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Bayesian Nonstationary Autoregressive Models for
Biomedical Signal Analysis

Michael J. Cassidy* and William D. Penny

Abstract—We describe a variational Bayesian algorithm
for the estimation of a multivariate autoregressive model with
time-varying coefficients that adapt according to a linear dynam-
ical system. The algorithm allows for time and frequency domain
characterization of nonstationary multivariate signals and is
especially suited to the analysis of event-related data. Results
are presented on synthetic data and real electroencephalogram
data recorded in event-related desynchronization and photic
synchronization scenarios.

Index Terms—Autoregressive modeling, Bayesian, Kalman
smoother, variational Bayes.

I. INTRODUCTION

WE present an algorithm for modeling nonstationary
multivariate time series and apply it to the analysis

of biomedical signals. The model consists of a multivariate
autoregressive (MAR) process with time-varying coefficients
that adapt according to a linear dynamical system (LDS).
While such a model is not new, the contribution of this paper
is to present a fully Bayesian implementation which allows us
to retain the full generality of the approach while deriving a
practical algorithm.

The implementation has been made possible by the adop-
tion of the “variational Bayesian (VB)” framework [1]. This
paper represents a further step in the development of Bayesian
signal processing algorithms where we have, so far, applied VB
to stationary MAR models [2] and univariate Gaussian [3] and
Non-Gaussian [4] AR models.

In Section II, we describe our basic time series model. Other
authors have also developed algorithms for VB learning applied
to linear dynamical systems, so we contrast our model with the
one derived in [15], where a general class of conjugate-exponen-
tial models were considered with the linear state-space model
emerging as a special case. One purpose of this paper is to try
and bridge the gap between the specialized signal processing
community and the experimental scientists who could find many
useful applications of these new theoretical ideas. The nonsta-
tionary MAR model is of particular interest in this respect due
to the strong physical interpretation of its model parameters.
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In Section III, we describe the key principles behind the
VB approach. In Section IV, we show how to apply VB to
nonstationary MAR models and derive a set of update rules
which are a generalization of Shumway and Stoffer’s [5]
expectation-maximization (EM) algorithm for time-series anal-
ysis. In Section V, we apply our algorithm to some synthetic
data and also to electroencephalogram (EEG) data obtained
from two different experimental scenarios. The first is a photic
synchronization experiment, in which the EEG activity can be
forced into synchrony with a strobe light flashing at frequencies
close to the resting alpha state. The second example presents
results from an event-related desynchronization (ERD) exper-
iment. ERD describes the phenomenon where just before a
voluntary movement takes place, the spectral power drops in
the EEG recorded over the motor cortex in the alpha frequency
band. These two scenarios provide data with well documented
physiological changes that are suitable for study with our
algorithm.

II. THE NONSTATIONARY MAR MODEL

In what follows, the notation , and refer to the
Gaussian, Gamma, and Wishart probability densities which,
for convenience, are defined in Appendix.

Our model is a linear dynamical system for -variate ob-
servations and a latent-space of dimension. The state-space
equations are

(1)

where , , and and
are precision (inverse covariance) matrices. The variables

are state variables and the observations. They are vectors of
dimension and , respectively.

A common way of writing the MAR(p) process expresses the
term as , where are the MAR coeffi-
cients at lag (not to be confused with the state transition ma-
trix ) and is the “order” of the model. If one concatenates the
coefficient matrices in a row to form a matrix ,
one can then stack the columns of to form the vector

, where vec denotes the stacking operation and
. is the appropriate lag matrix at time, which em-

bodies past values of the observations . We have

(2)

(3)

(4)
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which define the observation model, state transition model
and initial state distribution. denotes a multivariate
Gaussian with mean and covariance .

If we knew , , and then the hidden state variables (MAR
coefficients) could be inferred from the preceeding time series
using a Kalman filter [6]. The benefits of Kalman filters over
least mean squares (LMS) and recursive least squares (RLS)
algorithms are well known and are demonstrated, for example,
in [7].

Now, in this paper we concern ourselves, not with real-time
processing of signals, but with the retrospective analysis of data
sets that have already been collected. For this reason, we can use
both preceeding and succeeding time series samples for state
estimation. This leads to the Kalman smoother [8].

In practice, however, we do not know, , and and so, in
the engineering literature, these matrices are either set to arbi-
trary values or variousad-hoc/suboptimal procedures are used
for their estimation. In the statistics literature, however, it has
long been known that these matrices can be learned using an
EM algorithm [5]. In the E-step, the hidden variables are esti-
mated using a Kalman smoother and, in the M-step, the, ,
and matrices are updated. The E and M steps are iterated so
as to maximize the likelihood of the data.

A problem with the EM approach, however, is that like all
maximum-likelihood (ML) methods it is sensitive to overfitting.
For nonstationary models of the type, we are considering the sit-
uation is particularly acute as we have many model parameters
(MAR matrices ateachtime point, state transition and noise ma-
trices etc.) and may often have few data points (i.e., short-time
series). This has prevented a wider application of the EM al-
gorithm in this context. In this paper, however, we show how
overfitting can be prevented using a Bayesian approach; priors
over parameters act as regularizers and so prevent overfitting
(see e.g., [9] for a treatment of Bayesian methods in signal pro-
cessing).

In Bayesian learning, one is generally interested in calcu-
lating the evidence of various models. To calculate the evidence
one just multiplies the model likelihood by the priors, and then
integrates over the parameters. In some cases, this integral can
be solved analytically, but when the evidence integral is ana-
lytically intractable one has to resort to approximation tech-
niques. The VB approach is one such technique and as was
mentioned earlier, has been applied to the linear Gaussian state-
space model in [15]. The model presented here differs from the
model presented in [15] in a number of respects, which we now
discuss.

The first point to note is that we have a constrainedma-
trix because the elements of are determined by the previous
values of the time series in the manner described above. In [15],
this matrix is constant and unconstrained (i.e., ). The
MAR model, therefore, shows a dependency betweenand
the previous value which is not present in the standard
state-space model. In this paper, we make the assumption that
these variables are actually independent, an assumption that has
been made in previous ML nonstationary MAR algorithms [7],
[19]. During the review process, it has been brought to our at-
tention that the estimation equations of the Kalman filter can
also be designed for state-space models where the matrixis

a function of the previous observations [17]. In this paper, how-
ever, we retain the independence assumption and leave this pos-
sible extension to future work.

The fact that is constant in [15] allows the authors to set the
state noise covariance to the identity because arbitrary rescaling
of this noise can be achieved through changes to, , and .
In our model, we are not free to absorb rescaling in, so we
must infer . In addition, the authors of [15] constrainto be
diagonal whereas we keep the observation noise covariance ma-
trix unconstrained. These differences prevent an easy translation
between the results of [15] and those presented here. Neverthe-
less, the reader is advised to refer to [15] and the companion
paper [16] for more details on VB learning in linear Gaussian
state-space models.

A. Priors

In this section, we describe the priors used in our model.
Firstly, we place a Gaussian prior on the state transition matrix

(5)

Here, represents the identity matrix and the Gaussian den-
sity is defined in Appendix (45). Therefore, in the ab-
sence of evidence to the contrary, the state transition is inferred
to be equal to the identity matrix implying that there is no deter-
ministic evolution of the state. The quantityis the prior pre-
cision of the state-transition elements. We then place a Gamma
(see (47)) (hyper) prior on the precision

(6)

We make this “uninformative” (i.e., broad) by using the settings

(7)

For the state noise and observation noise precisions, one can use

(8)

where is a Wishart density (see (49)). In this paper,
however, we set and giving the
improper priors

(9)

The overall joint density is

(10)

where denotes the data, denotes the hidden
variables and denotes the model parameters, , , and .
The overall probabilistic model is shown in Fig. 1, which indi-
cates dependencies between the different variables.

III. V ARIATIONAL BAYES

The central quantity of interest in Bayesian learning is the
posterior distribution . This implies estimation both
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Fig. 1. Nonstationary autoregressive model. The autoregressive coefficients
x are modeled as a linear dynamical system. The precision of the observations
is given byR and the coefficients evolve deterministically via the transformA
and stochastically via additive noise with precisionQ. Each element ofA has
prior precision�.

of the parameters, the hidden variables and the uncertain-
ties associated with their estimation. In our nonstationary MAR
model, the MAR coefficients take the place of the hidden
variables and the other variables (state noise and observation
noise precision matrices etc.) are considered as parameters. The
model parameters and hidden variables can all be learned
within the VB framework, a full tutorial on which is given in
[1]. In what follows, we describe the key features.

Given a probabilistic model of the data, the log of the “evi-
dence” or “marginal likelihood” can be written as

(11)

Here, is to be considered, for the moment, as an arbi-
trary density. We have

(12)

which is known (to physicists) as the negative variational free
energy and

(13)

is the -divergence [10] between the density and
the true posterior .

Equation (11) is the fundamental equation of the VB-frame-
work. Importantly, because the -divergence is always pos-
itive [10], provides a lower bound on the model evidence.
Moreover, because the -divergence is zero when the two
densities are the same, will become equal to the model ev-
idence when is equal to the true posterior. For this
reason, can be viewed as anapproximate posterior.

The aim of VB-learning is to maximize and so make the
approximate posterior as close as possible to the true posterior.
To obtain a practical learninig algorithm we must also ensure
that the integrals in are tractable. One generic procedure for
attaining this goal is to assume that the approximating density
factorizes over groups of parameters (in physics this is known
as the mean-field approximation). Thus, following [11], we con-
sider:

(14)

where is the th group of parameters. The distributions which
maximize can then, via the calculus of variations, be shown
to be

(15)

where

(16)

and denotes all parametersnot in the th group. A similar
expression exists for . Note that, importantly, this means
we are able to determine the optimal analyticform of the com-
ponent posteriors. This is to be contrasted with, for example,
Laplace approximations where we have to arbitrarily fix the
form of the component posteriors to be Gaussian [9].

The above principles lead to a set of coupled update rules for
theparametersof the component posteriors, iterated application
of which leads to the desired maximization. Further, by com-
puting for models of different order, we can perform model
order selection (see e.g., [3]), although this is beyond the scope
of the present paper. The free energy expression for our model is
derived in Appendix. Updates for the parameters of the hidden
variable posterior are analogous to the E-step in EM learning
and the other updates are analogous to the M-Step.

IV. UPDATE RULES

By plugging in the likelihood and priors for our nonstationary
AR model (from Section II) into (15), the optimal components
of the approximate posterior turn out to be

(17)

Note that, for each component, the form of the approximate pos-
terior is the same as the prior. In fact, this is no accident, as we
chose the priors so as to achieve this (for a discussion of such
“conjugate” priors, see [12]). In what follows, we show how
the parameters of these distributions are updated. We also show
that if we remove the priors we recover Shumway and Stoffer’s
MLEM algorithm [5].

A. E-Step

In this step, we update our distribution over hidden vari-
ables and using a modified smoothing algorithm. As
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emphasized in [15], the only difference between VB-Kalman
smoothing and the standard Kalman smoothing algorithm
is the use of expectations instead of point estimates (e.g.,
instead of ). A lengthy derivation of the variational Kalman
smoother relations is presented in [16], so are not re-presented
here. Here we only note that the modified Kalman smoothing
algorithm requires computation of expectation terms of the
form , where is some matrix. Although these
expectations are relatively straightforward to evaluate, they are
computationally intensive, and especially so for models with
high MAR model order. We, therefore, use the approximation

(18)

which gives qualitatively similar results and is much quicker
to compute. As a result our E step is identical in form to the
traditional Kalman smoother. For convenience, these recursions
are given in Appendix. The computational complexity of the
E-step is, therefore, comparable with that of the standard
Kalman smoother.

B. M-Step

We now present the results of the VB M step of our algorithm.
For clarity, we include a detailed derivation of the update for

. We only present final results for the other updates, as the
procedure for derivation is identical in each case.

1) Update for : Equations (15) and (16) give the general
procedure for updating parameters. Applied to the observation
noise precision matrix , they give

(19)

where

(20)

The required density is, therefore, in the form of a Wishart
, where

(21)

The second term in is the average observed covariance that is
not explained by . This is identical to the VB update for the
noise precision in a stationary MAR model (see [2, Eq. (28)]).

2) Update for : The update for the state-transformation
matrix , where is given by

(22)

where and are intermediate quantities obtained from
the E-step and defined in (36). For , the s cancel, leaving

(23)

which is identical to the ML update (see [13, Eq. (18)]).
3) Update for : The update for the state precision matrix
where is given by

(24)

The quantity arises because the functional to be op-
timized (as a functional of ) in this M step contains the term

, which comes from integrating over. One
wants to be able to factorise outwithin the trace, which can
be done by decomposing as a sum of tensor products. If one
writes

(25)

where and are eigenvalues and eigenvectors of, one has

(26)

where are matrices formed from and , are the
vectors obtained by a singular value decomposition of. By
substituting for in the trace term, one can show that

(27)

It is also possible to show that

(28)

We can remove the priors by setting giving

(29)

which is identical to the ML update (see [13, Eq. (20)]).
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4) Update for : The update for the precision of the state-
transformation matrix , where , is given by

(30)

where . While we could derive VB updates for
and , this would have little overall effect on the solu-

tion. These parameters are, therefore, currently fixed to their ML
values.

C. Practical Issues

To initialize the algorithm we run the data set through one it-
eration of EM [5]. We then update the parameters of the approxi-
mate posterior (see beginning of Section IV), i.e., the parameters

and using (21), and using (22), and using (24) and
and using (30). We then update the estimates of the MAR co-

efficients using the modified Kalman smoothing algorithm de-
scribed in Section IV-A. These pseudo E and M steps are then
iterated. The progress of the learning algorithm is monitored by
computing the negative free energy,, (see the Appendix) and
the algorithm is deemed to converge ifchanges by less than
0.01%.

The computational complexity of the M-step is comparable
with the ML algorithm except for the update for which re-
quires singular value decomposition at each iteration. The im-
pact on the algorithm’s run-time is discussed in Section V.

While the nonstationary MAR model is defined in the time-
domain, it is possible to convert to a frequency domain repre-
sentation, as described in [18]. This allows for estimation, not
only of the spectra for each channel but also of the cross-spectra.
These cross-spectra can then be decomposed into phase and co-
herence components.

Finally, we note that the algorithm is well suited to dealing
with multiple realizations of an observation sequence such as
occur during event-related experimental paradigms. This is
achieved by running the E-step once for each realization and
averaging the estimates of, and other sufficient statistics
as described in [13]. These multiple E-steps are interleaved
with a single M-step. Thus, unlike conventional analysis of
event-related data where averaging takes place in the observa-
tion space, in our model averaging takes place in the space of
hidden variables. The results from applying this procedure to
event-related data are given in Section V.

V. RESULTS

A. Simulations

Our first results compare the EM and VB algorithms for spec-
tral estimation of a univariate time-series. As this is a univariate
time series the MAR model reverts to an AR model. This data
set has previously been investigated using a Kalman filter ap-
proach [19] and consists of a single sinusoid with a frequency
that is itself subject to a sinsuoidally varying phase modulation

(31)

Fig. 2. A sinusoidally phase-modulated mode with low variance additive
noise. The solid line shows the known instantaneous frequency underlying the
data. Spectral estimation using a nonstationary AR(4) model inferred using
EM (top) and VB (bottom). This shows the characteristic overfitting of the EM
algorithm as opposed to the well-behaved VB procedure.

The instantaneous frequency underlying this signal (see e.g.,
[14, page 368]) is given by

(32)

We set Hz and Hz. We produced 1
second of data sampled at 128 Hz with the observation noise
variance set to a small value and then applied the
nonstationary MAR model with model order set to . The
spectral estimates from EM and VB are shown in Fig. 2. Another
data set was then generated, this time with a higher noise level

and a higher order model was applied . Fig. 3
shows the EM and VB spectra. For both noise levels, we see
that EM is prone to overfitting especially when the model order
is over-specified and the signal is noisy. In contrast, VB is robust
to mis-specification of the model order and provides good spec-
tral estimates even for noisy data. This is because the Bayesian
priors act as regularizers. For both levels of noise, we see that
the VB model tracks the true instantantaneous frequency under-
lying the data.
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Fig. 3. A sinusoidally phase-modulated mode with high variance additive
noise. The solid line shows the known instantaneous frequency underlying the
data. Spectral estimation using a nonstationary AR(8) model inferred using
EM (top) and VB (bottom). This shows the characteristic overfitting of the EM
algorithm as opposed to the well-behaved VB procedure.

For the low and high noise data sets, the EM algorithm re-
quired 33 and 34 iterations to converge, which took 8 s and 12
s. The VB algorithm required 35 and 51 iterations, which took
11 s and 40 s. More generally, the computer time scales with
MAR model order.

The main difference in the estimated parameters from the EM
and VB approaches is in the inferred values of the diagonal ele-
ments of the state transition matrix. Over a number of runs, for
both levels of noise variance, VB values were typically 0.7–0.8
whereas EM values were typically about 0.3–0.4. This shows
that the VB approach places greater emphasis on previous sam-
ples resulting in a smoother tracking.

The VB results should also be compared to the original
Kalman filtering approach [19]. Although this produced good
spectral estimates it required manual setting of state noise
precision, , and observation noise precision,, parameters
(more precisely, the ratio of to was set to a value that made
the “relative reduction in prediction error due to adaption”
equal to 0.5, a hand-crafted arbitrary value). In contrast,

(a)

(b)

Fig. 4. Short-time fourier transform estimates of the spectrogram for (a) the
low noise variance data in Fig. 2 and (b) the high noise variance data in Fig. 3. To
achieve a reasonable temporal resolution the STFT trades off spectral resolution.

the VB algorithm is fully automatic; and (and the state
transformation matrix) are inferred from the data.

We also compare results with those obtained with a short-time
Fourier transform (STFT) approach [14]. We used windows of
length 32 samples, the data in each window being processed by a
32-tap Hanning filter. To obtain reasonable temporal resolution
these windows were overlapped by 24 samples. This provided
13 spectral estimates for the 1-s data period. The resulting spec-
trograms are shown in Fig. 4. Changes to the window length,
overlap and filter parameters yielded very similar spectral esti-
mates. The spectrograms from the STFT are very broad-band
and are not at all competitive with those from the nonstationary
MAR model.

Our second example looks at a bivariate data set consisting of
two stationary regimes with an abrupt transition between them.
The first regime consists of two coherent 40-Hz modes and the
second of a 40-Hz mode and a 10-Hz mode. The signals were
sampled at 128 Hz and 100 samples were generated for each
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Fig. 5. Tracking of two-time series which, before the state transition, consist of
two coherent 40-Hz modes and afterwards consist of a 10-Hz mode and a 40-Hz
mode. There are 100 samples in each state. The left four plots show the evolution
of the lag-1 coefficients and the right four show the lag-2 coefficients. The
horizontal line indicates the zero level. After the state transition, the off-diagonal
coefficients go to zero reflecting the “disconnection” of the two time series.

regime. We generated ten such time series and presented them to
a nonstationary VB-MAR algorithm with model order set to
. Fig. 5 shows the tracking of the MAR coefficients; a state-

transition is noticeable half way through each coefficient time
series. The change in magnitude of the off-diagonal coefficients
reflects a disconnection of the time series in the second regime
(i.e., they are no longer coherent).

B. Physiological Results

1) Photic Synchronization:The previous simulation exam-
ples demonstrate the strengths of our algorithm when compared
to ML approaches. In this section, we shall investigate its perfor-
mance on some real physiological data. The problem with this
kind of testing is that an algorithm can produce a set of spectra
but generally we do not know what the exact spectra should be
(unlike the simulation examples). It is, therefore, important to
try and find experimental scenarios in which the results are as
predictable as possible. To this end, our first example applies the
algorithm to some EEG data recorded during a photic synchro-
nization experiment.

It is well known that one can cause EEG activity to synchro-
nise with a flashing strobe. In this case, one has a certain amount
of control over the spectral peaks that one expects to see, so
properties of the algorithm (such as spectral resolution) can be
tested within a true physiological context.

EEG data was recorded from channels P3 and P4 (over the
left and right parietal cortex), referenced to linked ears. Each
trial of photic stimulation consisted of 1-s stimulus blocks inter-
leaved with 1-s rest blocks (see Fig. 6). The frequencies of the
stimulus blocks were 9, 10, and 15 Hz. EEG data was acquired
throughout each trial at a sample rate of 80 Hz and a total of
seven trials of data were analyzed using the multiple E-step ap-
proach described in Section IV-C.

Fig. 6. Photic Stimulation Each trial of photic stimulation consisted of 1-s
stimulus blocks interleaved with 1-s rest blocks.

Fig. 7. The time varying log power spectrum of the EEG signal recorded from
P3 (the P4 spectrum is very similar) during alternating periods of rest and strobe
activity.

Figs. 7 and 9 show a log-power spectrum and the coherence
spectrum produced by our algorithm. One can see that it has
successfully resolved the spectral peaks in the power and co-
herence at 9, 10, and 15 Hz, respectively. A harmonic peak in
the coherence has also been detected at 18 Hz, between seconds
1 and 2. Note that in Fig. 7, the normal alpha activity at around
10 Hz is evident between periods of strobe activity (e.g.,at the
beginning of the record). Also in Fig. 9, one should note that al-
though stimulation synchronises both hemispheres, the resting
alpha activity is not coherent between P3 and P4. It is for this
reason that the peaks in Fig. 9 are better localized to the periods
of photic stimulation. The algorithm is slow to detect the tem-
poral changes and in this particular example, the discrete nature
of the changes in stimulus would really be better captured by a
hidden Markov model (the VB approach to the hidden Markov
MAR model is considered in [20]). However, by comparison
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Fig. 8. The time varying log power spectrum of the EEG signal recorded from
P3 during alternating periods of rest and strobe activity, calculated using the
STFT.

Fig. 9. The time varying coherence spectrum between the two EEG signals
recorded from P3 and P4. The timing is as in the previous figure.

with other continuously changing nonstationary spectral esti-
mation techniques, our algorithm performs well and manages
to detect true spectral features of a physiological time series,
even with a small data set.

It should be apparent that the small amount of data here pre-
vents one from obtaining good results from a short-time fast
Fourier analysis. Nevertheless, in Fig. 8 we present the best
log-power spectrum that we could obtain with this method. We
also note that we could not obtain any kind of time-varying co-
herence plot using this method. For wavelet analysis, another
popular nonstationary spectral estimation paradigm, the estima-
tion of coherence estimates is problematic [21] and in many ex-
perimental situations the coherence is of great interest due to its
interpretation as a measure of functional coupling between dif-
ferent cortical areas or between cortex and muscle [22].

2) Event-Related Desynchronization:In our second ex-
ample, ERD, the exact nature of the spectrum is not known
with the same precision as the strobe scenario. However, many

Fig. 10. Cusum showing ERD at low frequencies and event-related
synchronization at high frequency over the right-hand area (C3) while
movements were made with the left hand. The movement occurs att = 10 s.
White (black) areas denote an increase (decrease) in spectral power.

qualitative features of this phenomenon have been discovered
by other researchers and provide us with a solid body of
evidence for the analysis presented here. The point is that
previously, researchers have had to average over large numbers
of movement trials in order to discern the salient features. Here
we demonstrate that with only a few trials, we are not only
able to replicate the primary experimental findings of others
but can also detect physiologically appropriate features that are
insensitive to other Fourier-based averaging procedures.

ERD is a phenomenon that appears when one makes self-
paced movements [23], [24]. In brief, the main effect is that
one observes a drop in the EEG’s spectral power in the alpha
frequency band a few seconds before the the physical move-
ment occurs. Then, after the movement terminates, the spectral
power “rebounds” back to its resting level. This phenomenon,
therefore, provides a nice example of an event-related spectral
change amenable to study with our algorithm.

A right-handed subject was asked to make self-paced finger
movements at a frequency of about 3/min. The arm, hand, and
fingers were supported with the right forefinger held horizontal
and unsupported. The self-paced movements involved a brief
extension of the right finger followed by a return to the hori-
zontal position, and EEG signals were recorded from C3, F3,
Cz, Fz, C4, and F4, all referenced to the left ear. Eye movement
artifacts and excess electromyogram (EMG) activity contami-
nating the EEG were removed using independent components
analysis [25]. The cleaned signal taken from the contralateral
hand area (C3) was then broken up into 20-s sections with the
movement timed to s. A trigger signal was recorded from
an accelerometer placed on the distal phalanx and data was ac-
quired simultaneously with the EEG recording. Twelve clean
movements were concatenated and put through the VB algo-
rithm (as described in Section IV-C). Spectra were derived and
a cumulative sum (cusum) was computed in the time domain to
reduce noise in the spectra and to bring out any genuine spec-
tral changes. Fig. 10 shows a time-frequency plot (derived from
the MAR coefficients) of this cusum. The baseline spectrum for
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the cusum was taken as the average of the spectra over the first
5 s, which is the cause of the vertical line at s. One can
clearly see the ERD in the lower frequency bands, which begins
about 3 s before the movement and then rebounds at about 5 s
after the start of the movement. One can also see a smaller in-
crease in power in the high-frequency band, centerd at 80 Hz,
that follows the time course of the alpha desynchronization. This
increase in power at around 80 Hz was much greater contralat-
eral to the movement and, hence, is unlikely to be due to scalp
EMG.

Event-related increases in high-frequency activity have hith-
erto only been reported in patients with subdural electrode grids
[26]. These features could be sharpened up by including more
movements in the average, as is done in more traditional ap-
proaches to event-related (de)synchronization. Physiologically,
this result is important as it provides evidence that movement-
related oscillatory neuronal activity is present in both high- and
low-frequency bands.

VI. DISCUSSION

We have proposed an algorithm for modeling nonstationary
multivariate time series, conforming to a multivariate autore-
gressive process with time-varying coefficients that adapt ac-
cording to a linear dynamical system. While such a model is
not new, the contribution of this paper has been to present a
Bayesian implementation which allows us retain the full gen-
erality of the model while deriving a practical algorithm.

By placing priors over model coefficients we have derived
a VB algorithm which is a generalization of Shumway and
Stoffer’s [5]. EM algorithm for time-series analysis. Whereas
the EM approach, being a ML algorithm, is prone to data
overfitting, we have shown that the VB algorithm is robust.

An intermediate step between EM and VB can be imple-
mented by placing priors over model coefficients and then es-
timating the maximuma posteriori(MAP) parameters. Effec-
tively, the priors act as regularizers which prevent model over-
fitting. The MAP approach is computationally attractive but un-
fortunately requires the use ofad-hocregularization parameters.
In contrast, the VB algorithm provides an automatic method for
finding the appropriate regularizers. For a discussion of these
issues in the context of neural networks, see [27].

A further virtue of the VB approach is that it delivers pos-
terior distributions over model parameters. These can then be
used to provide predictive distributions for previously unseen
data points. These predictive distributions are obtained by “in-
tegrating out” the model parameters and so capture all of the
uncertainty of the modeling process. Predictive distributions of
this sort have been obtained for VB Gaussian Mixture Models
[11] and can also be obtained for nonstationary MAR models.
In this paper, however, we have focussed on characterization
rather than prediction and defer the use of predictive distribu-
tions to future papers.

While we have shown that the algorithm is insensitive to mis-
specification of model order, it is also possible to use our ap-
proximation of the model evidence as a model order selection
criterion. In previous work, we have shown how this applies to
the simpler cases of stationary MAR models (see [2]–[4]). The

extension to the nonstationary case is straightforward, and will
be demonstrated in following papers.

A further point we would like to emphasise is the suitability
of the model for analysing event-related data sets. Instead of
combining all the epochs together by taking a grand average,
each epoch is treated as a separate observation sequence and all
the sequences are presented to the VB algorithm. The algorithm
then takes averages in the space of hidden variables (i.e., the
MAR coefficients) rather than in the observed variables (i.e.,
the raw signals). This approach has been demonstrated here in
two different EEG experiments.

From the experimental neuroscientist’s point of view, the al-
gorithm has a number of desirable properties. We have shown
that it performs spectral estimation in scenarios where a short
data set would prevent any sort of Fourier-based analyses. In ad-
dition, the MAR representation enables straightforward calcu-
lation of time-varying coherences and phases. These quantities
are of interest to anyone wishing to study aspects of functional
coupling. As we have noted, the VB framework helps one to
find the most appropriate MAR model for a particular data set.
Thus, the Bayesian framework combined with the MAR repre-
sentation of time series provides a potentially powerful tool for
the analysis of biomedical signals.

APPENDIX I
E-STEP KALMAN SMOOTHER RECURSIONS

Following [13], we write the expected value ofconditioned
on all data up to time as . Similarly, the corre-
sponding covariance is given by .

A. Forward Recursions

This step implements the recursive computation ofand
from and

(33)

The procedure is initialized using and where
the right-hand-side quantities are updated in the previous M-step
[see (21), (22), and (24)].

B. Backward Recursions

The backward recursions computeand from and

(34)

The procedure is initialized using and
where the right-hand-side quantities are from the final forward
recursion step. The forward and backward steps together allow
us to compute and which are the first two moments of
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conditioned on thewholedata set. We, therefore, have the
update for as

(35)

We also let

(36)

and derive where backward recur-
sions are used for

(37)

The last recursion is initialized using

(38)

APPENDIX II
THE KRONECKERPRODUCT

If is a matrix and is a matrix, then the
Kronecker product of and is the matrix

(39)

For properties of the Kronecker product see, for example, in [12,
p. 477].

APPENDIX III
FREE ENERGY

The negative free energy (the lower bound on the model evi-
dence) can be written as a sum of three terms. The first term is
the average log-likelihood, where the expectation is taken with
respect to the posterior density, and can be written as

(40)

The second term is the entropy of the hidden variables and is

(41)

while the final term penalises complex models and contains the
Kullback–Leibler divergences between the posterior and prior
distributions. This is

(42)

where the integral is defined in (51) below. ,
and the entropy terms are calculated from (46), (48),

and (52), respectively. Many terms cancel in the sum, so we are
left with the expression

(43)

where is also defined in Appendix.

APPENDIX IV
DENSITIES AND DIVERGENCES

The -divergence between densities and is

(44)

A. Normal Density

The multivariate Normal density is given by

(45)
The KL divergence for Normal densities

and is

trace

(46)

where denotes the determinant of the matrix.

B. Gamma Density

The Gamma density is given by

(47)

For Gamma densities and ,
the -divergence is

(48)

where is the digamma function [28].

C. Wishart Density

The Wishart distribution is given by ([29, page 85])

(49)

where

(50)

and is the generalized gamma function defined on page 62
of [29].

The entropy and -divergence of a Wishart can be defined
in terms of the integral

(51)

The entropy of is then given by

(52)
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The -Divergence between densities and
is given by

(53)
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