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Functional magnetic resonance imaging (fMRI) is used to

investigate where the neural implementation of specific

cognitive processes occurs. The standard approach uses

linear convolution models that relate experimentally designed

inputs, through a haemodynamic response function, to

observed blood oxygen level dependent (BOLD) signals.

Such models are, however, blind to the causal mechanisms

that underlie observed BOLD responses. Recent

developments have focused on how BOLD responses are

generated and include biophysical input-state–output

models with neural and haemodynamic state equations and

models of functional integration that explain local dynamics

through interactions with remote areas. Forward models

with parameters at the neural level, such as dynamic

causal modelling, combine both approaches, modelling

the whole causal chain from external stimuli, via induced

neural dynamics, to observed BOLD responses.
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Introduction
Functional magnetic resonance imaging (fMRI) has

become the most commonly used method for investigat-

ing human brain function. Historically, neuroimaging

has been concerned predominantly with the localization

of function — that is, where in the brain neural computa-

tions mediate a cognitive process of interest. This

approach rests on linear time-invariant models that relate

the time course of experimentally controlled manipula-

tions (e.g. changes in sensory stimuli or cognitive set) to
encedirect.com
observed blood oxygen level dependent (BOLD) sig-

nals in a voxel-specific fashion. Although different statis-

tical models have been suggested (see [1,2] for recent

reviews of different approaches), these standard models

treat all voxels throughout the brain as isolated black

boxes, whose input–output functions are characterized

by BOLD responses evoked by various experimental

conditions.

In this article, we briefly review current developments in

causal models of how BOLD responses are generated. We

focus specifically on the following two issues. First, what

are the mechanisms that translate local neural dynamics

into observed BOLD signals? This question relates to

biophysical models of the neurovascular coupling. Sec-

ond, how do local responses result from neural interac-

tions with other brain regions? Answering this question

requires models of functional integration that consider

context-dependent causal interactions among remote

areas or, in other words, in terms of effective connectivity.

Below, we briefly summarize standard convolution

models for fMRI analysis that are blind to the causal

mechanisms underlying the BOLD signal. We then pre-

sent current biophysical models of regionally specific

responses. Finally, we discuss progress in the field of

effective connectivity. Particular emphasis will be given

to dynamic causal modelling (DCM) [3��], which is the

first example of an emerging class of model that com-

bines the biophysics of local responses and effective

connectivity.

Convolution models and the haemodynamic
response function
Most current approaches to fMRI analysis are imple-

mented in the context of the general linear model:

y ¼ Xbþ e (1)

which models the voxel-specific BOLD responses (y) in

terms of a linear combination of explanatory variables in

the design matrix (X) plus a Gaussian error term (e). The

design matrix is based on stimulus functions that encode

evoked neural responses. The relationship between

neural and BOLD responses is modelled by the haemo-

dynamic impulse response function (HRF). This function

describes the characteristic haemodynamic response to a

brief neural event and thus characterizes the input–

output behaviour of a given voxel. The standard convolu-

tion model for fMRI treats each voxel as an independent

linear time-invariant system, convolving the stimulus func-

tions with an HRF to give predicted haemodynamic

responses that enter the design matrix as regressors [4].
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The HRF can vary from voxel to voxel and from subject

to subject [5], and this variation has to be accommodated

in the general linear model. To allow for voxel-specific

HRFs, temporal basis functions can be used to express

the predicted BOLD response as the linear combination

of several functions of peristimulus time [2,6]. An alter-

native approach is to estimate the HRF directly from the

data by using parametric [5] or non-parametric [7,8]

models.

In summary, regardless of whether the HRF is modelled

by temporal basis functions or estimated from the data,

the issue being addressed is ‘where’ in the brain a given

experimental manipulation leads to changes in BOLD

signal; such approaches are blind to the mechanisms that

underlie these changes.

Biophysical models of regional BOLD
responses
By adopting a convolution model of brain responses in

fMRI, we are implicitly positing the existence of an

underlying dynamic system that converts neuronal

responses into observed haemodynamic responses. In

pioneering work by Buxton et al. [9,10] (the ‘balloon

model’) and Mandeville et al. [11] (the ‘Windkessel

model’), detailed biophysical models of the neurovascular

coupling have been validated by physiological experi-

ments. These models predict how increases in regional

blood flow ( f ) dilate a venous balloon, increase its volume

(v) and dilute venous blood to decrease deoxyhaemoglo-

bin content (q). The resulting BOLD signal is a nonlinear

function of v and q and follows the flow dynamics with a

delay of about 1 s.

This model has been extended by Friston et al. [12,13] to

include the effects of external inputs (u) on an autore-

gulated vasodilatory signal (s), assuming that the relation-

ship between evoked neural activity and blood flow is

linear. This linear relationship had been demonstrated

directly in elegant animal studies combining optical imag-

ing, laser Doppler flowmetry and multielectrode record-

ings [14�,15], and indirectly in perfusion studies of the

human brain [16].

As detailed in Figure 1, the extended input-state-output

model of Friston [13] comprises four haemodynamic state

variables, combined into a vector x, whose interactions are

described by differential equations with five haemody-

namic parameters (uh). These parameters have an explicit

biophysical meaning (see the legend to Figure 1). At the

beginning of the haemodynamic cascade, a flow-inducing

signal is triggered by neural responses to experimental

inputs, which are weighted by different efficacies (e1. . . em

in Figure 1). These input-specific efficacies represent the

neural parameters of the model (un). The model repre-

sents a deterministic forward model with hidden states:

for any given combination of neural and haemodynamic
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parameters u and inputs u, the state equation x = f(x,u,u)

can be integrated and passed through the output non-

linearity l to give a predicted BOLD response y (see

Figure 1 for details).

x_¼ f ðx; u; uÞ
y ¼ lðxÞ (2)

This approach can be extended to an observation model,

in which the observed output y is a function of the inputs

and parameters plus some measurement error e, but with-

out reference to the hidden states x:

y ¼ hðu; uÞ þ e (3)

This formulation forms the basis for estimating para-

meters from measured data. For example, the distribu-

tions of the biophysical parameters uh have been

estimated from fMRI data by a Volterra series expansion

[12]. The means and variances of these distributions were

then used as empirical priors in a fully Bayesian scheme

with an iterative expectation maximization algorithm

[13], by using a bilinear approximation of the state equa-

tions. The latter scheme is also used in DCM (see below).

A limitation of this model is that it can deal only with

measurement noise (see Equations 2 and 3). An extended

model that considers also physiological noise has been

proposed by Riera et al. [17��], who augmented the state

equation (Equation 2) with an innovation term, resulting

in the stochastic differential equation:

x_¼ f ðx; u; uÞ þ gv (4)

where v is a scalar Wiener process representing phys-

iological noise, and g is a vector defining the degree of

randomness for each state variable. Equation 4 was then

transformed into a nonlinear state space model, from

which parameters were estimated by using a recursive

local linearization filter [18]. This method has two advan-

tages: first, the parameter estimates converge to the true

values, not to the values of a bilinear approximation; and

second, the fit of the model can be evaluated easily by

testing whether the distribution of the innovation terms

deviates from a Gaussian distribution. In Figure 2, for

example, a BOLD signal that was generated from sim-

ulated state trajectories is reconstructed precisely from

the estimated states despite the presence of both physiol-

ogical and measurement noise.

A limitation of the above models is that they assume

a tissue oxygen concentration of zero. Consequently, the

capillary oxygen extraction rate depends entirely on

oxygen delivery and thus on blood flow (see Equation 6

in [10]). Although this coupling between oxygen extrac-

tion and flow is supported by earlier studies [19], recent
www.sciencedirect.com
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Summary of the haemodynamic model of Friston [13] and its adaptation for DCM [3��]. A series of experimentally controlled inputs (u) evoke

neural responses (z) that trigger a haemodynamic cascade, which is modelled by four state equations with five parameters. These

haemodynamic parameters comprise the rate constant for vasodilatory signal decay (k), the rate constant for autoregulatory feedback by

blood flow (g), transit time (t), Grubb’s vessel stiffness exponent (a), and capillary resting net oxygen extraction (r). Integrating the

haemodynamic state equations for a given set of inputs and parameters and passing the result through the output non-linearity l produces a

predicted blood oxygen level dependent (BOLD) response (see Equation 5 in [13] for a detailed definition of l). For parameter estimation, an

observation model is used that treats the observed BOLD response as a function h of inputs and parameters plus some observation error

e. Abbreviation: dHb, deoxyhaemoglobin; rCBF, regional cerebral blood flow.
experiments indicate that it may be an oversimplification

[20]. Thus, more sophisticated models of oxygen extrac-

tion might be useful. For example, Zheng et al. [21] have

extended the Friston model [13] by incorporating three

new state variables that enable precise dynamic model-

ling of intracapillary oxygen transport to tissue. Similarly,

Obata et al. [22�] have provided a generalized version

of the original balloon model of Buxton et al. [10] that

considers both intra- and extravascular signal changes.

It should be noted that none of the biophysical models

discussed in this section specifies precisely what is meant

by neural activity; therefore, these models cannot tell us

what aspect of neural information processing is reflected

by the BOLD signal. Neural information processing

within a given cortical unit can be described along many

different dimensions, and the relationship between a

neurophysiological process and the resulting BOLD

response can be characterized on different scales, for

example, local field potentials versus spiking activity,
www.sciencedirect.com
excitatory versus inhibitory postsynaptic potentials or dif-

ferent types of receptor at synapses.

Sophisticated animal studies that combine multi-

electrode recordings with fMRI [23,24��] or with optical

imaging techniques [14�,15] have started to address these

issues. The next step is to transform the current biophy-

sical models of the BOLD response into comprehensive

forward models with parameters at the neural level,

thereby modelling the whole causal chain from external

stimuli, via induced neural dynamics, to observed BOLD

responses. Such models must be parameterized in a

neurophysiologically meaningful, yet parsimonious and

estimable fashion. DCM [3��], as we discuss below, is a

first step in this direction.

Models of functional integration: effective
connectivity
Integration within distributed neural systems is usually

best understood in terms of ‘effective connectivity’: that
Current Opinion in Neurobiology 2004, 14:629–635
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Figure 2

–1.0

–0.5

0

0.5

1.0

1.5

N
or

m
al

iz
ed

 s
ta

te
 v

al
ue

s

Vasodilatory signal
Flow
Volume
Deoxyhaemoglobin
Physiological noise

0 20 40 60 80 100 120
– 2

–1

0

1

2

3

4

5

6

7

8

Time (s)

0 20 40 60 80 100 120
Time (s)

B
O

LD
 (

ar
bi

tr
ar

y 
un

its
)

Observed
Reconstructed
Measurement
noise

Current Opinion in Neurobiology

Reconstruction of a blood oxygen level dependent (BOLD) signal

from estimated states. The figure demonstrates how a BOLD signal

(top, blue line) generated from simulated haemodynamic state

trajectories (bottom, unbroken lines) can be reconstructed (top, red

line) from the estimated states (bottom, broken lines), despite the

presence of both physiological noise (bottom, black line) and

measurement noise (top, black line). This example used the model

by Riera et al. [17��] with an additional Kalman smoothing step.
is, the influence that one neural system exerts over

another. Aertsen and Preißl [25] have proposed that

‘‘effective connectivity should be understood as the

experiment- and time-dependent, simplest possible cir-

cuit diagram that would replicate the observed timing

relationships between the recorded neurons’’. This expla-

nation relates to two important points: first, effective

connectivity is dynamic and context-dependent; and

second, it depends on a causal model of the neural

interactions. Classical estimation procedures, used in

functional neuroimaging, were based initially on variants

of linear regression models, such as structural equation

modelling [26,27]. Below, we briefly review current
Current Opinion in Neurobiology 2004, 14:629–635
developments that have a focus on multivariate autore-

gressive (MAR) models and dynamic causal models.

Multivariate autoregressive models

Autoregressive models of fMRI data are usually not

concerned with causality in a biophysical sense — that

is, how an observed BOLD series results from underlying

neural processes; instead, they address the temporal

aspect of causality in a BOLD time series, focusing on

the causal dependence of the present on the past: each

data point of a time series is explained as a linear combi-

nation of past data points. This approach contrasts with

regression-based models of effective connectivity in

which the time series can be permuted without changing

the results. MAR models extend the autoregressive

approach to multiple brain regions, modelling the vector

of regional BOLD signals at time t (yt) as a linear combi-

nation of p past data vectors, whose contributions are

weighted by the parameter matrices Ai, plus an error

term et:

yt ¼
Xp

i¼1

yt�iAi þ et (5)

MAR models contain directed influences among a set of

regions whose causal interactions, expressed at the

BOLD level, are inferred via their mutual predictability

from past time points. Although MAR modelling is an

established statistical technique, specific implementa-

tions for fMRI have been suggested only very recently.

Harrison et al. [28�] have presented a MAR model that

allows for bilinear variables representing modulatory ef-

fects on connections and uses a Bayesian parameter

estimation scheme suggested by Penny and Roberts

[29]. This Bayesian scheme also determines the optimal

model order, that is, the number of past time points (p) to

be considered by the model.

A complementary MAR approach, based on the idea of

‘Granger causality’ [30], has been proposed by Goebel

et al. [31�]. These researchers computed whole-brain

connectivity maps by evaluating voxel-specific two-

dimensional MAR models of the interactions between

the current voxel and a reference voxel and introduced a

statistical framework for distinguishing different types of

interaction.

A logical extension of MAR models is to augment them

with a biophysical forward model to enable inferences

about neural parameters. So far, this type of model has

been introduced only for electroencephalographic data

[32]. For fMRI data, DCM is so far the only approach that

marries biophysical and functional integration models.

Dynamic causal modelling
The general idea behind DCM is to construct a reason-

ably realistic neuronal model of interacting cortical
www.sciencedirect.com
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regions with neurophysiologically meaningful para-

meters. These parameters are estimated such that the

predicted BOLD time series, which results from convert-

ing the neural dynamics into haemodynamics, corre-

sponds as closely as possible to the observed BOLD

series [3��]. In DCM, neural dynamics in several regions

(represented by a neural state vector z with one state per

region) are driven by experimentally designed inputs that

enter the model in two distinct ways: they can elicit

responses through direct influences on specific anatomi-

cal nodes (e.g. evoked responses in early sensory cortices)

or they can modulate the coupling among nodes (e.g.
Figure 3
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connections (corresponding to neural transients with a half-life shorter than

current developer version of SPM2 (May 2004) and therefore marginally dive

of the inputs is shown by box-car plots (blue). Note that motion and attentio

V1 to the motion-sensitive area V5, whereas attention modulates the backw
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during learning or attention). DCM models the change in

neural states as a nonlinear function of the states (z), the

inputs (u) and the neural parameters (un):

z_¼ Fðz; u; unÞ (6)

The parameters are the connectivity matrices, un =

{A,B,C}, that define the functional architecture and inter-

actions among brain regions at a neuronal level. The

bilinear approximation of Equation 6 is given by:

z_¼ Az þ
X

ujB
jz þ Cu (7)
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. The fMRI data were from a study in which subjects viewed identical

task (detection of velocity changes) [26]. Only those conditional

the chosen threshold of 0.17 Hz are shown alongside their

4 seconds). The shown values result from a re-analysis with the

rge from those reported previously [3��]. The temporal structure

n exert bilinear effects: motion modulates the connection from

ard connections from the inferior frontal gyrus (IFG) to the superior

ns represent significant bilinear effects in the absence of a significant

mates and the adjusted data are shown in the panels connected
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in which coupling parameters correspond to partial deri-

vatives of F:

A ¼ @F

@z
¼ @z_

@z

Bj ¼ @2F

@z@uj
¼ @

@uj

@z_

@z

C ¼ @F

@u

ð8Þ

The matrix A represents the effective connectivity among
the regions in the absence of modulatory input, the

matrices Bj encode the change in effective connectivity

induced by the jth input uj, and C embodies the strength

of direct influences of inputs on neuronal activity.

DCM combines this neural model with the biophysical

forward model of Friston [13], which describes how

neuronal activity translates into a BOLD response

(Figure 1). This enables the parameters and time con-

stants of the neuronal model to be estimated from mea-

sured data, by using a fully Bayesian approach with

empirical priors for the biophysical parameters and con-

servative shrinkage priors for the coupling parameters.

The posterior distributions of the parameter estimates

can then be used to test hypotheses about the size and

nature of the modelled effects. Usually, these hypotheses

concern context-dependent changes in coupling that are

represented by the bilinear terms of the model.

For example, applications of DCM have addressed the

modulatory effects of object category [33] and attention

to motion [3��] (see also Figure 3) on connections in the

visual system. If there is uncertainty about which con-

nections should be included in a model, or if competing

hypotheses (represented by different DCMs) require

comparison, a Bayesian model selection procedure can

be used to find the DCM that shows an optimal balance

between model fit and model complexity [34].

Conclusions
As a complement to existing models of ‘where’ evoked

brain responses are expressed, current effort is being

invested in developing models of ‘how’ neuronal res-

ponses are caused. Here, we have reviewed several mod-

els that address this causality in different ways. A

promising strategy is to use comprehensive forward mod-

els with meaningful neurophysiological parameters that

link experimental manipulations, via induced neural

dynamics, to observed BOLD responses. We expect that

such models will greatly enhance our ability to investigate

and to understand the neural systems that mediate

specific cognitive processes.
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