak state orientation Strong state
orientation

Unstable transition
orientation

Stable transition
orientation

All

B T B T B T B T B T B T

S-1 7 948 7 985 4 557 5 691 5 685 28 3866
S-2 12 1727 12 1736 11 1554 11 1558 9 1285 55 7860
S-3 11 1599 11 1594 12 1779 12 1755 11 1625 57 8352
mechanism (Carpenter &Williams, 1995; Leach& Carpenter, 2001;
Reddi et al., 2003). This type of model can be extended in two
ways: (i) within an individual trial, the linear rise to threshold
can be parameterized and turned into a generative model; (ii)
across trials, the dynamics of alternative forms of learning can be
integrated into the model.
The two levels can be formalized as hierarchically related intra-

trial and inter-trial sub-models, respectively. They are described
separately in the following sections. Put together, they predict
saccade latencies on the basis of the sequence of target locations
observed so far, as well as three model parameters.

2.2.1. Intra-trial modelling
We propose a generative intra-trial model that extends previ-

ousmodels of the relation between prior expectations about target
location and saccadic onset times. It describes a computational ab-
straction of putative neurophysiological processes between target
onset and the release of a saccade.
Each trial has two potential outcomes: a target appears either

on the left-hand side or on the right-hand side of the screen.Within
each trial, wemodel a subject’s belief in these two outcomes at any
given point of time as distinct decision signals S that evolve linearly
over time t until one of them hits a threshold ST . At the beginning
of a trial, both decision signals have specific initial values, with the
signal of the ‘winning’ hypothesis defined to start at S0. The initial
level S0 reflects the subject’s prior as provided by the inter-trial
model described in Section 2.2.2. As the stimulus appears at t = t0,
the two signals increase or decrease, respectively, representing the
changing belief in the two hypotheses. As soon as one of them hits
threshold, a saccade is released towards the corresponding target
location at time τ . The rate at which the decision signals rise or fall
varies over trials, accounting for the large variance of the resulting
latency distribution (see Fig. 2).
The decision process can be parameterized by modelling

subjects as Bayesian observers who collect evidence about the true
state of the world and, combined with their prior expectations,
accept one of two competing hypotheses about it (Knill & Pouget,
2004). In this scheme, the initial level of the ‘winning’ decision
signal, S0, is associated with the subject’s prior, and the rate of rise
is associated with the likelihood of the true hypothesis.
Evidence from several studies provides support for this param-

eterization. For instance, based on psychophysical experiments
in humans, Carpenter and Williams (1995) plotted latencies on
a reciprobit scale, in which normally distributed data approach a
straight line. They found that a change in themarginal probabilities
of the two target locations led to a reciprobit swivel. This change
in slope is consistent with a change in the threshold height but not
with a change in the mean rate of rise, which would cause a re-
ciprobit shift (Sinha et al., 2006). Further support for the notion that
priors determine the initial level of the decision signal rather than
its rate of rise comes from neurophysiological experiments using a
similar task to ours in monkeys (Basso & Wurtz, 1997, 1998; Rat-
cliff, Cherian, & Segraves, 2003). These studies identified neurons
in the superior colliculuswhose firing rates just before target onset
reflected the target probability but not target salience. Altogether,
these human and primate studies provide a robust foundation for
the assumption that the subjective prior systematically influences
the initial level of the decision signal, S0, before it starts to rise until
hitting threshold.
Let the two possible states of the world be denoted by hi, i ∈

{1, 2}, corresponding to the target location being xk = i,
respectively, within the current trial k. The sensory evidence for
the hypotheses hi is provided by time-continuous visual input.
Assuming this supportive evidence to be processed in small,
discrete timesteps, in a lossless fashion without any form of
temporal filter (Ludwig, Gilchrist, McSorley, & Baddeley, 2005), the
evidence at time t is referred to as et , and the accumulated evidence
for one or another hypothesis up to time t is denoted by e1..t .
Writing p(et) for the probability density of the piece of evidence
at time t , we make two simple assumptions. First, it is assumed
that p(e2|e1, hi) = p(e2|hi), that is, e1 and e2 are conditionally
independent. This means that p(et |e1..t−1, hi) = p(et |hi). Second,
since sensory stimuli e := e1 = . . . = et are equal throughout
the duration of the trial, the likelihood term p(e|hi) is taken to be
constant. It follows that

p(e1..t |hi) = p(et |e1..t−1, hi)× p(et−1|e1..t−2, hi)× · · · × p(e1|hi)
= p(et |hi)× p(et−1|hi)× · · · × p(e1|hi)

= p(e|hi)t . (1)

Subjects are modelled as permanently testing a decision rule
which determines whether they continue their observation—or
accept one of the hypotheses. FromaBayesian learning perspective
it is intuitive to consider, as a decision variable, the subjective
posterior probability of each hypothesis, given the supporting
evidence up to time t . In an iterative form, its dynamics can be
written as

P(hi|e1..t) = P(hi|et , e1..t−1)

=
p(et |hi, e1..t−1)× P(hi|e1..t−1)

p(et |e1..t−1)

=
p(et |hi)× P(hi|e1..t−1)

p(et |e1..t−1)
, (2)
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Fig. 2. Neuronal responses of a decision process and translation into a computational model. (a) Neuronal responses prior to a saccade from three trials. In their
experiment, Schall and Thompson (1999) trained rhesus monkeys to stare at a central fixation stimulus and, as soon as eight secondary targets appeared, to elicit a saccade
towards the oddball. The targets were arranged radially around the central fixation stimulus, and the location of the oddball was random. The diagram shows the recorded
activity of single movement-related neurons in the saccadic movement maps of the frontal eye fields (FEF). Trials were grouped into those with slow, medium and fast
saccades. The three plots show the averaged activity within these groups of trials, in each trial taking the activity from that neuronal response field corresponding to the
correct target location. The activity patterns show that there is a fairly constant biophysical threshold at which a saccade is irrevocably elicited (grey bar) whereas the rate at
which the signals rise varies between the groups of saccades. (Reprinted, with permission, from the Annual Review of Neuroscience, Volume 22 (c) 1999 by Annual Reviews,
www.annualreviews.org) (b) Translation into a computational model of the decision process for a single trial. The rising activation in the FEFs is modelled as a linearly rising
decision signal S. It starts off at an initial level S0 and rises at a variable rate until reaching threshold ST at time τ .
illustrating how the prior probability P(hi|e1..t−1) is turned into a
posterior probability P(hi|e1..t) as new evidence et is processed.
Using Bayes’ theorem and Eq. (1), we obtain the closed form

P(hi|e1..t) =
p(e1..t |hi)× P(hi)
2∑
i=1
p(e1..t |hi)× P(hi)

=
p(e|hi)t × P(hi)
2∑
i=1
p(e|hi)t × P(hi)

, (3)

inwhich the assumption of discretized time is no longer necessary.
However, this quantity does not rise linearly over time. Therefore,
as an alternative decision variable that can be constructed in the
case of two possible target locations, we consider the log posterior
ratio. Using (2), its iterative form can be written as

ln
P(h1|e1..t)
P(h2|e1..t)

= ln
P(h1|e1..t−1)
P(h2|e1..t−1)

+ ln
p(et |h1)
p(et |h2)

. (4)

Using (3), the closed form is

ln
P(h1|e1..t)
P(h2|e1..t)

= ln
P(h1)
P(h2)

+ t × ln
p(e|h1)
p(e|h2)

, (5)

which can be written in an analogous fashion for its counterpart
ln P(h2|e1..t )

P(h1|e1..t )
by interchanging h1 and h2. These log-odds are

attractive candidates for computational models of neuronal
processes of decision making because they (i) allow for optimal
decisionmaking and (ii) rise linearly over time, as shown in Fig. 2a.
It is assumed that a hypothesis is accepted when its decision
variable reaches a fixed threshold. This yields a decision rule that
is evaluated at each point of time t:

accept
{
xk = 1
xk = 2

}
when


ln

P(h1|e1..t)
P(h2|e1..t)

ln
P(h2|e1..t)
P(h1|e1..t)

 > ϑ, (6)

and otherwise neither is accepted. Note that equivalently optimal
decision rules, although framed somewhat differently, have been
proposed by previous authors. For example, in the case of a forced-
choice task, Gold and Shadlen (2001) consider a decision rule that is
based on the likelihood ratio of the two hypotheses: accept xk = 1
when p(e1..t |h1)p(e1..t |h2)
>

P(h2)
P(h1)
, and accept xk = 2 otherwise. This rule can

be turned into a decision rule for our task bymultiplying the right-
hand side criterion by an additional factor c that introduces the
necessary ‘temporal gap’ in which neither hypothesis is accepted.
Equating ϑ ≡ ln c , taking logarithms, and using Eq. (1), this
modified rule can be rewritten as
p(e1..t |h1)
p(e1..t |h2)

>
P(h2)
P(h1)

× eϑ

ln
P(h1)
P(h2)

+ ln
p(e|h1)t

p(e|h2)t
> ϑ

ln
P(h1)
P(h2)

+ t × ln
p(e|h1)
p(e|h2)

> ϑ, (7)

which is precisely the same rule as in (6). This means that the two
approaches are decision-equivalent.
Both the decision variable for the true hypothesis in (7) and its

counterpart for the alternative hypothesis start at specific initial
levels that represent the subject’s prior, and then rise or fall,
respectively, over time. This corresponds to the notion of the
accumulation of supportive evidence for the two rival hypotheses.
A saccade to the true target location is released at time τ when

ln
P(hxk |e1..τ )
P(hxk |e1..τ )

= ϑ

ln
P(hxk)
P(hxk)

+ τ × ln
p(e|hxk)
p(e|hxk)

= ϑ

τ =
ϑ − ln

P(hxk )
P(hxk )

ln
p(e|hxk )
p(e|hxk )

, (8)

where xk and xk ∈ {1, 2} denote the true and the false target
location of the current trial k, respectively.
The likelihood term p(e|hi) can be thought of as a descriptor of

a subject’s visual discrimination efficiency or processing capacity.
The larger it is the more quickly will an observed sensory
stimulus make the subject increase their posterior belief in the
corresponding hypothesis, and the shorter the resulting saccade
latency. One way of parameterizing this quantity is to assume
arbitrary ‘evidence units’. With

p(e|hxk) = 1+ ρ and p(e|hxk) = 1 (9)
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Fig. 3. Intra-trialmodel parameterization. The proposed intra-trialmodel has three
free parameters, represented by grey arrows. (i) ρ and (ii) σ determine the mean
and the standard deviation of the normally distributed slope of the decision signal
that corresponds to the true target location of the current trial. The larger ρ, the
shorter the predicted saccade latency τ . The larger σ , the larger the variability of
the distribution of τ . (iii) ϑ specifies the threshold the decision signal has to reach
in order to evoke a saccade. The larger ϑ , the longer the latency and the less the
influence of the initial value S0 .

the supportive evidence per unit time for the true hypothesis is
larger than the evidence for the false hypothesis, by an amount
determined by a second model parameter ρ > 0.
In addition to the parameters ϑ and ρ, we must account for the

fact that, across trials, the rate of the decision signal varies (see
Fig. 2a). Previous experiments based on the same paradigm as in
this study have found reciprocal latencies to conform to a Gaussian
distribution (Carpenter &Williams, 1995). Hence, in trial k, the rate
of the assumed decision signal, rk = 1Sk 1τk , will have a Gaussian
distribution as well, with1Sk = ST − S0,k denoting the difference
between the threshold ST and the initial level S0,k of the decision
variable (see Fig. 2b). This introduces a third model parameter σ
that describes the standard deviation of r . The parameterization of
the intra-trial model is summarized in Fig. 3.

2.2.2. Inter-trial modelling
A central assumption of our model is that, at the beginning

of each trial, the starting point of the decision signal associated
with the true hypothesis corresponds to ln

P(hxk )
P(hxk )

, i.e. the log
ratio of the prior probabilities of the correct and the incorrect
hypothesis, see Eq. (5). The evolution of the prior probabilitiesP(hi)
during a sequence of trials should reflect the learning of certain
statistical properties of the target locations. In order to investigate
what type of learning might happen during a sequence of trials
x1, x2, . . . , xN , we propose three different inter-trial models that
formalize alternative learning hypotheses.

2.2.2.1. The transition model. In the first candidate inter-trial
model, we assume that subjects act like ideal observers: while
responding to the sequence of stimuli within a block, they
continuously refine an estimate of the underlying Markov
transition matrix (see Minka (2001)).
Let P = [pi,j] be a hidden homogeneous transition matrix

with a uniform initial distribution π = (0.5, 0.5) underlying the
sequence of target locations x1, . . . , xN . The states of the Markov
chain, 1 and 2, encode leftward and rightward targets, respectively.
Let n(k−1)i,j denote the number of transitions xi → xj, for i, j ∈ {1, 2},
that have occurred in the sequence of k − 1 trials observed so
far. A maximum likelihood estimate of P could be obtained by
maximizing the log likelihood function

ln L(P̂; x1, . . . , xk−1) =
∑
i,j

n(k−1)i,j ln p̂i,j (10)
subject to
∑
j pi,j = 1 ∀i ∈ {1, 2}. Using Lagrange’s method, the

maximum likelihood estimates p̂MLi,j =
ni,j∑2
l=1 ni,l

follow.

For example, having observed the first six trials in Table 1, an
ideal observer will have counted two ‘left→left’ transitions, one
‘left→right’ transition, and so forth. From this follows an estimated
transition matrix P̂ML =

[
0.67 0.33
0.5 0.5

]
. It is the matrix that makes

the observed sequence of trials most likely.
In this form, however, an individual matrix element p̂MLi,j

remains undefined as long as ni,1 + ni,2 = 0. Instead, we
assume an initial uniform prior of p(0)i,j =

1
2 for all i, j ∈

{1, 2}, which can be thought of as an imaginary ‘prior observation
count’ of 1 for each transition event (Minka, 2001). The posterior
predictive distribution p̂(k)i,j basedon k trials then allows subsequent
generative models to yield predictions for all trials. Specifically, at
the beginning of trial k, subjects are assumed to have constructed
the estimate

P̂ (k−1) = [p̂(k−1)i,j ]i,j∈{1,2} with p̂(k−1)i,j :=
n(k−1)i,j + 1
2∑
l=1
(n(k−1)i,l + 1)

, (11)

such that p̂(k−1)i,j > 0 ∀i, j, k and p̂(0)i,j =
1
2 ∀i, j. Using this alternative

formulation, the estimated transition matrix in the above example
(Table 1) would be P̂ (6) =

[
0.6 0.4
0.5 0.5

]
.

Obtaining maximum likelihood estimates of the transition
matrix elements in this way can equivalently be viewed as a
Bayesian update scheme. By counting how often each type of
transition has occurred so far, an ideal observer can estimate the
joint probabilities P(xk−1 = i, xk = j), from which estimates
of the conditional probabilities p̂i,j ≡ P(xk = j|xk−1 = i)
can be derived (see Harrison, Duggins, and Friston (2006), for an
example).
The initial uniform matrix at the beginning of an experimental

block corresponds tomaximal uncertainty. Asmore andmore trials
are observed, the posterior of the transition matrix is refined and
gradually approaches the true matrix.

2.2.2.2. The state model. The inter-trial model outlined so far is
transition-oriented in that it assumes an observer who estimates a
transitionmatrix underlying the sequence of stimuli. Alternatively,
a state-oriented observer can be imagined who simply estimates a
state probabilities vector p̂ = (p1, p2) by counting the frequencies
ni ∀i ∈ {1, 2} of the two target locationswhile not paying attention
to the transitions between them. At the beginning of trial k ∈
{1, . . . ,N}, in analogy to the Bayesian update scheme outlined
above, this estimate is

p̂(k−1) = [p̂(k−1)i ]i∈{1,2} with p̂(k−1)i :=
n(k−1)i + 1
2∑
l=1
(n(k−1)l + 1)

, (12)

such that p̂(k−1)i > 0 ∀i for all k ∈ {1, . . . ,N}. Again, the initial
prior is assumed to be uniform, p̂(0)1 = p̂

(0)
2 =

1
2 .

Having observed the first six trials of the above example
(Table 1), a ‘state’ observer will have counted four ‘left’ trials and
two ‘right’ trials. Using (12), an estimated state probabilities vector
(0.63, 0.38)T follows. Using the same notation as in the transition
model, this estimate can be written as P̂ (6) =

[
0.63 0.38
0.63 0.38

]
.
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2.2.2.3. The uniform model. The two alternative inter-trial models
proposed so far account for different forms of learning, but they
do not question whether learning occurs at all. Therefore, a third
candidate model is proposed in which subjects are assumed to be
entirely ignorant of the history of stimuli. In this uniform model,
subjects maintain a uniform prior belief of p̂1 = p̂2 = 0.5 in
either target location throughout the experiment. Using the same
notation as in the transition model, this prior can be written as a
constant estimate P̂ (k−1) =

[
0.5 0.5
0.5 0.5

]
∀k = 1, . . . ,N .

Fig. 4 illustrates exemplary predictions generated by the
alternative inter-trial models operating on alternative block
structures. The individual diagrams show the extent to which
the models are able to adapt to the transition matrix underlying
the observed sequence of target locations. Crucially, the rate of
convergence is highest when the model structure most closely
matches the block structure. In particular, convergence takes
longer when the true block structure is more complicated than the
assumed one. For example, in the case of a uniform block, all three
models eventually settle around 0.5/0.5 predictions, but the ‘state’
model and the ‘transition’ model take longer to converge. Thus, we
will be able tomake use ofmeasured reaction times from all blocks
to find out which model explains a particular subject’s behaviour
best (Section 3.4).

2.2.3. Model construction
The two sub-models outlined above can now be integrated into

an overall generative model with three free parameters.
In our paradigm, reciprocal latencies have previously been

observed to follow a normal distribution (Carpenter & Williams,
1995). Thus, the rate of the rising decision signal can be modelled
as a random variable

Rk ∼ N (µr , σ
2), (13)

where µr and σ describe the mean and the standard deviation of
the rate across trials. Using 1

τ
=

r
1S , the reciprocal latency yk :=

1
τk

can then be modelled as a random variable

Yk ∼ N

(
1
1Sk

µr ,
1

(1Sk)2
σ 2
)
. (14)

The difference1Sk between the initial level S0,k of the decision
signal and its threshold can be expressed in terms of a model
parameter ϑ and the log prior ratio as derived in Section 2.2.1:

1Sk = ST − S0,k = ϑ − ln
P(hxk)
P(hxk)

. (15)

The mean rate of the decision signal was derived in (5) and (9):

µr = ln
p(e|hxk)
p(e|hxk)

= ln(1+ ρ). (16)

The variability of the rate across trials is described by themodel
parameter σ . The prior of the two hypotheses is given by the
corresponding entry in the transition matrix, as estimated within
the inter-trial model:
P(hxk) = p̂xk−1,xk and P(hxk) = p̂xk−1,xk = 1− p̂xk−1,xk . (17)
The overall probability distribution for reciprocal latencies,

conditional on the model parameters, is then given by

Yk|ρ, ϑ, σ ∼ N

 ln(1+ ρ)

ϑ − ln
p̂xk−1,xk
1−p̂xk−1,xk

,

 σ

ϑ − ln
p̂xk−1,xk
1−p̂xk−1,xk


2 . (18)

Note that the overall model does not propose a single parameter-
ized distribution Y , but a sequence of distributions (Yk)1≤k≤N . This
is because of its dependence on the output of the inter-trial model,
p̂xk−1,xk , which in turn depends on the sequence of target locations
(x1, . . . , xk−1) observed so far.
2.3. Parameter estimation

Each candidate model constructed in the preceding section
proposes a particular distribution of reciprocal saccade latencies
parameterized by a vector θ = (ρ, ϑ, σ ). Fig. 3 indicates that
the parameters are not perfectly independent in their effect on
the resulting predictions. For example, an increase in predicted
response speed can be obtained by either decreasing the threshold
ϑ or by increasing the rate of the decision signal ρ. Note,
however, that this also alters the dependence of reaction times
on the subject’s priors, so the parameters are not completely
interchangeable. Nevertheless, to avoid numerical identifiability
problems during parameter estimation, we reparameterized the
model such that the rate ρ is expressed as per unit threshold,
i.e. ρ → ρ/ϑ . Moreover, since the dispersion parameter σ must
take a non-negative value, we used a log-transform. Thus, during
numerical parameter estimation, the model was parameterized by
θ ′ = (ρ/ϑ, ϑ, ln σ).
The maximum likelihood principle identifies those model

parameters of the distributions of Y1, . . . , YN that are most likely
to give rise to the data y1, . . . , yN . An estimate θ̂ML = (ρ̂, ϑ̂, σ̂ ) can
be found by maximizing

ln
N∏
k=1

pk(yk|θ) = −
N
2
ln 2π −

N∑
k=1

ln
σ

ϑ − ln
p̂xk−1,xk
1−p̂xk−1,xk

−

N∑
k=1

yk − ln(1+ρ)

ϑ−ln
p̂xk−1,xk
1−p̂xk−1,xk

2

2

 σ

ϑ−ln
p̂xk−1,xk
1−p̂xk−1,xk

2
(19)

with respect to θ . The implementation can be simplified by
omitting the term −N2 ln 2π which does not depend on the free
parameters. Multiplying the expression by (−1), the maximum
likelihood estimate θ̂ML is then found as the solution to a
minimization problem with respect to ϑ , ρ, σ .

3. Results

3.1. Data analysis

In order to validate our paradigm, we replicated two key
results by Carpenter and Williams (1995). First, latencies varied
considerably over trials. Across our 20078 trials, we found an
overall mean of µ = 262 ms and a standard deviation of σ =
65 ms. Second, reciprocal latencies τk = 1/yk, with µ = 4.02 ×
10−3 ms and σ = 1.67× 10−3 ms, closely approximated a normal
distribution (see Fig. 5).
Above and beyond these descriptive features, Carpenter and

colleagues showed that latencies declined as the learned state
probability of the corresponding target location increased (Basso
& Wurtz, 1997, 1998; Carpenter & Williams, 1995). Specifically,
they found a significant negative linear relation between log prior
probabilities and latencies. In our study,we replicated these results
as well, finding a very similar negative linear relation between
log state probabilities and latencies in our state-oriented blocks
(p < 0.01). We further extended this analysis to transition
probabilities. Using a linear regression analysis, we found a
significant relation (p < 0.01) between reciprocal latencies and
log transition probabilities (see Fig. 6). Even though this analysis
neglects the dynamics of learning completely, it already indicates
that human observers are sensitive to transition probabilities in
visual input statistics. Yet formal model comparison will provide
much stronger evidence for this claim.
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Fig. 4. Log prior ratios predicted by the alternative inter-trial models. Each diagram is based on the combination of a particular block structure (transition-oriented, state-
oriented, or uniform) and a particular inter-trial model (‘transition’ model, ‘state’ model, or ‘uniform’ model). For each trial, the diagrams show the target location (black
dots), with high and low markers indicating leftward and rightward targets. Furthermore, they show the log ratio between the prior probability of the true and the false
target location (grey squares) as well as a prediction for this log ratio, generated by the respective inter-trial model (black crosses). Since the models are always initialized
with uniform priors, the predicted log ratio for trial k = 1 is ln(0.5/0.5) = 0. The upper left diagram, for example, shows how the ‘transition’ model gradually adapts to the
transition-oriented block structure underlying the observed sequence of trials. By contrast, the central diagram in the left column shows that the ‘state’ model is incapable
of learning the structure of a transition-oriented block.
Fig. 5. Histogram of latencies and reciprocals. The diagrams are based on 28 blocks containing 3866 trials from subject S-1. While the latencies themselves have often been
described as log normally distributed (Glimcher, 2003), their reciprocals can be approximated by a normal distribution (Carpenter & Williams, 1995).
3.2. Parameter estimation

In order to obtain maximum likelihood parameter estimates
from Eq. (19), a gradient-descent scheme was run on the acquired
data from all three subjects separately. The results are given in
Table 3.
In order to visualize the dependence between conditional prob-

abilities and latencies, and provide face validity for our parameter
estimates, one of the subjects was engaged in an additional ses-
sion consisting of 10 transition-oriented blocks with identical se-
quences initially generated from a

[
0.8 0.2
0.2 0.8

]
transitionmatrix. We

fitted the model to the data and predicted the priors p̂xk−1,xk using
the ‘transition’model. Fig. 7 shows howobserved latencies develop
over time and how this is reflected by model predictions.
In order to give a qualitative comparison between the predictive

power of the three competing inter-trial models, Fig. 8 visualizes
measured latencies versus model predictions. The individual
diagrams show a marked separation between trials in which the
target has just switched to the other side (crosses) and those
in which it has not (dots). As expected from a subject that
learns transition probabilities, switch trials lead to long latencies,
i.e. short reciprocals; accordingly, crosses have low x-coordinates.
Conversely, non-switch trials lead to short latencies, i.e. long
reciprocals; accordingly, dots have high x-coordinates. Looking at
the y-coordinates, the ‘transition’ model is the only model that
predicts these two clusters of trials.

3.3. Statistical classification

The parameter estimates obtained for each subject are suffi-
ciently distinct to demonstrate the use of a statistical classifier that
maps an unseen test sample onto the correct class (Jain, Duin, &
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Fig. 6. Saccade latencies and error bars. (a) Saccade latencies versus true state probabilities, based on all trials from state-oriented blocks across all subjects. (b) Saccade
latencies versus true transition probabilities, based on all transition-oriented blocks across all subjects. Both diagrams show how saccade latencies decrease with increasing
true probability of the respective target location.
Table 3
Maximum likelihood parameter estimation for different inter-trial models (values rounded to 3 significant figures)

Inter-trial model Subject S-1 Subject S-2 Subject S-3
ρ ϑ ln σ ρ ϑ ln σ ρ ϑ ln σ

Uniform model 0.0766 24.03 −4.18 0.0327 7.87 −5.06 0.0615 13.7 −4.95
State model 0.199 59.6 −3.28 0.126 29.6 −3.77 0.631 113 −2.85
Transition model 0.0724 23.5 −4.26 0.109 26.1 −3.92 1.37 200 −2.28
Fig. 7. Averaged observed and predicted latencies. The diagram shows saccade
latencies from an additional experimental session subject S-1 was engaged in.
The dataset consists of 10 transition-oriented blocks, each designed to contain an
identical left/right sequence of 150 target locations. The diagramshows the trial-by-
trial target locations as separate lines of black dots at the bottom (leftward targets:
lower line; rightward targets: upper line). The observed latencies, averaged over
these 10 sessions, are plotted in black, and their respective model predictions in
grey. Observations and predictions of trials in which the target location has stayed
on the same side are shown as small black dots and grey circles, respectively.
Observations and predictions of trials in which the target location has just switched
to the other side are depicted as black crosses and grey squares, respectively.
Predicted reaction times (grey circles and squares) show two key features of an
ideal observer who is sensitive to transition probabilities. First, whenever there is
a sequence of trials with identical target locations (a ‘run’), reaction times drop
continuously as the estimated prior probability of that target location increases.
Second, whenever the target changes to the other side (a ‘switch’), there is a single
long-reaction-time trial, followed by a return to the previous, lower level of reaction
times.

Mao, 2000). Such a classifier could be used to (i) separate groups
of individuals that exhibit similar learning profiles, or (ii) find out
whether there are systematic differences betweenhealthy subjects
and patients.
A class can be regarded as a discrete random variable C and the

eye movement data as a vector of continuous random variables
Y = (Y1, . . . , YN)with observed realizations y = (y1, . . . , yN). For
illustration purposes, let the classes in C = {c1, c2, c3} correspond
to the three subjects themselves. Then, given a test sample of
unseen saccade data y, the classifier is to return

c∗ = argmax
c∈C

P(C = c|Y = y). (20)

Using Bayes’ theoremand the fact that saccade latencies y1, . . . , yN
are independently drawn from their respective underlying distri-
butions, the right-hand side can be rewritten as

P(C = c|Y = y) =
p(C = c, Y = y)

p(y)
(21)

=
P(C = c)× p(y|C = c)

p(y)
(22)

∝ P(C = c)
N∏
k=1

pk(yk|C = c). (23)

We based the classifier on the ‘transition’ model which showed
a reasonable fit across all subjects, and trained it by finding
maximum likelihood estimates of labelled training data from the
three subjects (see Table 4). The unknown parameters of the
distribution in Eq. (18) were then replaced by these estimates,
yielding approximations for the class-conditional probability
densities p(y|C = c). The priors were chosen to be flat, i.e. P(C =
c) = 1

3 ∀c ∈ C. In future applications, when particular classes
are to be distinguished such as subgroups of a disease, the priors
would be given by the unconditional frequencies of the different
conditions.
Table 5 shows the resulting joint probabilities p(c, y) ∝

p(c|y) ∀c ∈ C as determined by the classifier.
The table shows that the classifier has assigned the test sample

to the correct class in all cases.
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Fig. 8. Averaged observed versus predicted reciprocal latencies from Fig. 7. In each of the diagrams, predicted reciprocal latencies (y-axis) are plotted against their
observations (x-axis). The diagrams are based on the ‘transition,’ the ‘state,’ and the ‘uniform’ model, respectively, applied to the same dataset as in Fig. 7. Thus, the x-
coordinates of the data points are the same in all three diagrams, whereas their y-coordinates differ. Predictions were generated by the alternative models after being
individually fitted to the data. The main diagonal represents a perfect match between observations and predictions.
Table 4
Parameter estimation for subsequent classification, based on a subset of the original
data (S-1: 6 out of 8 blocks. S-2: 9 out of 12 blocks. S-3: 9 out of 12 blocks)

Class Training sample y Parameter estimate
(ρ, ϑ, ln σ)

P(C = c)

c1 3049 out of 3866 trials 0.0724, 23.5,−4.26 0.333
c2 5999 out of 7860 trials 0.116, 27.5,−3.89 0.333
c3 6l35 out of 8352 trials 1.543, 216.32,−2.147 0.333

Fig. 4 provides some intuition as to what specific properties of a
sequence of latencies allow the classifier to distinguish between
different inter-trial models. In a transition-oriented block (left
column in the figure), for instance, the ‘transition’ model predicts
that log prior ratios fall into two groups: negative and positive ones
(top-left diagram). Accordingly, saccadic latencies are expected to
be separated into long-latency and short-latency saccades. The
‘state’ model, by contrast, predicts the convergence of log prior
ratios around zero (mid-left diagram), and saccadic latencies are
expected to display relatively low variability around their mean.
Finally, the ‘uniform’ model predicts that log prior ratios remain
fixed at zero.

3.4. Model comparison

The maximum likelihood approach discussed so far does not
only yield a point estimate of the model parameters. It can also be
used to compare the competing inter-trial models. The question
of which model explains the observed data best can be posed
explicitly by comparing

ln p(y|M) = 〈ln p(y, θ |M)〉q(θ) + 〈ln q(θ)〉q(θ)
+DKL(q(θ)|p(θ |y,M))

≈ ln
N∏
k=1

p(yk|θ̂MML,M)+ const (24)

for each inter-trial modelM , where we approximate the unknown
parameter distribution q(θ) by a Dirac-delta distribution at
θ̂MML. The likelihood term evaluated at the maximum likelihood
parameter estimate, p(y|θ̂MML,M), is an approximation to themodel
evidence, p(y|M). When competing models do not differ with
regard to their parameterization (as in our case, where model
differences are restricted to the parameter-free function describing
the ideal observer), these models can be compared using their
likelihood ratio, which is an approximation to the model evidence
ratio, or Bayes factor (see Kass and Raftery (1995)). Since the
logarithm is a monotonic function, it is common practice, and
usually more convenient, to compute and report the log likelihood
ratio. Hence, differences between bar lengths in Fig. 9 represent
the log likelihood ratio between the associated models (note that
differences between logs are mathematically equivalent to the log
of the ratio).
The negative log likelihood values of the competing inter-trial

models fitted to different subsets of the data are given in Fig. 9.
Each diagram is based on a particular subject and a particular type
of block structure. Note that it is meaningless to compare absolute
values between subjects since they depend on themere number of
trials a subjectwas engaged in. Instead, the likelihood value of each
model must be interpreted in relation to the likelihood values of
the other models from the same subject and block structure. Each
diagram has been scaled individually so as to emphasize the full
range between the lowest and the highest likelihood.
The data show that model fit differences vary considerably

across subjects. In subjects S-1 and S-2, there is very strong
evidence for the ‘transition’ model compared to the ‘uniform’ and
the ‘state’ model. In subject S-1, for example, the likelihood ratio
between the ‘transition’ model and the ‘state’ model, each fitted to
all blocks, is exp(23 053.79 − 22 964.11) ≈ 8.9 × 1038, that is,
the ‘transition’ model is muchmore likely to underlie the observed
data than the ‘state’ model. Similarly, it is exp(23 053.79 −
22 953.8) ≈ 2.7×1043 timesmore likely than the ‘uniform’model.
In subject S-3, by contrast, the ‘state’ model allows for the best
fit. For this subject, the likelihood ratios are much smaller than in
the other two subjects, but they still constitute strong evidence in
favour of the ‘state’ model. For the experimental data presented
here, there was always strong evidence for one particular model in
each combination of subject and block type.
The most salient result within the diagrams is that for each

subject the samemodel is found to be optimal for all three data sets.
The probability of this happening by chance is 3

33
=
1
9 within each

subject, and therefore p = ( 19 )
3
≈ 0.001 for the three subjects as

a whole.

4. Discussion

In this article, we have extended the class of linear rise-to-
threshold models of the relation between a priori probabilities of
target location and saccadic latencies. These models are centered
around the intuitive, and empirically supported, notion of a deci-
sion signal that rises over time until reaching a fixed threshold.We
have presented a generative, hierarchicalmodel that combines two
separate sub-models for learning of target locations across trials
and the decision-making process within a trial, respectively. This
has enabled three lines of progress: (i) explicit modelling of how
subjects’ priors change across trials as a function of stimulus his-
tory, which makes it possible to investigate how saccadic decision



1258 K.H. Brodersen et al. / Neural Networks 21 (2008) 1247–1260
Fig. 9. Negative log likelihood of the inter-trial models fitted to alternative subsets of the data. Each diagram shows the negative likelihood of the ‘uniform,’ the ‘state,’
and the ‘transition’ model when fitted to the data of a particular subject (rows) confronted with a sequence of target locations generated from a uniform, state-oriented, or
transition-oriented block (columns). The rightmost column shows the negative likelihood of the model fitted to all blocks of a particular subject. The smaller the negative
log likelihood, the better the model fit.
Table 5
Classification results

Subject Test sample y ln P30 ln P31 ln P32 c∗

S-1 817 trials 0.495× 104 0.395× 104 0.234× 104 c1
S-2 1861 trials 0.873× 104 1.05× 104 0.957× 104 c2
S-3 2217 trials 0.880× 104 1.33× 104 1.39× 104 c3

The classifier was run on three test samples taken from the three subjects. It computed the joint probabilities p(c, y) ∝ p(c|y) for all classes c1, c2, c3 , and assigned each test
sample to the class c∗ that maximized this joint probability (printed in bold font).
making is dynamically shaped by learning; (ii) a model parameter-
ization, inspired by computational considerations, which enables
maximum likelihood parameter estimation and the subsequent
construction of classifiers for distinguishing subjects with differ-
ent learning profiles; (iii) differentiation between specific forms
of learning by model comparison, e.g., the question of whether
saccades are more influenced by marginal or by conditional
probabilities.
The focus of this paper is a methodological one, and its

primary goal is not to providemajor novel neurobiological insights.
Nevertheless, we acquired eye movement data from three healthy
subjects performing a well-established and simple binary saccadic
task. In order to make our results comparable to previous ones, we
used the same paradigm as Carpenter and Williams (1995). The
aim of this empirical data analysis was to demonstrate the face
validity of our modelling approach by showing that under realistic
noise levels, as found in standard saccade measurements with
infrared video technology, consistent and subject-specific learning
profiles can be identified. Indeed, our analysis showed that (i) the
behavioural pattern observed in each subjectwas consistent across
all experimental sessions and that (ii) it was distinct from the
patterns of the other subjects.
The question that led to these findings was what sort of

learning underlies changes of prior probabilities across trials in a
particular subject. In our analyses of empirical data, we evaluated
three different inter-trial learning models: a ‘state’ model (which
learns the marginal probabilities of target locations), a ‘transition’
model (which learns the conditional probabilities of a transition
matrix), and a ‘uniform’ model (representing the hypothesis that
no learning takes place and prior probabilities therefore remain
constant). Fitting the three alternative models to different subsets
of the data shows that there is least evidence for the ‘uniform’
model in all cases.We can conclude from this that humanobservers
do take into account the probabilistic structure underlying the
sequence of trials. This finding was compatible with simple linear
regression analyses of the relation between log prior probability
ratios and reciprocal saccade latencies. In these analyses, we fully
replicated the previous results by Carpenter and colleagues, who
had reported a significant negative correlation between log prior
marginal probabilities and reciprocal saccade latencies (Basso &
Wurtz, 1997, 1998; Carpenter & Williams, 1995). In addition,
we found a significant negative correlation between log prior
transition probability ratios and reciprocal saccade latencies. This
demonstrates that human observers are sensitive to conditional
probabilities, not merely to the marginal probabilities, of target
locations.
A particularly interesting finding is that in each of our three

subjects there was one model (the ‘transition’ model in subjects
S-1 and S-2, and the ‘state’ model in subject S-3) that performed
best for all data sets, independent of the hidden probability
structure underlying the stimulus sequence. The probability of
obtaining such a pattern by chance is very small (p < 0.01).
In addition, model comparison, on the basis of likelihood ratios,
showed that in each condition the best model allowed for a much
better fit than both other models. This suggests that each subject
exhibited an inherent and individual learning profile, independent
of the current block type. This notion is also confirmed by our
classification results, in which all unknown test samples were
mapped onto the correct subject.
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Although related modelling principles have been used in
previous studies, these were implemented for rather different
experimental paradigms. For example, Maddox (2002) has looked
at a broad range of mathematical frameworks for optimal decision
criterion learning in perceptual categorization tasks. In this type
of experiment, subjects are asked to assign the correct category to
a given stimulus, and a typical modelling approach is to assume
that they aim to maximize expected reward. Smith, Wirth, Suzuki,
and Brown (2007) consider a paradigm in which subjects are
required to associate different cues with different actions. They
propose a novel way of analysing such interleaved learning by
means of a state-space model that provides a single framework
for all associations to be learned. Corrado, Sugrue, Seung, and
Newsome (2005) and Lau and Glimcher (2005) analyse sequential
choice tasks with probabilistic reinforcers. They propose attractive
candidate models that are capable of implementing the matching
law described by Herrnstein (1961). Finally, several alternative
models for two-choice reaction time tasks were compared
by Ratcliff and Smith (2004), who showed that these models, even
though based on very different assumptions, often led to similar
predictions, at least for very simple tasks.
The above studies describe powerful approaches for character-

izing and analysing learning and choice behaviour for a variety of
tasks. In this study, by contrast, we were considering a different
type of decision task, and we were aiming for a different type of
insight. In our paradigm, subjects were not asked to assign a given
sample to one of several overlapping categories; decisions were
not associated with a reward; and there were no probabilistic re-
inforcers. Instead, subjects were confronted with a target that was
extremely easily detectable, there were only two alternative re-
sponses per trial, and no behavioural feedback (e.g., rewards) was
given. Similarly, we were not aiming to model the cognitive state
of subjectswho are evaluating the potential outcome of alternative
decisions, or who are learning to associate a cue with a particular
action. Instead, we attempted to model subjects’ reaction times in
response to an extremely simple stimulus, and how these reaction
times depended on learned statistical distributions about stimulus
properties.
There are several potential lines of future research that could

be based on the model presented in this paper. For example, an
interesting extension would be to consider additional inter-trial
models, e.g., differently parameterized ‘declining-memory’models
which represent forgetful observers, or observers that adapt their
learning rate to the volatility of the environment (Behrens, Wool-
rich, Walton, & Rushworth, 2007). Because of different numbers of
parameters in such models, however, model comparison could no
longer be pursued on the basis of log likelihood ratios. Instead, one
would require an approach that takes into account both model fit
and model complexity, e.g., Bayesian model selection based on the
model evidence (Penny, Stephan,Mechelli, & Friston, 2004). For ex-
ample, different forms of online learning of the probability distri-
bution fromwhich a sequence of events is drawnhave been used in
the context of modelling SRTT neuroimaging data (Harrison et al.,
2006; Strange, Duggins, Penny, Dolan, & Friston, 2005).
Another interesting question would be to investigate the

extent to which the explanatory power of linear rise-to-threshold
models is restricted to high-contrast settings in which the
time taken for decision is often assumed to dominate the
time for detection (Carpenter, 2004). This could be addressed
by explicitly comparing linear-rise models to random-walk (or
diffusion) models while systematically modifying the salience of
the target (for a debate on the relationship between the two
approaches see Carpenter and Reddi (2001) and Ratcliff (2001)).
Furthermore, the way the brain might implement Bayesian

inference can be expressed in alternative mathematical ways
(Jazayeri & Movshon, 2006; Ma, Beck, Latham, & Pouget, 2006;
Rao, 2004). Current linear-rise models assume an implementation
that is instantaneous in that the subject’s posterior belief in the
competing hypotheses is calculated on the basis of evidence that
evolves over time. That is, each piece of new evidence instanta-
neously leads to an update. Alternatively, Bayesian inference could
be expressed in terms of a gradient-ascent scheme on the free en-
ergy which would converge to the true posterior probability of ei-
ther hypothesis.
Given the dependence of learning on synaptic plasticity and

neuromodulatory systems, the modelling approach described
in this paper could be of interest for clinical applications,
particularly in psychiatry (Stephan, Baldeweg, & Friston, 2006).
One potential long-term target for clinical application of learning
models of eye movements is schizophrenia. Among the most
promising endophenotypes of schizophrenia are abnormalities
both in antisaccade tasks (McDowell et al., 2002) and learning
tasks (Stephan et al., 2006). These abnormalities are usually
observed as subtle statistical discrepancies between groups of
healthy subjects and patients. However, to our knowledge,
these observations have not yet been successfully used for
the development of richer classification systems as well as
corresponding subject-specific diagnostics. Further investigation
of the release of eye saccades and learning effects from a
psychophysical perspective might help to detect systematic
differences between healthy and diseased individuals in order
to eventually improve early diagnosis. For example, classifiers
(albeit more powerful ones than the example used in Section 3.3)
could be used to map test samples from patients onto classes
that correspond to different subgroups of a disease. In this
way, Bayesian learning models could become a valuable tool
for studying physiological and pathophysiological mechanisms of
saccadic eye movements.
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