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1 Independent Contrasts

Say we have experimental data y1, and a linear model with design matrix X1 and
observation noise covariance Σ1 then the regression coefficients are distributed
as

p(β1) = N(β;mβ1
, Cβ1

) (1)

with mean and covariance given by

mβ1
=

(
XT

1 Σ−1
1 X1

)−1
XT

1 Σ−1
1 y1 (2)

The covariance of these estimates is given by

Cβ1
=

(
XT

1 Σ−1
1 X1

)−1
(3)

The maximum likelihood estimate of β1 is mβ1
.

For data y2, design X2 and noise covariance Σ2 we have equivalent expres-
sions for β2, mβ2 and Cβ2 .

The contrast vectors c1 and c2 are then used to capture the experimental
effects of interest, w1 and w2, from each fitted model. The mean and covariance
of the estimated effects are then given by

mw1
= cT1mβ1

(4)

Cw1
= cT1 Cβ1

c1 (5)

If we have scalar effects then m and C here are also scalars. I’ll write m1 ≡ mw1

and λ1 ≡ 1/Cw1
. Similar expressions exist for contrast 2 and model 2.

The optimal way to combine the two contrasts estimates is then

λ = λ1 + λ2 (6)

m =
λ1
λ
m1 +

λ2
λ
m2
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2 Dependent Contrasts

Say we have experimental data y, and a linear model with design matrix X
and observation noise covariance Σ. Note that y may contain two time series of
interest y1 and y2. The matrix Σ may describe (error) correlations among these
time series.

The regression coefficients are distributed as

p(β) = N(β;mβ , Cβ) (7)

with mean and covariance given by

mβ =
(
XTΣ−1X

)−1
XTΣ−1y (8)

Cβ =
(
XTΣ−1X

)−1
(9)

The contrast matrix C is then used to capture the experimental effects of in-
terest, w. The mean and covariance of the estimated effects are then given
by

mw = CTmβ (10)

Cw = CTCβC (11)

If C has two rows, with the first row corresponding to c1 and the second row
to c2 then our effects of interest w = [w1, w2]T . The mean mw is then a 2-by-1
vector, and Cw is a 2-by-2, with the off-diagonal element capturing covariance
(dependence) in our contrast estimates. Generally, C may have N rows.

I’ll write mw ≡ [m1,m2, ..mN ]T and Λ ≡ C−1
w . The optimal way to combine

the estimates in mw is

m =
(
1TNΛ1N

)−1
1TNΛmw (12)

where 1N is a column vector of N ones. This result stems from treating mw as
containing entries that vary around a common mean m with precision Λ. The
fact we are treating m as a common mean is specified by setting the (higher-
level) ‘design matrix’ to 1N .

To see that this result makes sense, consider the case with N = 2 and λ1,
λ2 and λ12 are diagonal and off-diagonal entries in Λ. Then we have

m =
λ1m1 + λ2m2 + λ12m1 + λ12m2

λ1 + λ2 + λ12
(13)

Reassuringly, if the contrasts are independent we have λ12 = 0 and we have the
same result as in equation 6.
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