
Efficient Gradient Computation for Dynamical

Models

B. Sengupta∗, K.J. Friston†and W.D. Penny‡

Wellcome Trust Centre for Neuroimaging
Institute of Neurology, University College London

12 Queen Square, London WC1N 3BG, UK

Abstract

Data assimilation is a fundamental issue that arises across many scales
in neuroscience – ranging from the study of single neurons using sin-
gle electrode recordings to the interaction of thousands of neurons using
fMRI. Data assimilation involves inverting a generative model that can
not only explain observed data but also generate predictions. Typically,
the model is inverted or fitted using conventional tools of (convex) op-
timization that invariably extremise some functional – norms, minimum
descriptive length, variational free energy, etc. Generally, optimisation
rests on evaluating the local gradients of the functional to be optimised.
In this paper, we compare three different gradient estimation techniques
that could be used for extremising any functional in time – (i) finite dif-
ferences, (ii) forward sensitivities and a method based on (iii) the adjoint
of the dynamical system. We demonstrate that the first-order gradients
of a dynamical system, linear or non-linear, can be computed most effi-
ciently using the adjoint method. This is particularly true for systems
where the number of parameters is greater than the number of states. For
such systems, integrating several sensitivity equations – as required with
forward sensitivities – proves to be most expensive, while finite-difference
approximations have an intermediate efficiency. In the context of neu-
roimaging, adjoint based inversion of dynamical causal models (DCMs)
can, in principle, enable the study of models with large numbers of nodes
and parameters.

Introduction

An important goal of systems neuroscience is to integrate empirical data from
various neuroimaging modalities with biologically informed models that describe
the underlying generative processes. Here, the data to be explained are for ex-
ample M/EEG or fMRI recordings made while subjects perform various exper-
imental tasks, and the underlying neurodynamic processes are framed in terms
∗b.sengupta@ucl.ac.uk
†k.friston@ucl.ac.uk
‡w.penny@ucl.ac.uk

1

of differential equations describing activity in neural masses, mean fields, or
neural fields [1, 2, 3].

Considerable insight can be gained from studying the emergent properties
of such neurodynamic processes. These can then be qualitatively compared
with empirical data, allowing consilience among multiple levels of description
[4, 5, 6]. An alternative approach is to directly fit neurodynamical models to
neuroimaging data using standard model fitting procedures from statistics and
machine learning [7, 8]. Differences in the generative processes induced by ex-
perimental manipulations can then be associated with changes in underlying
brain connectivity. One example of such an approach is Dynamic Causal Mod-
elling (DCM) [1] which fits differential equation models to neuroimaging data
using a variational Bayesian scheme [9].

More generally, in the statistics and machine learning literature various
methods have been employed to fit differential equations to data, from max-
imum likelihood approaches [10] to Bayesian sampling algorithms [11, 12]. The
majority of these convex optimisation approaches involve computing the gradi-
ent; the change in the cost function produced by a change in model parameters.
This gradient is then combined with information from line searches (e.g., Wolfe’s
conditions) or methods involving a Newton, quasi-Newton (low-rank) or Fisher
information based curvature estimators to update model parameters [7, 13, 14].
The main computational bottleneck in these algorithms is the computation of
the gradient (or the curvature) of the parametric cost function. This motivates
the search for efficient methods to evaluate gradients.

This paper compares three different methods for computing gradients, and
studies the conditions under which each is preferred. The first is the Finite
Difference (FD) method, which is simplest and most general method – and is
currently used in DCM. The second is the Forward Sensitivity (FS; also known
as tangent linear) method, which has previously been proposed in the context
of modelling fMRI time series [15]. The third is the Adjoint Method (AM)
which has previously been used in the context of dynamical systems theory [16],
weather forecasting [17], image registration [18] and single-neuron biophysics
[19].

The paper is structured as follows – the methods section describes each ap-
proach including a mathemtical derivation of the adjoint method. Examples of
the FS and AM updates are then provided for the case of simple Euler intergra-
tion. The results section reports numerical simulations that disclose the scaling
characteristics of each method. Simulations are provided for a linear dynamical
and weakly-coupled oscillator systems. We conclude with a discussion of the
relative merits of each method.

Methods

We consider dynamical systems of the form

ẋ = f(x, p)

j(x, p) = − 1
2
‖y − g(x, p)‖2 (1)

where x is a state variable, the dot notation denotes a time derivative dx
dt , t

is time, f (·) is the flow equation (dynamics), and p are model parameters.

2

The model produces a prediction via an observation function g(x, p) and an
instantaneous cost function j(x, p) measures the squared difference from data
points y. The total cost is then given by the integral up to time point T

J(p) =
∫ T

0

j(x, p)dt (2)

We consider three methods for computing the gradient dJ
dp .

Finite Difference Method

The (one-sided) finite difference approximation to the gradient is then

dJ

dpi
=
J(p+ δi)− J(p)

δi
(3)

where δi denotes a small change (generally,
√
ε where ε is the machine epsilon)

to the ith parameter. The error in the computation of this gradient is of order
δi. The computation of dJ

dp requires P + 1 runs of the integration process, one
for each model parameter. It is also possible to use central differences

dJ

dpi
=
J(p+ δi)− J(p− δi)

2δi
(4)

which has an error of order δ2i but requires 2P+1 runs of the integration process.
Variations on the vanilla FD approach are discussed in [7, 20].

Forward Sensitivity Method

The original dynamical model (Eqn. 1) can be implicitly differentiated w.r.t
parameters to give

dẋ

dp
=

∂f

∂x

dx

dp
+
∂f

∂p
(5)

If the state variables are of dimension D and the parameters of dimension P
then the quantity dẋ

dp is a D×P matrix, which can be vectorised to form a new
flow function. This forms a new dynamical system of dimension D×P that can
then be integrated using any numerical method to produce dx

dp as a function of
time. The forward sensitivity approach has been known since the publication of
Gronwall’s theorem [21]. The cost gradient is then given by accumulating the
sensitivity derivative dx

dp over time according to:

dJ

dp
=

∫ T

0

dj

dp
dt (6)

dj

dp
=

∂j

∂x

dx

dp
+
∂j

∂p

=
∂j

∂g

∂g

∂x

dx

dp
+
∂j

∂g

∂g

∂p

3

Euler Example

This section illustrates the FS approach first-order Euler integration of the dy-
namics

xn = xn−1 + τf(xn−1, p) (7)

at discrete times t(n). The FS method is based on differentiating this equation
to give

dxn
dp

=
dxn−1

dp
+ τ

[
∂f

∂xn−1

dxn−1

dp
+
∂f

∂p

]
(8)

This method is illustrated in Figure 1 where the solid path indicates a trajectory
of points xn for a dynamical system with parameters p and the dotted path
indicates the trajectory xn for the same dynamical system but with parameters
p = p + δi. The dotted path can be obtained from the solid path via the total
derivative dxn

dpi
in the direction of the perturbation, δi. The FS method provides

a method for computing this derivative. Under a first order Euler approach for
integrating the dynamics, this is implemented using the above recursion.

Because the perturbed path (dotted in Figure 1) can be reached from the
original trajectory via the total derivative dxn

dp , there is no need to separately
integrate the system with parameters p. Geometrically, the points xn in Figure 1
can be reached via the solid and dashed lines (rather than the dotted lines).

We rewrite the recursion equation as

Sx(n) = Sx(n− 1) + τ [Fx(n− 1)Sx(n− 1) + Fp(n− 1)] (9)

where

Fp(n) =
∂f

∂p

∣∣∣∣
xn

(10)

Fx(n) =
∂f

∂x

∣∣∣∣
xn

Sx(n) =
dx

dp

∣∣∣∣
xn

Sx is a [D × P] matrix, Fx is [D ×D] and Fp is [D × P]. We then have

dJ

dp
=

N∑
n=1

∂j

∂xn

dxn
dp

(11)

=
N∑
n=1

jx(n)Sx(n)

and jx(n) is the derivative of j(x, p) with respect to x, evaluated at xn. This
method requires the derivatives Fx and Fp. These will be specific to the dynam-
ical model in question and, in this paper, are computed analytically. We provide
the Euler example here as a simple illustration of the method. The numerical
simulations in this paper use a more accurate integration method (see below).

4

Adjoint Method

Errico [17] and Giles and Pierce [22] provide introductions to the adjoint method.
A derivation of the Adjoint method for dynamical models is provided rigorously
in [23] and less formally in [24]. Here, we provide an informal derivation, starting
with the cost function

J(p) =

T∫
0

j (x, p)dt (12)

The constraints implied by the dynamics allow us to write the Lagrangian

L(p) =

T∫
0

j(x, p)dt+

T∫
0

λT [ẋ− f(x, p)] dt (13)

Once the system has been integrated (solved for x) we have ẋ = f(x, p). Hence
the second term in the Lagrangian disappears and we have

dJ

dp
=

dL
dp

(14)

This is the gradient we wish to compute. So far it may seem that we have made
no progress but it turns out that dL

dp can be computed efficiently.
Before proceeding further, we summarise the main ideas behind the adjoint

method. The central concept is that the Lagrange vector λT constrains the
dynamical system to variations around the forward path xn. The Lagrange
vectors are of the same dimension as x and form a time series. Algebraically,
the contribution of the total derivative dx

dp to the gradient dJ
dp is made zero, by

setting λT appropriately. This means that the sensitivity derivative need never
be calculated, resulting in a large computational saving. Instead, the gradient
dJ
dp can be expressed as a function of λT . We will now go through this in a bit
more detail:

The proof proceeds by differentiating Eqn. 13 to give the gradient

dJ

dp
=

T∫
0

(
∂j

∂x

dx

dp
+
∂j

∂p

)
dt+

T∫
0

λT
(
dẋ

dp
− ∂f

∂x

dx

dp
− ∂f

∂p

)
dt (15)

The term involving the change in total derivative, dẋdp , can be rewritten using
integration by parts

T∫
0

λT
dẋ

dp
dt =

[
λT

dx

dp

]T
0

−
T∫

0

dλT

dt

dx

dp
dt (16)

Substituting this into the previous expression and rearranging to group to-
gether terms involving the sensitivity derivative dx

dp gives

5

dJ

dp
=

T∫
0

dx

dp

(
∂j

∂x
− λT ∂f

∂x
− dλT

dt

)
dt (17)

+

T∫
0

(
∂j

∂p
− λT ∂f

∂p

)
dt+

[
λT

dx

dp

]T
0

As the adjoint vector λT has no effect on the Lagrangian (given ẋ = f(x, p))
it can be used to eliminate the first term involving the sensitivity derivative.
This term is zero when:

dλT

dt
=
∂j

∂x
− λT ∂f

∂x
(18)

This is known as the adjoint equation and is used to compute λT . The
gradient is then given by

dJ

dp
=

T∫
0

(
∂j

∂p
− λT ∂f

∂p

)
dt+

[
λT

dx

dp

]T
0

(19)

As our goal has been to avoid computation of the sensitivity derivative, dxdp ,
we can eliminate the last term above by integrating the adjoint equations back-
ward in time, starting with λT = 0. The starting value for the adjoint equation
is arbitrary and it can be proven that if λ|t=tf,a

and λ|t=tf,b
are two different

starting values for the adjoint equation with solutions λa and λb respectively,
then dJ

dp

∣∣∣
λa

= dJ
dp

∣∣∣
λb

. Therefore, there exist infinitely many starting conditions

for the adjoint equation that yields the same parametric gradient.
If the initial conditions do not depend on the parameters, as we assume for

our numerical examples, then we have dx
dp = 0 at t = 0 and the gradient reduces

to

dJ

dp
=

T∫
0

(
∂j

∂p
− λT ∂f

∂p

)
dt (20)

This equality can now be used to compute the parametric gradients, given
the backwards solution of the adjoint equation.

There are no restrictions on the functional form to make the adjoint method
viable – if one can pose the optimization problem via a Lagrangian, then the
adjoint method could be used for any dynamical system (ordinary-, delay-
, random- and partial- differential equation). The one and only constraint
is the stability of the adjoint equation for the underlying dynamical system.
Thus, static or dynamical systems that are routinely used in neuroimaging are
amenable to an adjoint formulation under some loss-function including stochas-
tic DCMs that have an analytical model for the noise (of class Cω). Table 1
highlights the key differences between all of the methods and the crucial steps
required in each of them.

6

Euler Example

The specification of the adjoint method starts from the specification of the
Lagrangian. For us, this has the particular form

L = −1
2

∑
n

||yn − g(xn)||2 +
∑
n

λn [xn − xn−1 − τf(xn−1, p)] (21)

where the first term is the original cost function, the second term enforces
the constraint embodied in the Euler integration of the state dynamics, and λn
is a [1×D] vector of Lagrange multipliers. Because L is a scalar, and the state
xn is a column vector, the Lagrange multipliers must be a row vector. It is in
this sense that they are adjoint (or transposed) to the states. The derivative of
L with respect to the states is then given by

dL
dxn

= gx(n)[yn − g(xn)] + λn − λn+1 − τλn+1Fx(n) (22)

where gx(n) is the derivative of g(x, p) with respect to x, evaluated at xn.
Setting Eqn. 22 to zero (i.e., solving for the states) gives

λn = λn+1 [I + τFx(n)]− gx(n)[yn − g(xn)] (23)

This is a backward recursion, known as the adjoint equation, that starts
with λN = 0. After solving the adjoint equations we can enter λn into Eqn. 20,
giving

dJ

dp
= τ

N∑
n=1

[jp(n)− λnFp(n)] (24)

where jp(n) is the derivative of j(x, p) with respect to p, evaluated at xn.
If the observation function does not depend on model parameters then the first
term disappears. A first order Euler Adjoint method has been used previously
in the context of image registration [18]. However, we provide the Euler example
here as an illustration of the method. The numerical simulations in this paper
use a more accurate integration method (see below).

Stability

It is known that if flows are prescribed as ODEs, then their adjoint solutions are
also stable [23]. Under these conditions, the numerical stability of the adjoint
system is guaranteed when the adjoint equation is integrated backwards in time,
in the sense that the flow is reversed. Consider a linear autonomous system,
f = Ax + B where A ∈ Rn×n, B ∈ Rn and both are invariant in time. Being
linear in states with pre-defined initial conditions, such a system can be analyt-
ically integrated to yield a solution as a sum of its n matrix exponentials with
unique eigenvectors and their respective eigenvalues. Such a system is asymptot-
ically stable when the eigenvalues have a negative real part i.e., Re (Λ (A)) < 0.
For such a linear autonomous system the eigenvalues of the adjoint equation,

λ̇ = −
(
df
dx

)T
·λ = −ATλ have a positive real part, proving to be asymptotically

unstable. If one were now to reverse the flow i.e.,λ̇∗ =
(
df
dx

)T
· λ∗ = ATλ∗, the

7

eigen-values then have a negative real part and the dynamics is asymptotically
stable. One can derive similar results for non-linear equations using a pertur-
bation expansion, suggesting the condition of asymptotic and uniform stability
is guaranteed when the adjoint equations are integrated backwards.

Integration

For the numerical results in this paper, we used Matlab’s ode15s function which
implements a variable order method for integrating stiff differential equations
[25]. Two important parameters governing the operation of this algorithm are
the absolute, a, and relative, r, error tolerances. The estimated error in each
integration step is constrained to be less than max(r|xn|, a).

The absolute and relative tolerances were set to 10−7 for each of the gra-
dient computation methods although results were also obtained with different
sets of tolerances, taking on values aFD, aFS , aAM and rFD, rFS , rAM for the
Finite Difference, Forward Sensitivity and Adjoint Methods respectively. When
tolerances were set differently, these values were tuned for each problem (lin-
ear/nonlinear) so as to achieve good agreement among the methods.

Table 1: Comparison of the different gradient computation methods
The flow eqn. is either linear or non-linear, with P parameters and N state
variables.

Finite Differences Forward Sensitivities Adjoint

Suitability arbitrary N >> P P >> N

Cost (1 + P) flow eqns. P non-linear sensitivity eqns.
+ 1 flow eqn.

1 linear adjoint eqn. + 1
flow eqn.

Key steps 1. Integrate flow eqn.
2. Parametrically perturb
flow P times

1. Integrate the coupled flow
and sensitivity eqns.

1. Integrate flow eqn.
2. Integrate adjoint eqn.

Results

Custom MATLAB scripts were written to implement each of the gradient com-
putation methods.

Linear Models

First we consider the linear models

ẋ = Ax (25)

where x is a D-dimensional state vector with initial value x0 = 1, and A is a
D×D connectivity matrix. Readers familiar with DCM for fMRI will recognise
A as the endogenous or average connectivity matrix. A model with D states
therefore has P = D2 parameters (Figure 2(A)). The system is integrated from
time 0 to T . To ensure stability, we constructed A using the linear expansion

A =
D∑
d=1

qdvdv
T
d (26)

8

where vd ∼ N (vd; 0, 1) are standard D-dimensional Gaussian random vectors,
which are serially orthogonalized. The scalars qd are negative real numbers
so that the corresponding eigenstates are exponentially decaying modes. The
values of qd were set so that the corresponding time constants were between T/5
and T . Figure 2(B) show the time series for five such eigenstates.

For each model dimension considered (see below) we generated a state tra-
jectory using known model parameters generated as described above. We then
created an observable data time series yn = g(xn) with the observation function
g(xn) = xn, that is, all of the dynamical states are observed.

We then created ‘perturbed’ parameters by adding Gaussian noise with a
standard deviation of 10% of the original parameters. The cost function was
defined as

J = −1
2

∑
n

[yn − g(xn)]2 (27)

To summarize, the ‘data points’ yn were created using the original parameters
and the ‘model predictions’, g(xn) used the perturbed parameters. Gradients
were then estimated at this perturbed point.

The systems were integrated using the tolerances of FD and FS fixed at 10−7.
Although, the tolerance of AM was adjusted so as to achieve best fit to the FD
based gradient estimate, for the efficiency-scaling simulations we fixed it at a
lower value of 10−3. This is illustrated in Figure 3(A) that shows the estimated
gradients for a D = 5 dimensional linear system. Setting the tolerance of the
AM method to 10−3 did not affect the mean-squared deviation of the gradients
obtained between the FD and the AM methods (data not shown).

We then compared the three gradient computation methods. Figure 3(B)
plots the computation time as a function of state dimension. For a 28 node
system with 784 model parameters the computation time for the adjoint method
is 77 times less than for the finite difference method.

Nonlinear Models

Next, we consider weakly coupled oscillators of the form

ẋi(t) = fi +
D∑

j=1,j 6=i

(αij sin[xi(t)− xj(t)] + βij cos[xi(t)− xj(t)]) (28)

where the model parameters comprise the parameters f , α and β. A model with
D states therefore has P = 2D2−D parameters. We used a cost function equal
to the mean square deviation between observed and predicted state trajectories
i.e., the norm of the prediction error (again, all states were observed).

The tolerance parameters of the integration process were set identical to
those used for the linear models. Again, the adjoint equation being a linear
first order ODE enables the use of lower tolerances (10−3). This process was
implemented for a D = 5 dimensional problem and Figure 4(B) shows the
estimated gradients.

We then compared the three gradient computation methods. Figure 4(C)
plots the computation time as a function of state dimension. For a 24 node sys-
tem with 1128 model parameters the computation time for the adjoint method
is 50 times less than for the finite difference method.

9

The efficiency of the AM formulation is due to two reasons – first, the adjoint
equation is linear and second it is integrated only once to compute the gradient.
Given that the AM equation is linear, the condition number is low, enabling
any ODE integrator to integrate the adjoint equation with ease. Indeed, if the
ODE integrator is subjected to unnecessary high tolerances it spends more time
integrating the adjoint equation. Thus, the advantage of the adjoint scheme
reveals both the parsimonious integration scheme as well as the linearity of this
equation that requires less-conservative tolerances.

Discussion

Optimization theory attaches mathematical well-posedness to the issue of bi-
ological data-assimilation by formalizing the relationship between empirically
measured data and a model generating those responses. In this paper, we intro-
duced three different methods for numerical gradient estimation that forms an
integral part of any convex optimization framework. Our comparison establishes
that the adjoint method is computationally more efficient for numerical estima-
tion of parametric gradients for state-space models – both linear and non-linear,
as in the case of a dynamical causal model (DCM). As is apparent from the gra-
dient equations, the adjoint method is efficient when the numbers of parameters
are much greater than the number of states determining the cost function. The
contrary is true for the forward sensitivity approach albeit for large state-space
models, finite-difference based gradients prove to be beneficial. There are two
remarks that can be made about the adjoint formulation. First, regardless of
whether the flow is linear or non-linear the adjoint method requires the inte-
gration of a single linear equation – the computational efficiency is inherent in
the structure of the equation. Second, the appearance of a transpose on the
adjoint vector implies that the flow of information in the system of equations is
reversed, it is in this sense that the adjoint equations are integrated backwards
in time.

Although, adaptive error correction is invariably used in the integration of
differential equations, the numerical simulations suggest that the tolerance used
for integrating the flow and adjoint differential equations are vital in determining
the accuracy of the parametric gradients, due to the presence of discretization
error. In theory, plugging in the solution field to the flow equation should yield
zero, but due to the existence of discretization error the residual is generally
non-zero. The same is true for the adjoint equation. In fact, a theorem by
Becker and Rannacher [26] shows how discretization of the gradient depends on
the average of the errors and the residuals accumulated in the integration of
flow and the adjoint equations [27]. This is also the case for obtaining gradients
via finite-differencing, where we find that the fidelity of error-free discretisation
of the flow equations are a prerequisite for guaranteeing parametric gradients
that are a reliable estimate of the true gradient.

It is known that if the flows are prescribed as ODEs the numerical stabil-
ity of the adjoint system is guaranteed when the adjoint equation is integrated
backwards in time, in the sense that the flow is reversed. Our derivation of the
adjoint method is mathematically informal so as to illustrate the basic working
principle; rigorous mathematical proofs that accommodate higher order differ-
ential algebraic equations, time-dependent parameters or objective functionals

10

that depend on initial conditions are available elsewhere [23].
For DCM inversions that allow problem specification in a pre-defined form

it may be generally time-efficient to derive the gradient functions analytically
rather than using automatic differentiation [28]. Automatic differentiation is
particularly important for partial differential equations (PDEs) that have 3-
dimensional representations, requiring automatization and therefore proving to
be error resilient [29]. For a PDE-constrained optimization problem the solution
is governed by a fully coupled Karush-Kuhn-Tucker (KKT) system of equations.
These can be computationally expensive for parabolic and hyperbolic PDEs,
as well as displaying slow convergence of the defined objective functional (ill-
conditioning). The adjoint formulation remedies this by decoupling the coupled
PDEs and replacing them by iterative solves of a linear adjoint PDE equation.
Additional success of adjoint-based gradient methods for PDE-constrained opti-
mization relies on the fact that mesh independent convergence can be attained.
Further speedup could also be obtained by using compiled implementation of
forward and adjoint sensitivity methods available in the SUNDIALS time inte-
gration package [24]. This code is written in C and may offer substantial speed
advantages over MATLAB implementations.

For data assimilation, it is only rarely that we have precise information on
the states or the parameters [30]. Is the adjoint method equally efficient when
there is noise on the states and the parameters? One way to represent un-
certainty in a mathematical model, whether static or dynamic is to formulate
it as a polynomial chaos expansion [31], one for each noisy state or parame-
ter. This then enables the characteristic statistical quantities to be evaluated
as some function of the expansion coefficients – the uncertainty now becomes
parameterised. Estimation of the numerical gradient can then proceed akin to
a deterministic dynamical model where the computational burden does not de-
pend on the number of parameters [32]. Alternatively, adjoint methods can be
gracefully combined with Markov Chain Monte Carlo (MCMC) sampling-based
evaluation of the posterior densities [33]. In a forthcoming paper we address
how second-order adjoined gradient estimates could be obtained in the context
of Bayesian inversion of neural masses, mean fields, and neural field equations.

Constrained optimization problems arise in many scientific fields, from neu-
roscience to financial mathematics, therefore a fundamental need for efficient
computational methodologies arises. Our work promotes such an endeavor es-
pecially for data-sets arising in neuroscience, for example the inversion of large-
scale DCMs that have been routinely used to test hypotheses about different
functional brain architectures.

Acknowledgements

This work is supported by a Wellcome Trust/DBT Early Career fellowship to
BS. KJF and WDP are supported by the Wellcome Trust. Initial code-base used
resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge
National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

11

References

[1] K.J. Friston, L. Harrison, and W. Penny. Dynamic Causal Modelling.
NeuroImage, 19(4):1273–1302, 2003.

[2] O David, S. Kiebel, L. Harrison, J Mattout, J. Kilner, and K. Friston. Dy-
namic causal modeling of evoked responses in EEG and MEG. Neuroimage,
30(4):1255–1272, May 2006.

[3] Gustavo Deco, Viktor K. Jirsa, Peter A. Robinson, Michael Breakspear,
and Karl Friston. The dynamic brain: from spiking neurons to neural
masses and cortical fields. PLoS Comput Biol, 4(8):e1000092, 2008.

[4] H. Wilson. Spikes, Decisions and Actions: The Dynamical Foundations of
Neuroscience. Oxford University Press, New York, 1999.

[5] J. Hopfield and C. Brody. What is a moment ? Transient synchrony as
a collective mechanism for spatiotemporal integration. Proceedings of the
National Academy of Sciences, 98(3):1282–1287, 2001.

[6] M. Gazzaniga. Neuroscience and the correct level of explanation for under-
staning mind. Trends in Cognitive Sciences, 14:291–292, 2010.

[7] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Nu-
merical Recipes in C. Cambridge University Press, New York, 1992.

[8] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, New
York, 2006.

[9] K Friston, J Mattout, N Trujillo-Barreto, J Ashburner, and W Penny.
Variational free energy and the Laplace approximation. Neuroimage, 34
(1):220–234, Jan 2007.

[10] J. Ramsay, H. Hooker, D. Campbell, and J. Cao. Parameter estimation for
differential equations: a generalized smoothing approach. Journal of the
Royal Statistical Society Sereis B, 69(5):741–796, 2007.

[11] V. Vyshemirsky and M. Girolami. Bayesian ranking of biochemical system
models. Bioinformatics, 24(6):833–9, 2008.

[12] B Calderhead and M Girolami. Estimating Bayes factors via thermody-
namic integration and population MCMC. Computational Statistics & Data
Analysis, 53(12):4028–4045, 2009.

[13] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York,
2nd edition, 2006.

[14] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, Oxford, 1995.

[15] T Deneux and O Faugeras. Using nonlinear models in fMRI data analysis:
model selection and activation detection. Neuroimage, 32:1669–1689, 2006.

[16] Q. Wang. Forward and adjoint sensitivity computation of chaotic dynamical
systems. Journal of Computational Physics, 235:1–13, 2013.

12

[17] R Errico. What is an Adjoint Model ? Bulletin of the American Metereo-
logical Society, 78:2577–2591, 1997.

[18] A Clark. Geodesic shooting for anatomical curve registration on the plane.
PhD thesis, Department of Aeronautics, Imperial College, London, 2011.

[19] M. Stemmler, B. Sengupta, S. B. Laughlin, and J. E. Niven. Energetically
optimal action potentials. In Advances in Neural Information Processing
Systems, pages 1566–1574, 2012.

[20] D Richtmeyer and K Morton. Difference methods for initial value problems.
Wiley, New York, 1967.

[21] T Gronwall. Note on the Derivatives with Respect to a Parameter of the
Solutions of a System of Differential Equations. Annals of Mathematics,
20:292–296, 1919.

[22] M Giles and N Pierce. An Introduction to the Adjoint Approach to Design.
Flow, Turbulence and Combustion, 65:393–415, 2000.

[23] Y Cao, S Li, L Petzold, and R Serban. Adjoint sensitivity analysis for
differential-algebraic equations: the adjoint DAE system and its numerical
solution. SIAM journal on Scientific Computing, 24:1076–1089, 2003.

[24] A Hindmarsh and R Serban. User Documentation for CVODES, and ODE
Solver with Sensitivity Analysis Capabilities. Technical report, Centre for
Applied Scientific Computing, Lawrence Livermore National Laboratory,
2002.

[25] L Shampine and M Reichelt. The MATLAB ODE Suite. SIAM Journal
on Scientific Computing, 18:1–22, 1997.

[26] R. Becker and R. Rannacher. An optimal control approach to a posteriori
error estimation in finite element methods. Acta Numerica, 10:1102, 2001.

[27] W. Bangerth and R. Rannacher. ETH Zürich Lectures in Mathemat-
ics, chapter Adaptive finite element methods for differential equations.
Birkhäuser, 2003.

[28] C Bischof, H. Martin Bücker, A Vehreschild, and J Willkomm. Automatic
differentiation for matlab (ADiMat). In MATLAB-Day, Aachen, Germany,
October 2012.

[29] Marzio Sala, Michael A. Heroux, and David M. Day. Trilinos Tutorial.
Technical Report SAND2004-2189, Sandia National Laboratories, 2004.

[30] Norbert Wiener. Extrapolation, Interpolation, and Smoothing of Stationary
Time Series. The MIT Press, 1964.

[31] Norbert Wiener. The Homogeneous Chaos. American Journal of Mathe-
matics, 60(4):897–936, 1938. ISSN 00029327.

[32] A. K. Alekseev, I. M. Navon, and M. E. Zelentsov. The estimation of
functional uncertainty using polynomial chaos and adjoint equations. Int.
J. Numer. Meth. Fluids, 67:328341, 2010.

13

[33] D. Ghate and M.B. Giles. Inexpensive monte carlo uncertainty analysis.
In Symposium on Applied Aerodynamics and Design of Aerospace Vehicles,
2005.

14

x1 = x1
 x2

x3

x4

x5

x2

x3

x4

x5

i
i dp
dx2δ

i
i dp
dx3δ

i
i dp
dx4δ

i
i dp
dx5δ

Figure 1: Forward Sensitivity The solid path indicates a trajectory of points
xn, with n = 1...5, for a dynamical system with parameters p. The dotted path
indicates the trajectory xn for the same dynamical system but with parameters
p = p + δi. The dotted path can be reached from the solid path via the total
derivative dxn

dp . The Forward Sensitivity approach provides a method for com-
puting this derivative.

15

x1

x4

x2

x3

x5

(A) Connectivity of the linear state-space
model

0 50 100
-0.5

0.0

0.5

1.0

Time [ms]

St
at

e
Va

lu
e

[a
rb

. u
ni

ts
]

State1
State2
State3
State4
State5

(B) Time-evolution of the linear states

Figure 2: Linear System (A) The 5-dimensional state-space model and (B)
the linear evolution of its eigenstates.

16

0 10 20 30
-200

0

200

400

600

Parameter Number

G
ra

di
en

t
Finite Differences

Forward Sensitivities

Adjoint

(A) Gradients for 5-dimensional state-space (25 parameters)

1 2 4 8 16 32
10-2

10-1

100

101

102

103

104

Number of Nodes

Ex
ec

ut
io

n
Ti

m
e

[s
] Finite Differences

Forward Sensitivities
Adjoint

(B) Computation time as a function of state dimension

Figure 3: Computational efficiency for linear systems (A) Comparison of
the parametric gradient obtained by the three methods. (B) Scaling of run-time
as a function of the number of nodes. The absolute and relative tolerances of
FD and FS methods were set to 10−7 while the tolerances for the AM method
was fixed to 10−3. Simulation time was fixed at 400 ms.

17

φ1

φ4

φ2

φ3

φ5

(A) Connectivity of the non-
linear state-space model

0 10 20 30 40 50
-100

-50

0

50

100

Parameter Number

G
ra

di
en

t

Finite Differences

Forward Sensitivities

Adjoint

(B) Gradients for 5-dimensional state-space
(45 parameters)

1 2 4 8 16 32
10-1

100

101

102

103

104

105

Number of nodes

Ex
ec

ut
io

n
Ti

m
e

[s
] Finite Differences

Forward Sensitivities
Adjoint

(C) Computation time as a function of state
dimension

Figure 4: Computational efficiency for non-linear systems (A) Compari-
son of the gradient obtained by the three methods. Here, the last five parameters
quantify the intrinsic oscillator frequencies, and the first 40 parameters the sine
and cosine interaction terms. (B) Scaling of run-time as a function of the num-
ber of nodes. The absolute and relative tolerances of FD and FS methods were
set to 10−7 while the tolerances for the AM method was fixed to 10−3. Simulation
time was fixed at 100 ms.

18

