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Abstract

This paper describes a normative model of the Rule Association task
based on Bayesian inference and formulated in discrete time. We also
show how it reduces to a standard Drift Diffusion Model in the continuum
limit. This relationship then provides semi-analytic formulae for the mean
reaction time and error rate. The model is applied to behavioral data from
an experiment where we used priming to manipulate subjects ability to
perform the task.

1 Introduction

Bayesian inference has proven useful in understanding brain and behaviour on
many levels [5], from sensory perception [6] to motor learning [9] and social
interaction [13], whereas no study has yet been conducted on the effect of self-
associations on behaviour. This paper derives a normative model of the rule
association task based on such principles.

Recently Yu et al. [14] have described a normative model of the Eriksen
Flanker task, based on Bayesian inference. In later work [10] they also pro-
vide a connection to Drift Diffusion Models (DDMs) from which they derive
semi-analytic formulae for reaction times and error rates. The work in this pa-
per is inspired by their approach and applies a similar methodology to a rule
association task.

2 Theory

In the rule association task [4], as depicted in Figure 1, there are two types of
trials (i) univalent trials in which the mapping from a stimulus to response is
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fixed and (ii) bivalent trials in which the identity of a contextual cue reverses
a stimulus-response mapping. The responses are either left or right button
presses.

2.1 Discrete-Time Model

We define generative models in which stimuli s and context c produce observa-
tions of neural activity related to the stimulus, xs(t), and to the context, xc(t),
at time t.

For the Rule task c is taken to be the identity of the cue defining the rule,
and s the identity of the stimulus. The corresponding neural activities are then
given by

p(xs(t)|s) = N(xs(t);µs, σ
2
s) (1)

p(xc(t)|c) = N(xc(t);µc, σ
2
c )

where we take µs = −1 for s = T (Tree), µs = 1 for s = B (Butterfly)
and µc = −1 for c = C (Cross) and µc = 1 for c = S (Star). Thus, neural
activity representing T and B has mean of -1 and +1 respectively, and the
representational acuity of this activity is determined by the noise deviation
parameter, σs. Similarly, σc determines the accuracy of the representations for
C and S. This is similar to the generative model for centre and flanker stimuli
in Yu et al.’s [14] model of the Eriksen Flanker task. Here we allow stimulus
and context to have different levels of noise.

We now derive the recognition model, that is, given neural activity x how
do we decide what stimulus is present and which response to make ? We denote
x(t) as the vector containing both observations xs(t), xc(t), and XT as the
vector containing all x(t)’s up to time T .

For the rule task we can write down a recursive formula for the joint prob-
ability of Xt and the response, r, being left (L)

p(r = L,Xt) = [p(xc(t)|c = C)p(xs(t)|s = T ) (2)

+ p(xc(t)|c = S)p(xs(t)|s = B)]p(r = L|Xt−1)

This encodes the rule that one should press left if the context is a cross (C)
and the stimuls a tree (T), or if the context is a star (S) and the stimulus a
butterfly (B). Similarly, one can define an update for the joint probability of
the observation and a right button response

p(r = R,Xt) = [p(xc(t)|c = C)p(xs(t)|s = B) (3)

+ p(xc(t)|c = S)p(xs(t)|s = T )]p(r = R|Xt−1)

One can then compute the probability of a left button response as

p(r = L|Xt) =
p(r = L,Xt)

p(r = L,Xt) + p(r = R,Xt)
(4)
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A decision is then made to press the left button if this probability exceeds a
threshold, β, to press the right button if it drops below 1−β, or to keep observing
if neither condition is met. Figure 2 shows how the probability, p(r = L|Xt)
evolves over time. Together, the within-trial dynamics defined by the above
equations and the threshold β determine the reaction time of the normative
subject.

2.1.1 Univalent task

For the univalent task the stimulus-response mapping is fixed throughout the
course of the experiment. Because of this we envisage that the stimulus itself
is sufficient to perform the task and that post-stimulus integration of stimulus
with cue information is unnecessary. In modelling terms we can therefore ignore
xc. The joint probability of Xt and a left or right responses are therefore

p(r = L,Xt) = p(xs(t)|s = H)p(r = L|Xt−1) (5)

p(r = R,Xt) = p(xs(t)|s = C)p(r = L|Xt−1)

where s = H and s = C denote house and car stimuli. One can then form
the posterior probabilities from equation 4. Given uniform prior probabilities
p(r = L|X0) = p(r = R|X0) = 0.5, a decision based on the posterior probability
is identical to one based on the likelihood, or log-likelihood ratio

It = log

(
p(Xt|r = L)

p(Xt|r = R)

)
(6)

This can be accumulated sequentially as

It = It−1 + δIt (7)

where

δIt = log

(
p(xt|r = L)

p(xt|r = R)

)
(8)

2.2 Continuous-Time Model

The decision process for the univalent task is a variant of the Sequential Prob-
ability Ratio Test (Wald, 1947) which is known to optimal for Two-Alternative
Forced Choice (2AFC) tasks. SPRTs can also be formulated in continuous time
and are known as Drift-Diffusion Models (DDMs) [2]. A benefit of the DDM ap-
proach is that, for simple models, there are analytic expressions for the reaction
time and error rates. This obviates the need for implementing computationally
intensive stochastic simulations of ideal subject responses, and therefore makes
it much simpler to fit these models to data.
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2.2.1 Univalent Rule Task

This section shows how the DDM is derived as a continuum limit of the discrete
time evidence accumulation process implemented for the univalent rule task.
The DDM takes the form of the Stochastic Differential Equation (SDE)

dI = mdt+Ddw (9)

with drift parameter m and diffusion parameter D, where dw is a standard
Wiener process (Gardner, 1983; Tuckwell, 1995). The expected correct rate,
CR, and expected decision time, DT, are then given by analytic expressions [2]

CR =
1

1 + exp(−2mz/D2)
(10)

DT =
z

m
tanh

(mz
D2

)
z = log

(
β

1− β

)
Here, z is the decision threshold in the units of a log odds ratio. The reaction
time is then given by

RT = DT + T0 (11)

where T0 accounts for the time taken by sensorimotor processes that are not
part of the decision process.

To make the connection with discrete time models we note that the above
SDE can be numerically integrated using the Euler-Maruyama (EM) method
(Higdon, 2001) to give a discrete-time update of the form

∆In = m∆t+D(w(tn)− w(tn−1)) (12)

where the noise increment w(tn)−w(tn−1) is drawn from a Gaussian distribution
with mean 0 and variance ∆t (that is, a Wiener process). This update can then
be written as

∆In = m∆t+D
√

∆ten (13)

where en is now a standard Gaussian variate. Hence, the central moments are
given by

E(∆In) = m∆t (14)

V ar(∆In) = D2∆t

These equations can be rearranged to give m and D in terms of the moments.
In the discrete time formulation, evidence is accumulated as

∆In = log
p(x|rL)

p(x|rR)
(15)
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If each of these densities is a single Gaussian with mean µ1 for left, µ2 for right,
and with common variance σ2 then the moments are

E(∆In) =
(µ1 − µ2)2

2σ2
(16)

V ar(∆In) =
(µ1 − µ2)2

σ2

Equating these with those in equation 16 gives the following expressions

m =
(µ1 − µ2)2

2σ2∆t
(17)

D =
(µ1 − µ2)

σ
√

∆t

These values can then be used in equation 10 to compute CR and DT. The
expression for D differs from equation A23 in Bogacz et al. (2006) which is in-
correct. We have also validated these expressions using Monte-Carlo simulations
and found it necessary to use a very small ∆t so that the Euler approximation
was valid. This is well known in the stochastic processing literature (Higdon,
2001) and has been examined in the context of DDMs by Brown et al. (2006)
who also compares different integration methods. In what follows in this paper
we use the value ∆t = 1ms.

The expressions for m and D in equation 17 mean that m/D2 = 1/2. Hence,
for accumulation of information from a single source as in the univalent rule task,
the expressions for correct rate and decision time reduce to

CR = β (18)

DT =
z

m
(2β − 1)

z = log

(
β

1− β

)
This is intuitively satisfying because the correct rate in this simple case is exactly
equal to the probability threshold β. We now derive similar expressions for the
bivalent rule task.

2.2.2 Bivalent Rule Task

Again, assuming equal priors, a decision based on posterior probabilities is
equivalent to one based on likelihood ratios. For the bivalent rule task evidence
is accumulated according to

∆In(xc, xs) = log
p(r = L,Xt)

p(r = R,Xt)
(19)

By using expressions for the joint densities in equations 2 and 3 this can be
re-arranged as

∆In(xc, xs) =
exp(− 1

2z
2
c1 − 1

2z
2
s1) + exp(− 1

2z
2
c2 − 1

2z
2
s2)

exp(− 1
2z

2
c1 − 1

2z
2
s2) + exp(− 1

2z
2
c2 − 1

2z
2
s1)

(20)
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where

zc1 = (xc − µc)/σc (21)

zc2 = (xc − µc)/σc

zs1 = (xs − µs)/σs

zs2 = (xs − µs)/σs

where c and s index the context (Cross or Star) and stimulus (Tree or Butterfly)
on that trial. We then have

gm(σc, σs) = E(∆In) (22)

=

∫ ∫
∆In(xc, xs)p(xc)p(xs)dxsdxc

where p(xc) and p(xs) are defined in equation 1. Unfortunately, we know of no
analytic solution to this integral, but as it is only two dimensional it can be
quickly evaluated using numerical quadrature. That is

gm(σc, σs) =

Nm∑
i=1

Nm∑
j=1

∆In(xc(i), xs(j))p(xc(i))p(xs(j)) (23)

The variance term can then be evaluated in a similar manner

gv(σc, σs) = V ar(∆In) (24)

=

Nm∑
i=1

Nm∑
j=1

(∆In(xc(i), xs(j))− gm(σc, σs))
2p(xc(i))p(xs(j))

It turns out that both integrals can be accurately estimated using only Nm = 10
points in each dimension (100 points in all), where xs, xc are evenly spaced
between plus and minus three σc, σc. This computation takes about 10ms on
a standard personal computer. We have validated this approach by comparing
with Monte-Carlo simulations in which xs and xc are drawn from equation 1 and
∆In is evaluated using equation 20. This was repeated S = 10, 000 times and
all samples were used to compute the mean and variance. Figure 3 compares
the numerical quadrature evaluations against Monte-Carlo estimates, showing
good agreement over a broad range of values. These values include the estimates
found in model fitting (see below). Agreement is similarly good for the variance
term. In what follows, we therefore compute the moments using the quadrature
approach.

As there are two possible contexts and two possible stimuli, we have four
different trial types within the bivalent task, and must therefore evaluate the
moments for each trial type. However, because of the symmetry of the task, gv
and gm are the same for all trial types (actually gm is flipped for right as opposed
to left responses but then evidence is accumulated in the other direction).
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The parameters of the equivalent SDE are then given by

m =
gm(σc, σs)

∆t
(25)

D2 =
gv(σc, σs)

∆t

These values can then be plugged into equation 10 to give predictions of CR
and DT. Importantly, we have found that the ratio

r =
gm
gv

(26)

has a very weak dependence on σs and σc. Specifically, we varied σs and σc
between 1 and 10, with 50 linearly-spaced values per dimension, and evaluated
r at each point. These values correspond to the range observed empirically (see
below). The minimum r = 0.474 was found at σs = σc = 1 and the maximum
r = 0.508 at σs = σc = 10. The mean and standard deviation were E[r] = 0.499
and std(0.008). For a decision threshold of z = 2 the minimum and maximum
r values translate to correct rates of 87.0% and 88.4%, a minimal change. In
what follows we therefore set r = 0.5. This means that (i) as for the univalent
case, the correct rate is determined solely by the decision threshold, CR = β
and (ii) there is no need to compute gv as it only enters the DT equation as
gm/gv.

2.2.3 Decision thresholds

Increasing the threshold β leads to slower, more accurate decisions and de-
creasing it to faster, less accurate ones. SPRTs and DDMs can optimize this
speed-accuracy trade-off, by setting the threshold β appropriately. Gold and
Shadlen (2002) have proposed that participants select the threshold, β, that
maximises the reward rate (RR), defined as the average number of rewards per
unit time. In the context of our experiment this is simply the number of correct
responses per unit time.

According to Bogacz et al [3], the speed accuracy trade-off is implemented
by neural circuits in association and pre-motor areas. Further, rather than a
threshold being changed, it is the initial value of the accumulation point which
is thought to be modulated. DDMs are agnostic as to whether the initial or final
point (threshold) is changed, because both produce identical behaviour. Bogacz
et al [3] suggest that the change in initial value is mediated by increasing the
baseline firing rate of cortical integrator neurons.

2.3 Model Fitting

The DDM for the univalent rule task comprises the following parameters; T0,
σs and z. The DDM for the bivalent task has the additional parameter σc. We
estimated model parameters using data from all subjects, rather than subject
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by subject which is a common approach in fitting DDMs to behavioural data
[10, 12].

Model fitting was carried out as follows. We used adjusted RT data (with
subject means subtracted and overall group means added as described in the
results section below) so that we could use a single T0 parameter for all sub-
jects. For both univalent and bivalent data, decision thresholds zuni and zbi
were computed for each session and subject directly from the CR values (see
equation 18).

We then constructed a model for predicting the univalent and bivalent re-
action times from the known values zuni, zbi and unknown values T0, σs and
σc(j) where j indexes the jth session of the bivalent data.

These unknown values were parameterised as follows

T0 = exp(θT ) (27)

σs = exp(θs)

σc(j) =
σs

1 + wj

wj = exp[θc(j)]

where the last two lines incorporate two assumptions. First, the contextual
noise variance is constrained to be smaller than the stimulus noise variance. We
also consider a model (see Results) in which the converse is true. Because model
RTs are symmetric in σs and σc, enforcing one to be larger than the other helps
to produce an identifiable model.

Second, because our larger goal is to study the effect of priming on deci-
sion making we hypothesized that σc varies between primes and over sessions.
Obviously, at least one of the parameters has to change to accommodate the
between-session difference in error rates (see below), and it seems that the most
likely candidate is contextual rather than stimulus noise. This is because prim-
ing did not affect the univalent task (and therefore not σs).

This rather constrained model gives us five parameters to estimate from 90
data points. We also consider a more constrained version, with three parameters,
in which θc(j) does not vary over session ie. wj = w. We refer to this as the null
model and the less constrained version as the alternative model. Comparing the
two will allow us to infer whether σc changes over sessions.

The model is then fitted using a Bayesian parameter estimation scheme,
known as the Variational Laplace algorithm [7]. The algorithm is Bayesian, in
that priors are placed over the parameters to be estimated, which in our case
are the latent variables θT , θs and θc(j). We used the following Gaussian priors

p(θT ) = N(µT , v
2
T ) (28)

p(θs) = N(µs, v
2
s)

p(θc(j)) = N(µc, v
2
c )

The implicit prior distributions over T0, σs and wj therefore have a log-normal
form. We used uninformative priors over σs and wj obtained using the values
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µs = 0.69,vs = 0.5 and µc = 0, vc = 1. To obtain realistic values of the
nondecision time, T0, we found it necessary to use a rather informative prior.
This constrained T0 to have a prior mean of 500ms, which is similar to values
from other DDM fits [12, 2]. The prior was obtained using the values µT = −0.69
and vT = 1/64.

The VL algorithm then estimates the parameters of approximate posterior
densities over θ using a pseudo-Newton like algorithm [7, 11]. Moreover, it
also produces an estimate of the model evidence which provides a quantitative
measure for comparing models based on Bayes factors [8]. Evidence in favour
of model 1 versus model 2 is assessed using the Bayes Factor

BF (1, 2) =
p(y|m1)

p(y|m2)
(29)

and the posterior probability of model 2 is given by

p(m2|y) =
1

1 +BF (1, 2)
(30)

Null and alternative models can be compared using these posterior probabilities
as will be shown in the results section.

3 Experiment

15 native English speaking volunteers (aged 24.7± 4.1 yrs; 8 females) took part
in the study. The participants all gave written informed consent, and the study
was approved by the joint ethics committee of the Institute of Neurology and
University College London Hospital, London, UK. Each subject took part in a
total of six experimental sessions, and each session comprised a priming part
followed by a rule association part.

Priming refers to the passive, subtle, and unobtrusive activation of relevant
mental representations by external, environmental stimuli, such that people are
not and usually do not become aware of the influence exerted by those stimuli
[1].

In the lab, priming can be undertaken with the scrambled sentence task.
In our study, each scrambled sentence consisted of six words and participants
judged whether or not it could be made into a grammatically coherent sentence
by using five of the six words. In each session, 70% of the sentences had words
that were synonyms for either Clever or Stupid, and 30% of the sentences were
neutral. The effect of priming was evaluated on the Rule Association task.

Eight sentences were presented followed by a sequence of 50 rule trials. This
constitutes a session and there were three consecutive sessions for each prime
(clever and stupid). The order of the two conditions (clever and stupid) was
pseudo-randomized between participants. Prior to data collection, participants
practised the rule task for 80 trials, and the language task for 20 sentences, with
all the sentences being of a neutral character.
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4 Results

4.1 Univalent Task

Overall there was no difference in the error rate on the univalent task when
primed ‘stupid’ (6.9± 1.8%) versus ‘clever’ (6.0± 0.6%) (paired t-test, p<0.6).
Similarly, there was no difference in reaction time for ‘stupid’ (604 ± 32ms)
versus ‘clever’ (643 ± 45ms) (paired t-test, p<0.12). There was a tendency for
clever-primed subjects to get faster, as mean RTs in sessions 1, 2 and 3 were
877, 849 and 816ms. However, neither of these effects were significant (one-way
ANOVA, p = 0.29 for stupid and p = 0.11 for clever).

Behavioural data were therefore collapsed over the two prime types. RTs and
CRs were extracted over all subjects and sessions giving rise to 45 data points
from three sessions and fifteen subjects. The overall mean RT was 628± 38ms
and the mean CR was 94.0± 1%.

Because univalent and bivalent trials were mixed together in the same ses-
sion, reaction times may also be affected by recency effects (Cho et al), for
example, whether the previous trial was also a univalent (’stay’) or bivalent
(’switch’) trial. However, the difference in reaction time for switch minus stay
trials was not significant (15± 15ms, paired t-test, p = 0.30).

4.2 Bivalent Task

Overall, the error rate on the bivalent task was significantly higher when sub-
jects had been primed ‘stupid’ (12.2 ± 2.0), as compared to ‘clever’ (8.1 ± 1.2)
(p<0.001). The error rates when participants were primed stupid were signif-
icantly different between session (one-way ANOVA, p = 6 × 10−6). The error
rates were 8, 12 and 18 percent for sessions 1 to 3. The error rates when
participants were primed clever were not significantly different between session
(one-way ANOVA, p = 0.64). The error rates were 8, 9 and 8 percent for
sessions 1 to 3. Thus, we observed that when stupid associations are evoked
participants’ performance becomes increasingly worse. We refer to this as a
confirmation bias. Boxplots of the error rate effects are shown in Figure 4. The
confirmation bias effect remained highly significant (p = 1 × 10−5) when the
outlying participant (see circles in top row of Figure 4) was removed from the
analysis.

Overall, when subjects were primed stupid as opposed to clever they were
significantly faster (822 versus 874ms, paired t-test, p = 0.03). There was
a tendency for stupid-primed subjects to slow down with session and clever-
primed subjects to speed up, but neither of these effects were significant (one-
way ANOVA, p = 0.29 for stupid and p = 0.11 for clever).

The difference in reaction time for switch minus stay trials was significant
(89 ± 21ms, paired t-test, p = 10−4). Given that 29% trials were switch trials
this therefore has the effect of increasing the mean reaction time in each session
by 0.29 × 89 = 26ms. We therefore subtracted this amount from the mean
reaction time of each subject and session, prior to model fitting.
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4.3 Model Fitting

We now present results on fitting the DDM rule task models to the behavioural
data presented in the previous sections. We first report perhaps the most im-
portant inference which is whether σc varies over sessions. This is assessed
using Bayes factors. For the data obtained when subjects were primed stupid,
the log Bayes factor favouring the alternative model over the null is 17.6. This
corresponds to a posterior belief in the alternative model approaching unity
(p(alt|y) = 1 − 10−8). For the clever data the log Bayes factor is 0.96 and the
posterior belief is p(alt|y) = 0.72. Hence, we infer that σc varies over session
for the stupid data but not for the clever. This reflects the fact that error rates
changed for the stupid data but not the clever.

For the stupid data, the parameters were estimated to be T0 = 520ms and
σs = 7.4. The between-session weighting factors that set σc were estimated to be
w1 = 4.57, w2 = 3.05 and w3 = 2.59. This corresponds to σc values of 1.63, 2.44
and 2.87. That is a 76% increase in σc from session 1 to session 3. This latter
result is robust over a range of different settings for the prior distributions.
Figure 5 shows mean reaction times for data and model predictions on the
univalent and bivalent tasks (stupid prime).

Figure 6 shows the how reaction time on the bivalent task is predicted to vary
as a function of σc and z. The values were computed assuming the estimates
T0 = 520ms and σs = 7.4. Also, marked are the estimated z and σc values for
sessions 1, 2 and 3 when subjects were primed stupid.

We also fitted models in which the contextual noise was constrained to be
larger than the stimulus noise, but there was significantly less evidence for these
models. The posterior probability of the σs > σc model was 0.9999. The σs < σc
model could only provide a good fit to the data by using an apriori unlikely large
value of T0. Importantly, however, even for the σs < σc models our main finding
was upheld. That is, that σc varies over session for the stupid data but not for
the clever.

5 Discussion

We have described a simple Bayes optimal inferential process for the Rule As-
sociation task framed in discrete time. In the continuum limit of the time step
reducing to zero the process becomes equivalent to a Drift Diffusion Model.
This equivalence allows us to derive simple deterministic equations for predict-
ing behavioural data. This simplifies model fitting, as for each setting of model
parameters, we do not have to resort to repeated simulation of a stochastic
process.

For the univalent Rule association trials the error rate is determined solely
by the decision threshold, and for the bivalent trials this is approximately the
case. In the bivalent case, the dependence on other parameters such as stimulus
and context noise level is very weak, and can be neglected for practical purposes.

Our results show that stupid priming significantly increases the noise level of
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contextual representations. The increased noise level on its own would lead to
vastly increased reaction times, as indicated by Figure 6. However, we envisage
that automatic mechanisms that control the speed-accuracy trade-off [3] then
act so as to bring reaction times back into a reasonable range. The consequence
of this is the reduction in accuracy seen in later sessions. This provides a
mechanistic explanation of the confirmation bias and reaction time data.
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Figure 1: The experiment consisted of two rule types: A and B illustrate the
bivalent rule, C illustrates the univalent rule. Participants viewed the rule cue
for 1 s. After a 0.5 s delay the target stimulus was presented for 2.5 s. The
response was either a left or a right button press, depending on the relevant
mapping that had been previously learnt.
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Figure 2: Simulated within-trial dynamics, governed by equations 1 to 4, for
twenty trials of the rule task (each differently coloured). The true context and
stimulus were c = S and s = B, thus left is the correct response. Each trial lasts
for 20 time steps and used parameters σs = σc = 1. The horizontal lines denote
the decision thresholds β and 1 − β. The (first) intersection of each trajectory
with the decision threshold indicates the reaction time for each trial. There are
two error trials (violet and black curves) out of twenty.
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Figure 3: Monte-Carlo (blue curves) versus numerical quadrature (red curves)
evaluation of gm(σc, σs) for the bivalent rule task. These estimates are plotted
as a function of σc for various values of σs: 1.00 (top left), 1.84 (top right), 3.39
(bottom left) and 6.25 (bottom right).
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Figure 4: Boxplots of error rates over participants for ’stupid’ prime (top row)
and ’clever’ prime (bottom row). On each box, the dotted line indicates the
median, the edges of the box are the 25th and 75th percentiles, the whiskers
extend to the most extreme data points considered not to be outliers, and the
outliers are plotted individually as circles. The outlying data points in the top
row are all from participant 10.
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Figure 5: Mean reaction times on univalent and bivalent tasks (blue line) and
model predictions (red line). The red line has been shifted to the right to make
the differences more visible. Vertical bars indicate standard errors (blue line)
and standard deviations (red line).
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Figure 6: Model predictions of reaction time on bivalent rule task as a function
of σc and z for σs = 7.4 and T0 = 520ms. The symbols 1, 2 and 3 mark
estimated values of z and σc for sessions 1, 2 and 3 when subjects were primed
stupid.
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