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Bayesian decoding of brain images
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This paper introduces a multivariate Bayesian (MVB) scheme to
decode or recognise brain states from neuroimages. It resolves the ill-
posed many-to-one mapping, from voxel values or data features to a
target variable, using a parametric empirical or hierarchical Bayesian
model. This model is inverted using standard variational techniques, in
this case expectation maximisation, to furnish the model evidence and
the conditional density of the model’s parameters. This allows one to
compare different models or hypotheses about the mapping from
functional or structural anatomy to perceptual and behavioural
consequences (or their deficits). We frame this approach in terms of
decoding measured brain states to predict or classify outcomes using
the rhetoric established in pattern classification of neuroimaging data.
However, the aim of MVB is not to predict (because the outcomes are
known) but to enable inference on different models of structure–
function mappings; such as distributed and sparse representations.
This allows one to optimise the model itself and produce predictions
that outperform standard pattern classification approaches, like
support vector machines.

Technically, the model inversion and inference uses the same
empirical Bayesian procedures developed for ill-posed inverse pro-
blems (e.g., source reconstruction in EEG). However, the MVB
scheme used here extends this approach to include a greedy search for
sparse solutions. It reduces the problem to the same form used in
Gaussian process modelling, which affords a generic and efficient
scheme for model optimisation and evaluating model evidence. We
illustrate MVB using simulated and real data, with a special focus on
model comparison; where models can differ in the form of the mapping
(i.e., neuronal representation) within one region, or in the (combina-
tion of) regions per se.
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Introduction

The purpose of this paper is to describe an empirical Bayesian
approach to the multivariate analysis of imaging data that brings
pattern classification and prediction approaches into the conven-
tional inference framework of hierarchical models and their
inversion. The past years have seen a resurgence of interest in
the multivariate analysis of functional and structural brain images.
These approaches have been used to infer the deployment of
distributed representations and their perceptual or behavioural
correlates. In this paper, we try to identify the key issues entailed
by these approaches and use these issues to motivate a better
approach to estimating and making inferences about distributed
neuronal representations.

This paper comprises three sections. In the first, we review the
development of multivariate analyses with a special focus on three
important distinctions; the difference between mass-univariate and
multivariate models, the difference between generative and
recognition models and the distinction between inference and
prediction. The second section uses the conclusions of the first
section to motivate a simple hierarchical model of the mapping
from observed brain responses to a measure of what those
responses encode. This model allows one to compare different
forms of encoding, using conventional model comparison. In the
final section, we apply the multivariate Bayesian model of the
second section to real fMRI data and ask where and how visual
motion is encoded. We also show that the ensuing model out-
performs simple classification devices like linear discrimination
and support vector machines. We conclude with a discussion of
generalisations; for example, nonlinear models and the comparison
of multiple conditions to disambiguate between functional
selectivity and segregation in the cortex.

Multivariate models and classification

Mappings and models

In this section, we review multivariate approaches and look at
the distinction between inference and prediction. This section is
written in a tutorial style in an attempt to highlight some of the
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basic concepts underlying inference on structure–function map-
pings in the brain. We try to link the various approaches that have
been adopted in neuroimaging and identify the exact nature of
inference these approaches support.

The question addressed in most applications of multivariate
analysis is whether distributed neuronal responses encode some
sensorial or cognitive state of the subject (for a review, see Haynes
and Rees, 2006). Universally, this entails some form of model
comparison, in which one compares a model that links neuronal
activity to a presumed cognitive state with a model that does not.
The link can be from the neuronal measure or response variable,
YaRn to an experimental or explanatory variable, XaRv, or the
other way around. From the point of view of inferring a link exists,
its direction is not important; however, the form of the model may
depend on the direction. This becomes important when one wants
to compare different models (as we will see below). In current
fMRI analysis, inference on models or functions that map g:X→Y
include conventional mass-univariate models as employed by
statistical parametric and posterior probability mapping (that use
classical and Bayesian inference respectively; Friston et al., 2002)
or classical multivariate models such as canonical variate analysis.
The converse mapping from h:Y→X is used by classification
schemes, such as linear discriminant analysis and support vector
machines. Typically YaRn has many more elements or dimen-
sions than XaRv (i.e., nNv). For example, XaR could be a scalar
or label indicating whether motion is present in the visual field and
YaRn could be the fMRI signal from a thousand voxels, in a
visual cortical area. Similarly, X could be a label indicating whether
a subject has Alzheimer’s disease and Y could be the grey matter
density over the entire brain. In what follows, we review some of
the basics of inference that are needed to understand the
relationship between model comparison and classification.
1 The free energy in this paper is the negative free energy is statistical
physics. This means the free energy and log-evidence have the same sign.
Marginal likelihoods and statistical dependencies

We can reduce the problem of linking observed brain responses
to their causes (in the case of perception) or consequences (in the
case of behaviour) to establishing the existence of some mapping,
g:X→Y; in other words, inferring that there is some statistical
dependency between the experimental variable and measured
response (or the other way around). If this mapping exists, we can
infer that brain states cause or are caused by X. This means we can
formulate our question in terms of a null hypothesis H0 that there is
no dependency, in which case the measurements are equally likely,
whether or not we know the experimental variable; p(Y∣X)=p(Y).
The Neyman–Pearson lemma states that the likelihood ratio test

K ¼ pðY jX Þ
pðY Þ zu ð1Þ

is the most powerful test of size α=p(Λ≥u|H0) for testing this
hypothesis. Generally, the null distribution of the likelihood ratio
statistic p(Λ|H0) is determined non-parametrically or under
parametric assumptions (e.g., a t-test). The likelihood ratio, Λ(Y)
underlies most statistical inference and model comparison and is
the basis of nearly all classical statistics; ranging from Wilk’s
Lambda in canonical correlation analysis to the F ratio in analysis
of variance.

In Bayesian inference, the likelihood ratio is known as a Bayes
factor (Kass and Raftery, 1995) that compares models of Y with
and without X. Usually, in Bayesian model comparison, one uses
the log-likelihoods directly to quantify the relative likelihood of
two models

ln K ¼ ln pðY jX Þ � ln pðY Þzu ð2Þ
where u is generally three (see Penny et al., 2004). This means the
first model is at least 20≈Λ=exp(3) times more likely than the
second, assuming both models are equally likely a priori. Another
way of expressing this is to say that one model is 0.95≈Λ/(Λ+1)
more likely than the other, given the data. We will use both
classical and Bayesian inference in this paper.

Evaluating the marginal likelihood

To evaluate the likelihood ratio, we need to evaluate the
likelihood under the null hypothesis and under some mapping. To
do this, we need to posit a probabilistic model of the mapping g(θ):
X→Y and integrate out the dependence on the unknown
parameters of the mapping, θ. This gives the marginal likelihood
(also known as the integrated likelihood or evidence)

pðY jX Þ ¼
Z

pðY ; hjX Þdh ð3Þ

This marginalisation requires the joint density p(Y,θ|X )=p(Y |θ,
X)p(θ) that is usually specified in terms of a likelihood, p(Y |θ,X)
and a prior, p(θ). In general, the integral above cannot be evaluated
analytically. This problem can be finessed by converting a difficult
integration problem into an easy optimisation problem; by
optimizing a [free energy] bound on the evidence with respect to
an arbitrary density q(θ)

F ¼
Z

q hð Þln pðY ; hjX Þ
qðhÞ dh ¼ lnp Y jXð Þ � D q hð Þjjp hjY ;Xð Þð Þ

ð4Þ
When this bound is maximised, the Kullback–Leibler divergence D
(q‖p(θ∣Y,X)) is minimised and q(θ)≈p(θ|Y,X) becomes an approx-
imate conditional or posterior density on the parameters.
Coincidentally, the free energy1 becomes the log-evidence, F≈ ln
p(Y∣X). All estimation and inference schemes based on para-
meterised density functions can be formulated in this way; from
complicated extended Kalman filters for dynamic systems to the
simple estimate of a sample mean. The only difference among
these schemes is the form assumed for q(θ) and how easy it is to
maximise the free energy by optimising its sufficient statistics
(e.g., conditional mean and covariance) of q(θ). Because the
bound, F(q(θ)) is a function of a function, the optimisation rests
on the method of variations (Feynman, 1972); this is why the
above approach is know as variational learning (for a compre-
hensive discussion, see Beal, 1998). This may seem an abstract
way to motivate the specification of a model; however, it is a
useful perspective because it highlights the difference between the
role of q(θ) in inference and prediction (see below).

The free energy bound on the log-evidence plays a central role
in what is to follow; in that it quantifies how good a model is, in
relation to another model. The free energy can be expressed in
terms of accuracy and complexity terms (Penny et al., 2004), such
that the best model represents the optimum trade-of between fit and
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parsimony. This trade-off is known as Occam’s razor, which is
sometimes formulated as a minimum description length principle
(MDL). MDL is closely connected to probability theory and
statistics through the correspondence between codes and prob-
ability distributions. This has led some to view MDL as equivalent
to Bayesian inference, for particular classes of model: in MDL, the
code length of the model and the code length of model and data
together, correspond to the prior probability and marginal
likelihood respectively in the Bayesian framework (see MacKay,
2003; Grunwald et al., 2005).

In summary, inference can be reduced to model comparison,
which rests on the marginal likelihood of each model. To evaluate
the marginal likelihood it is necessary to specify the parametric
form of the joint density entailed by the model. Integrating out
dependency on the parameters of this model rests on optimising a
bound on the marginal likelihood with respect to a density, q(θ).
Optimisation makes q(θ) the conditional density on the unknown
parameters (i.e., an implicit estimation). The implication is that
parameter estimation is a necessary and integral part of model
comparison. The key thing to take from this treatment is that
inference about how the brain represents things reduces to model
comparison. This comparison is based on the marginal likelihood
or evidence for competing models of how neurophysiological
variables map to observed responses, or vice versa. Next, we look
at the most prevalent model in neuroimaging.

The general linear model and canonical correlation analysis

The simplest model is a linear mapping under Gaussian
assumptions about random effects; i.e., ε∼N(0,Σ)

Y ¼ Xbþ e Z pðY jh;X Þ ¼ NðXb;RðkÞÞ ð5Þ
where N(μ,Σ) denotes a normal or Gaussian density with mean μ
and covariance Σ and the unknown parameters, θ={β,λ} control
the first and second moments (i.e., mean and covariance) of the
likelihood respectively. This is the general linear model, which is
the cornerstone for neuroimaging data analysis. We will restrict our
discussion to linear models because they can be extended easily to
cover nonlinear mappings; these extensions use nonlinear projec-
tions onto a high-dimensional feature space of the experimental
data (e.g., Büchel et al., 1998) or the images, using kernel methods.
Kernel methods are a class of algorithms for pattern analysis,
whose best known example is the support vector machine (SVM).
Kernel methods transform data into a high-dimensional feature
space, where a linear model is applied. This converts a difficult
low-dimensional nonlinear problem into an easy high-dimensional
linear problem.

Under the general linear model (GLM), it is easy to show (see
Friston, 2007) that the log-likelihood ratio is simply the mutual
information between X and Y

IðX ; Y Þ ¼ HðY Þ � HðY jX Þ
¼ HðX Þ � HðX jY Þ
¼ lnK

ð6Þ

where H(Y)=−∫p(Y)ln p(Y)dY is the entropy or expected surprise.
In other words, lnΛ reflects the reduction in surprise about
observed data that is afforded by seeing the explanatory variables.
Crucially, this is exactly the same reduction in surprise about the
explanatory variables, given the data. This symmetry, i.e., I(X,Y)=
I(Y,X), means that we can swap the explanatory and response
variables in a general linear model with impunity. This is one
perspective on why the inference scheme for GLMs, namely
canonical correlation analysis (CCA) does not distinguish between
explanatory and response variables.

Canonical correlation analysis (CCA), also known as canonical
variate analysis (CVA), computes the likelihood ratio using
generalised eigenvalues solutions of YTY explained and not
explained by X. In this context, Λ is known as Wilk’s Lambda
and is a composition of generalised eigenvalues (also know as
canonical values). Canonical correlation analysis is fundamental to
inference on general linear models and subsumes simpler variants
like MANCOVA, Hotellings T2 test, partial least squares, linear
discriminant analysis and other ad hoc schemes. One might ask, if
CCA provides the optimal inference (by the Neyman–Pearson
Lemma) for GLMs, why is it not used in conventional analyses of
fMRI data with the GLM? In fact, conventional mass-univariate
analyses do use a special case of CCA, namely ANCOVA.

Multivariate vs. mass-univariate

The mass-univariate approach to identifying the mapping g(θ):
X→Y is probably the most common in neuroimaging, as
exemplified by statistical parametric mapping (SPM). These
approaches treat each data element (i.e., voxel) as conditionally
independent of all other voxels such that the implicit likelihood
factorises over voxels, indexed by i

pðY jX ; hÞ ¼j
i
pðYijhi;X Þ ð7Þ

In the classification literature, this would be called a naive
Bayes classifier (also known as Idiot’s Bayes) because the
underlying probability model rests on conditionally independent
data features. In SPM, the spatial dependencies among voxels are
introduced after estimation during inference, through random field
theory. Random field theory provides a model for the prevalence of
topological features in the SPM under the null hypothesis, such as
the number of peaks above some threshold. This allows one to
make multivariate inferences over voxels (e.g., set-level inference;
Friston et al., 1996). The advantage of topological inference is that
random field theory provides a very efficient model for spatial
dependences that is based on the fact that images are continuous;
other multivariate models ignore this. The disadvantage of random
field theory is that the p-value is not based on a likelihood ratio and
is therefore suboptimal by the Neyman–Pearson lemma. However,
SPM is not usually used to make multivariate inference because it
is used predominantly to find regionally specific effects.

Multivariate models relax the naive independence assumption
and enable inference about distributed responses.2 The first
multivariate models of imaging data (scaled sub-profile model:
Moeller et al., 1987) appeared in the nineteen eighties and focused
on disambiguating global and regionally specific effects using
principal component analysis. Principal component analysis also
featured in early data-led multivariate analyses of Alzheimer’s
disease (e.g., Grady et al., 1990). The first canonical correlation
analysis of functional imaging data addressed the mapping
between resting regional cerebral activity and the expression of
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symptoms in schizophrenia. This analysis showed that distinct
brain systems correlated with distinct sub-syndromes of schizo-
phrenia (Friston et al., 1992a).

In Friston et al. (1995), we generalised canonical correlation
analysis to cover all the voxels in the brain: The problem addressed
in that paper was that CCA requires the number of observations to
be substantially larger than the dimensionality of the data features
(i.e., number of voxels) or experimental variables. Clearly, in
imaging, the number of voxels exceeds the number of scans. This
means that one cannot estimate the marginal likelihood because
there are insufficient degrees of freedom to estimate the covariance
parameters, λ⊂θ. This problem can be finessed by invoking priors
p(θ) or constraints on the parameters. In Friston et al. (1995), the
parameters were constrained to a low-dimensional subspace,
spanned by the major singular vectors, U of the data. This
effectively re-parameterised the model in terms of a smaller
number of parameters; β̃ =βU⇔β= β̃UT. Major singular vectors
(i.e., eigenimages) span the greatest variance seen in the data and
are identified easily using singular value decomposition (SVD).

This dimension reduction furnishes a constrained linear model

Ỹ ¼ Xb̃þ ẽ
Ỹ ¼ YU b̃ ¼ bU ẽ ¼ eU

ð8Þ

which can be treated in the usual way. We will revisit the use of
singular vectors in the context of multivariate Bayesian models
below and contrast them with the use of support vectors.

Worsley et al. (1998) used canonical variates analysis (CVA) of
the estimated effects of predictors from a multivariate linear model.
The advantage of this, over previous methods, was that temporal
correlations could be incorporated into the model, making it
suitable for fMRI data. CCA has re-appeared in the neuroimaging
literature over the years (e.g., Friman et al., 2001). An interesting
application of CCA was presented in Nandy and Cordes (2003)
where the analysis was repeated over small regions of the brain,
thereby eschewing the dimensionality problem. The same idea of
using a multivariate ‘searchlight’ has been exploited recently
(Kriegeskorte et al., 2006). These authors used a Mahalanobis
distance statistic that is closely related to Hotellings T2 statistic (a
special case of Wilk’s Lambda that obtains when X is univariate).

The key point here is that constraints on the dimensionality of
YaRn or, equivalently, priors on the parameters, become essential
when dealing with high-dimensional feature spaces, which are
typical in imaging. The same theme emerges when we look at
pattern classifiers in imaging.
Generative, recognition and classification models

In the recent neuroimaging literature one often comes across the
phrase: ‘novel multivariate pattern classifiers’. This section tries to
argue that multivariate models and pattern classification should not
be conflated and that neither are novel. Critically, it is the
multivariate mapping from brain measurements to their conse-
quences that characterise recent advances; classification per se is
somewhat incidental.

The first formal classification scheme for functional neuroima-
ging was reported in Lautrup et al. (1994). These authors used
nonlinear neural network classifiers to classify images of cerebral
blood flow according to the experimental conditions (i.e., causes),
under which the images were acquired. In this application,
constraints on the mapping from the high-dimensional feature
(voxel) space to target class were imposed through massive weight
sharing. Classifiers have played a prominent role in structural
neuroimaging (e.g., Herndon et al., 1996) and are now an integral
part of computational anatomy and segmentation schemes (e.g.,
Ashburner and Friston, 2005). However, classification schemes
received little attention from the functional neuroimaging commu-
nity until they were re-introduced in the context of mind-reading
(Carlson et al., 2003; Cox and Savoy, 2003; Hanson et al., 2004;
Haynes and Rees, 2005; Norman et al., 2006; Martinez-Ramon
et al., 2006).

So far, we have limited the discussion to parameterised
mappings g(θ):X→Y from experimental labels to data features.
In a probabilistic setting, these can be considered as generative
functions or models of experimental causes that produce observed
data. Indeed experimental neuroscience rests on comparing
generative models that embody competing hypotheses about how
data are caused. However, one can also parameterise the inverse
mapping from data to causes; h(θ):Y→X, to provide a function of
the data that recognises what caused them. These are called
recognition models. What is the relationship between recognition
models and prediction in classification schemes? In classification,
one wants to predict or classify a new observation Ynew using a
recognition model whose parameters have been estimated using
training data and classification pairs. Classification is based on the
predictive density

pðXnewjYnew;X ; Y Þ ¼
Z

pðXnewjh; YnewÞqðhÞdh ð9Þ

where q(θ)=p(θ|X,Y) is the conditional density. Classification, or
more generally prediction, is fundamentally different from
inference on the model or mapping per se: In prediction, one uses
q(θ) to make an inference about an unknown label, Xnew, in terms
of the predictive density, p(Xnew|Ynew,X,Y). In experimental
neuroscience, this label is known and inference is on the mapping
itself; e.g., h(θ):Y→X. In short, one uses q(θ) to evaluate the
marginal likelihood, p(X∣Y), as opposed to the predictive density.
In other words, the predictive density is not used to address
whether the prediction is possible or whether there is a better
predictor, these questions require inference on models; prediction
requires only inference on the target, given a model.

The only situation that legitimately requires us to predict what
caused a new observation is when we do not know that cause. An
important example is brain computer interfacing, where a subject is
trying to communicate through measured brain activity. Other
examples include automated diagnostic classification or the
classification of tissue type in computational anatomy mentioned
above. In summary, the predictive density plays no role in testing
hypotheses about the mapping between causes and data features;
these inferences are based on the marginal likelihood of the model.

Support vector machines

Many classification schemes (e.g., support vector machines) do
not even try to estimate the predictive density; they simply
optimise the parameters of the recognition function to maximise
accuracy. These schemes can be thought of as using point estimates
of θ, which ignore uncertainty about the parameters inherent in
q(θ). We will refer to these as point classifiers, noting that
probabilistic formulations are usually available (e.g., variational
relevance vector machines; see Bishop and Tipping, 2000).
Support vector machines (Vapnik, 1999) are point classifiers that
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use a recognition model; for example, a linear SVM assumes the
mapping h(θ):Y→X

X ¼ KðY Þb̃þ e
KðY Þ ¼ YYT

b ¼ YTb̃

ð10Þ

Here K(Y) is called a kernel function, which, in this case, is simply
the inner product of the data features (i.e., images). The important
thing to note here is that the parameters, β=YT β̃ of the implicit
recognition model are constrained to lie in a subspace spanned by
the images. This is formally related to the constraint used in CCA
for images; β= β̃UT. In other words, both constrained CCA and
SVM require the parameters to be a mixture of data features. The
key difference is that constrained CCA imposes sparsity by using a
small number of informed basis sets (i.e., singular vectors),
whereas SVM selects a small number of original images (i.e.,
support vectors). These support vectors define the maximum
margin hyperplane separating two classes of observations encoded
in X∈ [−1,1]. These classifiers are also known as maximum
margin classifiers. We introduce the linear SVM because it will be
used in comparative evaluations later.
3 k-fold cross validation involves randomly partitioning the data into k
partitions, training the classifier on all but one and evaluating classification
performance on that partition. This procedure is repeated for all k partitions.
Gaussian process models

Support vector machines (for X∈ [−1,1]) and regression (for
continuous targets; XaR) are extremely effective prediction
schemes, in a high-dimensional setting. However, from a
Bayesian perspective, they rest on a rather ad hoc form of
recognition model (their motivation is based on statistical learning
theory and structural risk minimisation; Vapnik, 1999). Over the
same period that support vector approaches were developed,
Gaussian process modelling (Ripley, 1994; Rasmussen, 1996;
Kim and Ghahramani, 2006) has emerged as an alternative and
generic approach to prediction (for an introduction, see MacKay,
1997): The basic idea behind Gaussian process modelling is to
replace priors p(θ) on the parameters of the mapping, h(θ):Y→X
with a prior on the space of mappings; p(h(Y)), where the
mappings or functions themselves can be very complex and
highly nonlinear. This is perfectly sufficient for prediction and
model comparison because the predictive density p(Xnew|Ynew,X,
Y) and marginal likelihood p(X |Y) are not functions of the
parameters. The simplest form of prior is a Gaussian process
prior, which leads to a Gaussian likelihood; p(X∣Y,λ)=N(0,Σ(Y,
λ)). This is specified by a Gaussian covariance, Σ(Y,λ), whose
elements are the covariance between the values of the function or
prediction, h(Y) at the two points in feature space. The covariance
Σ(Y,λ) is optimised, given training data, in terms of covariance
function hyperparameters, λ. This optimisation provides a nice
link with classical covariance component estimation and techni-
ques like restricted maximum likelihood (ReML) hyperparameter
estimation (Harville, 1977).

We will use this approach below; however, our covariance
functions are constrained by simple linear mappings, of different
sorts, between features and targets. After Σ(Y,λ) has been optimised
with respect to the free energy bound above, it can be used to
evaluate the marginal likelihood and infer on the model it encodes.
Typically, in Gaussian process modelling, one uses maximum
likelihood or a posteriori point estimates of the hyperparameters to
approximate the marginal likelihood; here, we marginalise over
the hyperparameters using their conditional density to get more
accurate estimates (see also MacKay, 1999, who discusses related
issues under the evidence framework used below).

Inference vs. prediction

Some confusion about the roles of prediction and inference may
arise from the use of classification performance to infer a
significant relationship between data features and perceptual or
behavioural states. There is a fundamental reason why some
classification schemes have to use their classification performance
to make this sort of inference: This is because point classifiers are
not probabilistic models, which means their evidence is not
defined: recall that a model is necessary to specify a form for the
joint density of the data and unknown model parameters.
Integrating out the dependency on the parameters provides the
marginal likelihood that is necessary for inference about that
model. In short, model inversion optimises the conditional density
of the parameters to maximise the marginal likelihood. In
contradistinction, point classification schemes optimise the para-
meters to maximise accuracy. This is problematic in two ways.

First, point classification schemes do not furnish a measure of
the marginal likelihood and cannot be used for inference. This
means that the model evidence has to be evaluated indirectly
through cross-validation: Cross-validation (sometimes called rota-
tion–estimation), involves partitioning the data into subsets such
that the analysis is performed on one (training) subset, while the
other (test) data are retained to confirm and validate the initial
analysis.3 A significant mapping can be inferred if the performance
on the test subset exceeds chance levels. However, by the
Neyman–Pearson lemma, this inference is suboptimal because it
does not conform to a likelihood ratio test on the implicit
recognition model. Having said this, cross-validation can be very
useful for classical inference when the null distribution of the
likelihood ratio statistic is unavailable; for instance when it is
analytically intractable or it is computationally prohibitive to
compute using sampling techniques (see also Lukic et al., 2002). In
this context, classification can be used as surrogate statistic because
the null distribution of predictive performance can be derived
easily (e.g., a binomial distribution for chance classification into
two classes). We will use cross-validation p-values for classical
inference below.

The second problem for classifiers is that the marginal
likelihood depends on both accuracy and model complexity (see
Penny et al., 2004). However, many classification schemes do
not minimise complexity explicitly. This shortcoming can be
ameliorated in two ways. The first is to minimise complexity
through the use of formal constraints (cf. the sparsity assump-
tions implicit in SVM). The second is to optimise the recognition
model parameters (e.g., the parameter C in SVM, which controls
the width of the maximum margin hyperplane) with respect to
generalisation error (i.e., the classification error on test data).
However, to evaluate the generalisation error one needs to know
the classes and therefore there is no need for classification. In
summary, classification per se appears to play an incidental role
in answering key questions about structure–function relationships
in brain imaging, so why have they excited so much interest?
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Encoding and decoding models

When one looks closely at pattern recognition or classification
schemes in functional neuroimaging they have been used as
generative models, not recognition models; they have been used to
test models of how physical brain states generate percepts,
behaviours or deficits. For example, studies looking for perceptual
correlates in visual cortex are not trying to recognise the causes of
physiological activations; they are modelling the perceptual
products of neuronal activity. Perhaps an even clearer example
comes from recent developments in computational anatomy,
where multivariate data-mining methods have been used to study
lesion-deficit mappings. Here, the imaging data are used as a
surrogate marker of the lesion and resulting behavioural deficits
are modelled using Bayesian networks (Herskovits and Gerring,
2003).

In short, the key difference between conventional multivariate
analyses and so-called classification schemes does not rest on
classification; the distinction rests on whether X causes Y, e.g.,
stimulus motion causes activation in V5; or whether Y causes X,
e.g., activation of V5 causes a percept of motion. Both are
addressed by inference on models but, in the latter case, the
experimental variable X is a consequence not a cause. Put simply,
the important distinction is whether the experimental variable is a
cause or consequence. If it is a cause then the appropriate
generative model is g(θ):X→Y; this could be called an encoding
model in the sense that the brain responses are encoding the
experimental factors that caused them. Conversely, if X is a
consequence, we still have a generative model but the causal
direction has switched to give, g(θ):Y→X. These have been called
decoding models in the sense that they model the decoding of
neuronal activity that causes a percept, behaviour or deficit
(Hasson et al., 2004; Kamitani and Tong, 2006; Thirion et al.,
2006). In some situations, the distinction is subtle but important.
For example, using the presence of visual motion as a cause in an
encoding model implies that X is a known deterministic quantity.
However, using the presence of motion as a surrogate for motion
perception means that X becomes a response or dependent variable
reflecting the unknown perceptual state of the subject.

The importance of the distinction between encoding and
decoding models is that we can disentangle inference from
prediction and focus on the problem of inverting ill-posed
decoding models of the form, g(θ):Y→X. Happily, there is a large
literature on these ill-posed problems; perhaps the most familiar in
neuroimaging is the source reconstruction problem in electro-
encephalography (EEG). In this context, one has to estimate up to
ten thousand model parameters (dipole-activities) causing observed
responses in a small number of channels. Formally, this is like
estimating the parameters coupling activity in thousands of voxels
to a small number of experimental or target variables. In the next
section, we will use exactly the same hierarchical linear models
and their variational inversion used in source reconstruction (e.g.,
Phillips et al., 2005; Mattout et al., 2006) to decode functional
brain images. Critically, this modelling perspective exposes the
dependence of decoding models on prior assumptions about the
parameters and their spatial disposition. These priors enter the EEG
inverse problem in terms of spatial constraints on the sources (e.g.,
point sources in equivalent current dipole models vs. distributed
solutions with smoothness constraints). The inversion scheme used
below allows one to compare models that differ only in terms of
their priors, using Bayesian model selection. This allows one to
compare models of distributed or sparse coding that are specified
in terms of spatial priors.

Summary

In summary, we have seen that:

• Inference on the mapping between neuronal activity and its
causes or consequences rests on model comparison, using the
marginal likelihood of competing models. The marginal
likelihood requires the specification of a generative model
prescribing the form of the joint density over observations and
model parameters. This model may be explicit (e.g., a general
linear model) or implicit (e.g., a Gaussian process model).
Model inversion corresponds to optimising the conditional
density of the model parameters to maximise the marginal
likelihood (or some bound), which is then used for model
comparison.

• Multivariate models can map from the causes of brain responses
(encoding models; g(θ):X→Y) or from brain activity to its
consequences (decoding models; g(θ):X→Y). In the latter case
there is a curse of dimensionality, which is resolved with
appropriate constraints or priors on model parameters. These
constraints are part of the model and can be evaluated using
model comparison in the usual way.

• Prediction (e.g., classification) and cross-validation schemes are
not necessary for decoding brain activity but can provide
surrogates for inference. This can be useful when the null
distribution of the model likelihood ratio (i.e., Bayes factor) is
not evaluated easily.

The next section describes a decoding model for imaging data
sequences that can be inverted efficiently to give the marginal
likelihood, which allows one to compare different priors on the
model parameters.

A Bayesian decoding model

In this section, we describe a multivariate decoding model that
uses exactly the same design matrices of experimental variables X
and neuronal responses Y used in conventional analyses.
Furthermore, the inversion scheme uses standard techniques that
can be applied to any model with additive noise. It should be noted
that the inversion of these models conforms to the free energy
optimisation approach described above but is very simple and can
be reduced to a classical covariance component estimation (for
details, see Friston et al., 2007).

Hierarchical models

We want a simple model of how measured neuronal responses
predict perceptual or behavioural outcomes (or their surrogates).
Consider a linear mapping X=Aβ between a scalar target variable,
XaR and underlying neuronal activity in n voxels; AaRn; where
X corresponds to a scan-specific measure of perceptual, cognitive
or behavioural state induced by distributed activity A. Imagine that
we obtain noisy measurements YaRs�n of AaRs�n in s scans and
n voxels (e.g., 128 scans and 1024 voxels from the lateral occipital
cortex). Let Y=TA+Gγ+ε be observed signal, with noise, eaRs�n

and additive confounds, GaRs�g scaled by unknown parameters,



Fig. 1. Schematic highlighting the differences between encoding and decoding models, which couple measured brain responses to their causes (encoding) or
consequences (decoding). The arrows denote conditional dependences. The variables are described in the main text.

4 In our implementation, we use the ReML estimates of serial correlations
from a conventional encoding formulation of the model. This provides a
very efficient estimate because there are generally large numbers of voxels
(for more details, see Friston et al., 2007).
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gaRg. Here, any effects of hemodynamics are modelled with the
temporal convolution matrix TaRs�s embedding a hemodynamic
response function. Clearly, for structural and PET data, this
convolution is unnecessary and T= I is simply the identity matrix.

Under the assumptions above, we can specify the following
likelihood model under Gaussian assumptions about the noise (for
a schematic summary, see Fig. 1)

X ¼ Ab Z TX ¼ TAb ¼ Yb� Gcb� eb ð11Þ
In this model, β are the unknown parameters of the mapping we

want to infer; we will call these parameters voxel weights. Under
the simplifying assumption that the temporal convolution matrix is
known and is roughly the same for all voxels, this likelihood model
is a weighted general linear model with serially correlated errors.
Note that TX corresponds to a stimulus (or behavioural) function
that has been convolved with a hemodynamic response function;
this vector has the form of a regressor in the design matrix, X, of
conventional encoding models. In our implementation, we use
TX=Xc where the contrast weight vector, c, specifies the contrast
to be decoded. Conversely, the confounds are the remaining
effects; G=X(I−cc−), which ensures that Gc=0. Effectively, this
partitions the conventional design matrix of explanatory variables
into a target variable and confounds, where the target variable
comes to play the role of a response variable that has to be
predicted.

We can simplify this model by projecting the target and
predictor variables onto the null space of the confounds to give a
model for weighted target vectors

WX ¼ RYbþ 1
W ¼ RT
R ¼ orthðI � GG�ÞT

ð12Þ

Here R is a residual forming matrix that removes confounds from
the model. W is a weighting matrix that combines the residual
forming and temporal convolution matrices to give a convolved
target variable, with confounds removed. The fluctuations 1 ¼
�RebaRs are a vector of unknown random effects that retain their
multivariate Gaussian distribution, where cov(ς)=Σς=exp (λς)
RVRT. Here, λς is some unknown covariance parameter or
hyperparameter and V represents serial correlations or non-
sphericity before projection.4 The nice thing about decoding
models is that we do not have to worry about spatial dependencies
among the measurement noise (i.e., smoothness in images). This is
because the random effects are a linear mixture of noise over
voxels.

Empirical priors

There is a special aspect of decoding models that operate on
large numbers of voxels (i.e., when the number of voxels exceeds
the number of scans); they are ill-posed in the sense that there are
an infinite number of equally likely solutions. In this instance,
estimating the voxel weights baRn requires constraints or priors.
This is implemented easily by invoking a second level in the model

WX ¼ RYbþ 1
b ¼ Ug

covð1Þ ¼ R1ðkÞ ¼ expðk1ÞRVRT

covðgÞ ¼ RgðkÞ ¼ expðkg1ÞI ð1Þ þ N þ expðkgmÞI ðmÞ
ð13Þ

Here, the columns of UaRn�u contain spatial patterns or vectors
and η are unknown pattern weights. These weights are treated as
second-level random effects with covariance, cov (η)=Ση, which
induces empirical priors on the voxel weights; p(β)=N(0,UΣη UT).
This is a convenient way to specify empirical priors because it
separates the specification of prior spatial covariance into patterns
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encoded by U and the variances in the leading diagonal matrix,
Ση. In this model, Ση(λ) is a mixture of covariance components
arising from a nested set of pattern weights, s(1)⊃ s(2)⊃ s(3)⊃…
where each subset has the same variance. The ith subset s(i) is
encoded by a leading diagonal matrix, I(i), containing dummy or
switch variables indicating which patterns or columns of U belong
to that subset. The construction of this nested set means that the
variance; exp(λ1

η)+…+exp(λi
η) of a pattern weight in s(i) is always

greater than a pattern weight in its superset, s(i−1).
There are many priors that one could specify with this model, one

common prior, used implicitly in fMRI, is that spatial patterns
contribute sparsely to the decoding. In other words, a few voxels (or
patterns) have large values of β, while most have small values. This
is the underlying rationale for support vector machines that pre-
suppose only a few data features (support vectors) are needed for
classification. Relevance vector machines make this prior explicit,
by framing the elimination of redundant vectors in terms of
empirical priors on the parameters. Relevance vector machines are a
special case of automatic relevance determination, which is itself a
special case of variational Bayes. In fact, these special cases can be
expressed formally in terms of conventional expectation maximisa-
tion (EM; Dempster et al., 1977), which, for linear models, is
formally related to restricted maximum likelihood (ReML; Harville,
1977). See Friston et al. (2007) and references therein (e.g., Mackay
and Takeuchi, 1996; Tipping, 2001). In this paper, optimisation is
formulated in terms of expectation maximisation.

The model above allows us to compare a wide range of spatial
models for decoding. Sparsity is accommodated by having more
than one subset; where most subsets have small variance and some
have large variance. Crucially, we can control what is sparse. If
U= I is the identity matrix, the spatial vectors encode single voxels
and we have the opportunity to model sparse representations over
anatomical regions. This deployment would be consistent with
functional segregation. Furthermore, we could assume that this
segregation is spatially coherent (for a theoretical motivation in
terms of neuronal computation, see Friston et al., 1992a,b); this
would entail using smooth vectors with local support. Conversely,
we may assume representations are distributed sparsely over
patterns (i.e., one of a small number of patterns is expressed at any
Fig. 2. Taxonomy of different decoding models that are defined by spatial patterns o
perceptual or behaviour variables.
one time). These patterns could be the principal modes of co-
variation in the data. This would correspond to making U the major
singular vectors of the data, as in the constrained CCA of the
previous section. Finally, these patterns may simply be the patterns
expressed from moment to moment. In other words, U=YT; this is
the model used in [linear] support vector machines and regression;
in fact, these images may contain confounds, which speak to the
use of adjusted images U=RYT. Fig. 2 lists the various models
considered in this paper and the corresponding spatial patterns in
U. Models with spatial and smooth vectors imply anatomically
sparse representations. Conversely, models with singular or support
vectors imply the representation is distributed over patterns (which
may be sparse in pattern space but not sparse anatomically, in
voxel space). The key thing about the hierarchal decoding model
above is that it can accommodate different hypotheses about spatial
coding. These hypotheses can be compared using Bayesian model
comparison; provided we can evaluate the marginal likelihood of
each model. In the next section, we describe this evaluation.

Evaluating the marginal likelihood

In what follows, we describe a simple inversion of the model in
Eq. (13) using conventional EM, under sparse priors on the
parameters. This can be regarded as a generalisation of classifica-
tion schemes used currently for fMRI, in which the nature of the
priors becomes explicit. This inversion uses standard techniques
and furnishes the log-evidence or marginal likelihood of the model
itself and the conditional density of the voxel weights or decoding
parameters. The former can be used to infer on mappings between
brain states and their consequences, using model comparison. The
latter can be used to construct posterior probability maps showing
which voxels contribute to the decoding, for any particular model.

For a more general and technical discussion of the following,
see Friston et al. (2007). In brief, we use a fixed-form variational
approximation to the approximating posterior under the Laplace
approximation and the mean field approximation; q(θ)=q(β)q(λ).
The Laplace approximation means q(β)=N(μβ,Σβ) and q(λ)=
N(μλ,Σλ) are Gaussian and are defined by their conditional means
and covariances. Under these assumptions, the variational scheme
r vectors encoding empirical priors on voxel weights linking brain activity to
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reduces to EM. Furthermore, because we can eliminate the
parameters β from the generative model (by substituting the
second level of Eq. (13) into the first), we only need the M-step to
estimate q(λ) =N(μλ,Σλ) for model comparison and indeed
prediction (cf. Gaussian process modelling). This M-step is
formally related to ReML.5

Bayesian inversion with EM

The inversion of Eq. (13) is straightforward because it is a
simple hierarchical linear model. Inversion proceeds in two stages:
first, hyperparameters encoding the covariances of the error and the
empirical prior covariance are estimated in an M-step. After
convergence, the conditional moments of the hyperparameters are
used to evaluate the conditional moments of the parameters in an
E-step and the log-evidence for model comparison. Because we are
dealing with a linear model there is no need to iterate the two steps;
it is sufficient to iterate the M-step. For simplicity, we will assume
that the pattern sets encoded by I(1),…,I(m) are given and deal with
their optimisation later.

First, we simplify the model further by eliminating the
parameters through substitution

WX ¼ Lgþ 1
covðWX Þ ¼ RðkÞ ¼ expðk1ÞQ1 þ N þ expðkmþ1ÞQmþ1

k ¼ fk1; kg1; N ; kgmg
Q ¼ fRVRT ; LI ð1ÞLT ; N ; LI ðmÞLTg

ð14Þ

where L=RYU maps the second-level random effects to the
weighted target variable. In this form, the only unknown quantities
are the hyperparameters, λ controlling the covariance Σ(λ) of the
weighted target variable. This means we have reduced the problem
to optimising the hyperparameters of Σ(λ); this is exactly the form
used in Gaussian process modelling.

This covariance includes the covariance of the observation
noise and covariances induced by the second level of the model.
w=rank(W) corresponds to the degrees of freedom left after
removing the effects of confounds. The log-evidence, ln p(X |Y) is
approximated with the free energy (see Eq. (4)):

F ¼ � 1
2

�
XTWTRðμkÞ�1WX � lnjR μk

� �j � wln2pþ lnjΠRkj

� ðμk � pÞTΠ μk � p
� �� ð15Þ

The first two terms reflect the accuracy of the model and the last
two its complexity (wln2π is a constant). This approximation
requires only the prior p(λ)=N(π,Π−1) and posterior q(λ) =
N(μλ,Σλ) densities of the hyperparameters. In our work, we set
the prior expectation and covariance to πi=−32 and Π= I/256,
respectively. This is a relatively uninformative hyperprior with a
small expectation. A hyperprior variance of 256 means that a scale
parameter exp(λi) can vary by many orders of magnitude; for
example, a value of 1=exp (0) is two prior standard deviations
from the prior mean of 1.26×10−14=exp (−32).
5 This scheme shares formal aspects with relevance vector machines and
automatic relevance determination (e.g., Tipping, 2001); however, the
hyperparameters control covariance components as opposed to precision
components. This allows for flexible models through linear mixtures of
covariance components and renders it an extension of classical covariance
estimation (Harville, 1977).
Note that the free energy also depends on the conditional
uncertainty about the hyperparameters encoded in Σλ. The
conditional moments of the hyperparameters are given by iterating

The M-step

Lki¼ � 1
2
tr Pi WXXTWT � R μk

� �� �� �� Πii μk
i � pi

� �
Lkkij¼ � 1

2
tr PiRPjR
� �� Πij

Dμk¼ �L�1
kk Lk

Rk ¼ �L�1
kk

ð16Þ

until convergence. This is effectively a Fisher-scoring scheme that
optimises the free energy bound with respect to the hyper-
parameters. It usually takes between four and sixteen iterations
(less than a second for a hundred images). Pi=−exp (μi

λ)Σ− 1Qi Σ
−1

is the derivative of the precision Σ(μλ)−1, with respect to the ith
hyperparameter, evaluated at its conditional expectation. Critically,
the computational complexity O(s3m) of this scheme does not scale
with the number of voxels or patterns, but the number of pattern
subsets, m. This reflects one of the key advantages of hyper-
parameterising the covariances (as opposed to precisions); namely,
that one can model mixtures of covariances, induced hierarchically,
at the lowest (observation) level of the hierarchy.

Given the conditional expectations of the covariance hyper-
parameters from the M-step, the conditional mean and expectation
of the parameters obtain analytically from

The E-step

μg ¼ MWX
μb ¼ Uμg

Rb ¼ UðRgðμkÞ �MLRgðμkÞÞUT

M ¼ RgðμkÞLTRðμkÞ�1

ð17Þ

Where M is a maximum a posteriori projector matrix. This may
look unfamiliar to some readers who work with linear models,
because we have used the matrix inversion lemma to suppress large
matrices. This remarkably simple EM scheme solves the difficult
problem of inference on massively ill-posed models in a very
efficient fashion; we use this scheme for source reconstruction in
ill-posed EEG and MEG problems (Mattout et al., 2006). However,
the current problem requires us to address a further issue, namely
the optimisation of the partition (i.e., number and composition of
the subsets) encoded in, I(i). This bring us to the final component of
Bayesian decoding

A greedy search on pattern sets

Many schemes that seek a sparse solution, such as relevance
vector regression (Bishop and Tipping, 2000), use a top-down
strategy and start with a separate precision hyperparameter for each
pattern or vector. By estimating the conditional precision of each
pattern weight, redundant or irrelevant patterns can be eliminated
successively until a sparse solution emerges. Clearly, this can entail
estimating an enormous number of hyperparameters. We take an
alternative bottom-up approach, which generalises minimum norm
solutions. We start with the minimum norm assumption that all
pattern weights have the same variance I(1) = I and use the
conditional expectations of the pattern weights to create a new



Fig. 3. The EM schemes and its embedding within a greedy search for the optimum set of patterns that maximises the free energy bound on log-evidence. The
variables are defined in the main text.
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subset; with the highest [absolute] values. We then repeat the EM
using two subsets. The subset of patterns with high weights is split
again to create a new subset and the procedure repeated until the
log-evidence stops increasing (or the mth partition contains a
subset with just one pattern). This can be expressed formally as

I ðmþ1Þ ¼ I ðmÞ1jμgjzjμ̄ðmÞj ð18Þ
where μ̄ (m) is the median of the conditional pattern weights of the
mth subset. The “and” operator ∧ ensures that the new set is a
subset of the previous set. The result is a succession of smaller
subsets, each containing patterns with a higher covariances and
weights, which is necessarily sparse. Clearly, if the underlying
weights are not sparse the search will terminate with a small
number of subsets and the solution will not be sparse. This
optimisation of subsets corresponds to a greedy search: a greedy
algorithm uses the meta-heuristic of making the locally optimum
choice with the hope of finding the global optimum. Greedy
algorithms produce good solutions on some problems, but not all.
Most problems for which they work well have optimal
substructure, which is satisfied in this case, at least heuristically.
This is because the problem of finding a subset of patterns with
high variance can be reduced to finding a bipartition that contains
a subset. This is assured, provided we always select a subset with
the highest pattern weights. The result of the greedy search is a
sparse solution over patterns; where those patterns can be
anatomically sparse or distributed. See Fig. 3 for a schematic
summary of the scheme.

In principle,6 adding a subset will either increase the free
energy or leave it unchanged. This is because each new subset
6 Ignoring problems of local minima.
must, by construction, have a variance that is greater than or equal
to its superset. Once the optimal set size is attained, any further
subsets will have a vanishingly small variance scale-parameter and
the corresponding hyperparameter will tend to its prior expectation;
μi
λ→πi. In this instance, the curvature approaches the prior

precision, Lλλii→−Πii (see Eq. (16)). This means the conditional
covariance approaches the prior covariance, which provides an
upper bound. It can be seen from Eq. (15) that the free energy is
unchanged under these conditions and the subset is effectively
switched off. This is an example of automatic model selection
discussed in Friston et al. (2007).

Unlike SVM and related automatic relevance determination
(ARD) procedures, Bayesian decoding does not eliminate
irrelevant patterns. All the patterns are retained during the
optimisation, although some subsets can be switched off as
mentioned above. There is no need to eliminate patterns because
the computational complexity grows with the log of the number of
data features; O(s3ln(n)). This is because m subsets cover 2m

patterns. This means typically, the greedy search takes a few
seconds, even for thousands of voxels.

Summary

In summary:

• We can formulate a MVB decoding model that maps many data
features to a target variable, as a simple hierarchal model; known
as a parametric empirical Bayes model (PEB; Efron and Morris,
1973; Kass and Steffey, 1989). The hierarchical structure
induces empirical priors on the data features (i.e., voxels)
which we can prescribe in terms of patterns over features. Each
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pattern is assigned to a subset of patterns, whose pattern weights
(unknown parameters of the mapping) have the same variance.

• Each prescription of patterns (i.e., partition) constitutes a
hypothesis about the nature of the mapping between voxels
and the target variable (i.e., the neuronal representation or
cause). One can select among competing hypotheses using
model selection based on the model evidence. This evidence can
be evaluated quickly using standard variational techniques;
formulated as covariance component estimation using EM.

• The partition can be optimised using a greedy search that starts
with a classical minimum norm solution and iterates the EM
scheme with successive bipartitions of the subset with the largest
pattern weights. The free energy or log-evidence of successive
partitions ormodels increases until the optimum set size is reached.

This concludes the specification of the model and its inversion.
In the next section, we turn to applications and illustrate the nature
of inference entailed by Bayesian decoding.

Illustrative analyses

This section illustrates Bayesian decoding using synthetic
and real data. We start with a simple example to show how the
greedy search works. This uses simulated data generated by
anatomically sparse representations. We then analyse these data to
show how the log-evidence (or its free energy bound) can be used
to compare models of anatomically sparse and distributed coding.
We will analyse three sets of synthetic data (sparse, distributed and
null) with three models (spatial, singular and null) and ensure that
the inversion scheme identifies the correct model in all cases. A
null model is one in which there are no patterns and no mapping.
The simulations conclude with a comparative evaluation of MVB
with a conventional linear discriminant analysis. The focus here is
on the increased power of hierarchical models, over classical
models that do not employ empirical priors.

We then apply the same models to real data obtained during a
study of attention to visual motion. The emphasis here is on model
Fig. 4. Right: Data features that were mixed to generate the target variable in the sim
the analysis of real fMRI data reported in Fig. 8. Left: Target variable (solid line) and
search (reported in Fig. 5).
comparison both in terms of different empirical priors (spatial,
smooth, singular and support) and different brain regions. Finally,
we cross-validate the results of decoding visual motion (i.e.,
presence or absence) from single scans using a leave-one-out
protocol. We show that the Bayesian classification out-performs a
SVM applied to the same problem. We use this analysis to
motivate a cross-validation p-value for MVB models, for which the
null distribution of the likelihood ratio is not readily available.

Simulations

In all simulations, we used the same error variance, fMRI data
and confounds used in the empirical analyses below. Using these
features (i.e., voxel-wise fMRI time-series) and assumed pattern
weights we were able to generate target variables and analyse the
data knowing the true values. The data features comprised 583
voxel values from 360 scans, with 26 confounds (see Fig. 4 and
below for a detailed description). We first removed the confounds
from the data features to give, RY. Synthetic target variables were
then constructed by taking a weighted average of the voxel time-
series and adding noise. The voxel weights were generated using
one of the models described in the previous section and depicted in
Fig. 2.

Bayesian decoding

First, we generated data under a sparse spatial model using the
first 128 scans and 256 voxels. Here the voxel weights were
sampled from a normal distribution and raised to the fifth power, to
make them sparsely distributed. Random variables were added to
the ensuing target variable after they were scaled to give a signal to
noise of four; i.e., the standard deviation of signal was four times
the noise. Because the signal and random effects at each voxel are
mixed with the same weights (see Eq. (11)), the implicit signal to
noise at each voxel (on average) is also four. The resulting target
variable and error and are shown in Fig. 4 (left panel). The upper-
left panel in Fig. 5 shows the voxel weights, whose sparsity is self-
ulations. These are a subset (128 scans and 256 voxels) of the voxel data from
noise (broken line) for the simulation demonstrating the nature of the greedy



Fig. 5. Left panels: results for a greedy search for the optimum set of spatial patterns using targets generated from sparse voxel weights. The true weights are shown
on the top and the estimated weights are plotted against the true weight in the centre. The lower panel shows the log-evidence, relative to a null model with no
patterns, as a function of the number of greedy steps (i.e., the size of the set). Right panels: the same format as the upper row but showing an analysis of null targets,
formed by setting the voxels-weights to zero; using exactly the same noise terms. The predicted voxel weights come from the first m=1 model. The red circles
highlight the voxel with the largest voxel weight.
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evident. The lower-left panel shows the free energy bound on the
log-evidence as a function of greedy steps (i.e., number of pattern
subsets). We have subtracted the log-evidence for the null model so
that any value greater than three can be considered as strong
evidence for sparse coding.7 It can be seen that the log-evidence
7 Strong evidence requires the Bayes factor to be between 20 and 150, or
the differential log-evidence to be between 3≈ ln(20) and 5≈ ln(150)
(Penny et al., 2004). This corresponds to a posterior probability for the
better model between p=0.95≈20/21 and p=0.99≈150/151, under flat
priors on the models.
increases systematically with the size of the partition, until it peaks
after about five subsets. The conditional expectation of the voxel
weights for the partition with the greatest free energy is shown in
the left middle panel, plotted against the true value. Although the
agreement is not exact, the MVB scheme has identified voxels with
truly large weights (circled).

We repeated exactly the same analysis but set the weights to
zero to simulate a null model. In this instance the log-evidence
optimised by the greedy search never increased above the null
model and we would infer there was no mapping. Even if we take
the optimum set (m=1) from the greedy search on the spatial
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model, the estimated weights are appropriately small (see right
panels in Fig. 5).

Model comparison

In the next simulations, we generated target variables using the
model in Eq. (13) and different patterns. In all cases we selected
the pattern weights, η as above from a normal distribution and
raised them to the fifth power. We generated three target variables
corresponding to a null model; U=∅, a sparse spatial model; U= I
and a distributed singular model; UDV=RY, where this equality
signifies a singular value decomposition of the adjusted data into
orthonormal vectors. We then inverted each of the three models
using the three target variables. The free energies of the resulting
nine analyses are shown in Fig. 6. It can be seen that the decoding
scheme correctly identified the true model in all cases; in the
sense that the greatest free energy was obtained with the model
that generated each target variable. It should be noted that when
Fig. 6. An illustration of model comparison using three models (spatial,
singular and null) applied to three synthetic target variables that were
generated by the same three models. Each row corresponds to the log-
evidences (normalised to their minimum) for each target. These results show
that model comparison allows one to identify the form of the model that
generated the data. The horizontal line is set at three (i.e., a difference in log-
evidence that would be regarded as strong evidence in favour of a model).
the signal to noise was decreased, we often observed that the
sparse spatial model was favoured over the distributed singular
model even when data were generated using the latter. This may
be because the singular vectors of the data used were themselves
sparse over voxels. However, we never observed the sparse model
to be better than a null model when decoding null data. In the
final simulations, we look more closely at the sensitivity and
specificity conferred by the empirical priors implicit in hierarch-
ical models.

Hierarchical vs. non-hierarchical models

To compare empirical Bayesian with classical models, we
repeated the first set of simulations using a sparse model but
reduced the number of scans to 64, the number of voxels to 32 and
reduced the signal to noise to a half. Reducing the number of
voxels to less than the number of scans enabled us to use
conventional CCA to infer on the coupling between voxel activity
and the simulated target variables. Recall that CCA uses exactly
the same linear model as MVB but there are no empirical priors
(i.e., the voxel weights are treated as fixed effects). Because the
target variable is univariate, this CCA model is the same as an
analysis of covariance (ANCOVA), which is exactly the same as a
linear discriminate function analysis. The likelihood ratio statistic
for ANCOVA is, after transformation, the F-statistic. We generated
target variables as above and evaluated the log-likelihood ratio, ln
Λ using the free energy of sparse and null models, optimised using
MVB. For each realisation, we also computed the F-statistic using
a standard CCA. We repeated this ten thousand times for both
sparse and null targets. This allowed us to plot the proportion of
sparse targets identified by both statistics as a function of their
threshold; this is the sensitivity. Conversely, the proportion of null
targets identified falsely at each threshold gives a measure of
specificity. Plotting one against the other gives receiver-operator
curves for the two statistics.

The results of these simulations are shown in Fig. 7. It is
immediately obvious that lnΛ based on MVB is much more
sensitive for all acceptable levels of specificity. This is not
surprising because the data were generated in a way that the
MVB scheme could model. What is remarkable is the quantitative
improvement in sensitivity or power: The classical analysis shows
about 20% sensitivity at 5% false-positive rate. The threshold for
this rate was, F=2.20, which agrees well with the p=0.05
threshold; F=2.181 based on its null distribution under Gaussian
assumptions. At this level of specificity, the MVB scheme
exhibited about 56% sensitivity. Interestingly, the threshold for
this specificity was, ln Λ=1.09. In other words, the optimum
threshold for classical inference on the Bayes factor would
require positive (but not strong) evidence in favour of the
alternative hypothesis. However, unfortunately there are no
analytic results for this threshold because there are no analytic
results for the null distribution of the MVB log-likelihood ratio
(unlike the F-statistic).

This means that although we can always select the best model,
we cannot use lnΛ to assign a p-value to test the null hypothesis of
independence between the data features and target. However, we
can use the selected model for cross-validation and use the ensuing
predictions to get a classical p-value. This is useful because we can
then make classical inferences about over-determined models that
would elude conventional statistics. We will illustrate this in the
final section.



Fig. 7. Upper panel: Receiver operator curves summarising a power analysis for the Bayesian decoding scheme and an analysis based on a conventional linear
model (CCA). These curves depict the sensitivity as a function of false-positive rate for various thresholds applied to likelihood ratio statistics. These statistics
were the log-evidences difference for the MVB (i.e., log-Bayes factor; solid line) scheme and the F-statistic for the general linear model (dotted line). The vertical
line marks a false-positive rate of 0.05. This rate obtained with a threshold of 1.09 for the log-Bayes factor and 2.20 for the F-statistic. The corresponding power
was 56.4% or MVB and 19.6% for CCA. Lower panels: Distribution of the statistics (MVB; left and CCA; right) over ten thousand realisations for the null targets
(dotted lines) and a target generated with a signal to noise of one half (solid lines).
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It should be noted that these simulations were performed for
comparative purposes only. As mentioned in the previous section,
it is not possible to use CCA when the number of voxels exceeds
the number of scans, nor is it possible to compare CCA models
specified in terms of different spatial priors, because there are
none. Clearly, in the simulations above we knew what caused the
target variable. In the next section, we apply the analyses above to
real data where the model and their parameters are unknown.

Empirical demonstrations

In this section, we apply the analysis above to real data obtained
during a study of attention to visual motion. We have deliberately
used a standard data set, which is available from http://www.fil.ion.
ucl.ac.uk/spm, so that readers can reproduce the analyses below.
These data have been used previously to illustrate various
developments in data analysis. In many decoding and classification
analyses, one generally uses high-resolution unsmoothed data and
small volumes of interest. However, the principles of inference are
exactly the same for any imaging data and we will illustrate the
sorts of questions that can be addressed using this standard
smoothed data set.

fMRI data

Subjects were studied with fMRI under identical stimulus
conditions (visual motion subtended by radially moving dots)
under different attentional tasks (detection of velocity changes).
The data were acquired from normal subjects at 2 T using a
Magnetom VISION (Siemens, Erlangen) whole-body MRI system,
equipped with a head volume coil. Contiguous multi-slice T2*-
weighted fMRI images were obtained with a gradient echo-planar

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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sequence (TE=40 ms, TR=3.22 s, matrix size=64×64×32, voxel
size 3×3×3 mm). The subjects had four consecutive hundred-scan
sessions comprising a series of ten-scan blocks under five different
conditions D F A F N F A F N S. The first condition (D) was a
dummy condition to allow for magnetic saturation effects. F
(Fixation) corresponds to a low-level baseline where the subjects
viewed a fixation point at the centre of a screen. In condition A
(Attention), subjects viewed 250 dots moving radially from the
centre at 4.7° per second and were asked to detect changes in
radial velocity. In condition N (No attention) the subjects were
asked simply to view the moving dots. In condition S (Stationary),
subjects viewed stationary dots. The order of A and N was
swapped for the last two sessions. In all conditions subjects fixated
the centre of the screen. In a pre-scanning session the subjects
were given five trials with five speed changes (reducing to 1%).
During scanning there were no speed changes. No overt response
was required in any condition. Data from the first subject are used
here.

Fig. 8 shows the results of a conventional analysis using a linear
convolution model formed by convolving box-car stimulus
Fig. 8. Results of a conventional encoding analysis of the visual motion study. T
thresholded at pb0.001 (uncorrected). The upper right panel shows the design matri
using random field theory, to give adjusted p-values for the number, size and heigh
volume of interest used to adjust the p-values and employed for decoding in subseq
grey matter voxels.
functions with a canonical hemodynamic response function and
its temporal derivative. The stimulus functions encoded the
presence of photic stimulation (first two columns of the design
matrix on the upper right), visual motion (second two columns)
and attention (last two columns). The design matrix shows only the
first constant term of a series of drift terms (a discrete cosine set)
modelling slow fluctuations in signal as confounds. The SPM
shown in the upper panel uses the F-Statistic to test for motion; the
corresponding contrast weights are shown above the design matrix.
The red circle depicts a 16-mm radius spherical volume of interest,
encompassing 583 voxels in early striate and extrastriate cortex
(deliberately chosen to include V5/MT complex). The table (lower
panel) shows classical p-values testing for the contrast after
adjustment using random field theory for the spherical search
volume. These voxels survived an uncorrected threshold of
pb0.001. We will attempt to decode motion from all the grey
matter voxels in this spherical region, using MVB. This may seem
a trivial problem; however, this design was optimised to detect the
effects of attention on motion-related responses, not motion per se.
Decoding motion is actually quite a challenge because there were
he upper left panel shows the maximum intensity projection of the SPM,
x and contrast used to construct the SPM. The table lists maxima in the SPM,
t of subsets in the excursion set. The red circle depicts the 16 mm spherical
uent figures. This volume was centred at 48, −63, 0 mm and contained 583
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only four epochs of stationary stimuli (note that the effects of
photic stimulation are treated as confounds in the decoding model).

Before looking at Bayesian decoding, it is worthwhile noting
that multivariate inference using random field theory suggests the
mutual information between the voxel time courses and motion
is significant. This can be inferred from the set-level inference
with pb0.006 (left-hand column of the table, Fig. 8). This is
based on the observed number of peaks surviving a pb0.001
threshold in the volume of interest. Here we expected 0.72 peaks
Fig. 9. Results of an MVB analysis using the voxels highlighted in the previous fig
relative to a null model, as a function of set size; the red lines depict the threshold
patterns). The upper right panel shows the distribution of voxel weights for the opt
the conditional estimates of the voxels-weights as a maximum intensity projection a
least 4mm apart). The lower panels show the observed and predicted target as a fu
(see table footnote, Fig. 8) but observed four. Under the Poisson
clumping heuristic; this number of ‘rare events’ is very unlikely
to have occurred by chance (for more details, see Friston et al.,
1996).

Bayesian decoding

Fig. 9 shows the results of a spatial MVB decoding of the first
(canonical) motion regressor. The upper left panel shows the free
ure. The upper left panel shows the free energy bound on the log-evidence,
for strong and very strong evidence for each model (i.e., an extra subset of
imum model and discloses their sparse distribution. The middle panels show
nd in Tabular format (reporting the sixteen most significant voxels spaced at
nction of scan number and plotted against each other.



8 Chih-Chung Chang and Chih-Jen Lin, LIBSVM: a library for support
vector machines, 2001. Software available at http://www.csie.ntu.edu.
tw/~cjlin/libsvm.
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energy approximation to the log-evidence for each of eight greedy
steps, having subtracted the log-evidence for the corresponding
null model. As in the previous section, any log-evidence difference
of three or more can be considered strong evidence in favour of the
model. It can be seen that the log-evidence peaks with four subsets,
giving an anatomically sparse deployment of voxel weights (upper
right panel). This sparsity is evidenced by the heavy tails of the
distribution, lending it a multimodal form. These weights (positive
values only) are shown as a maximum intensity projection and in
tabular format in the middle row. The table also provides the
posterior probability that the voxel weight is greater or less than
zero (for peaks that are at least 4mm apart). Note that these
probabilities are conditioned on the model as well as the data. That
is, under the sparse model with spatial vectors, the probability that
the first voxel has a weight greater than zero, given the target
variable, is 99.1%. Note that the free energy decreases after four
subsets. Strictly speaking this should not happen because the free
energy can only increase or stay the same with extra components.
However, in this case, the EM scheme has clearly converged on a
local maximum, when there are too many subsets. This is not an
issue in practice, because one would still select the best model,
which hopefully is a global maximum.

The bottom row shows the target variable and its prediction as a
function of scan and by plotting them against each other. This
weighted target variable is simply WX=RXc from Eq. (12), where
the contrast, c, selects the first motion regressor from the design
matrix, X, in Fig. 8. Note that the motion target has a complicated
form because all other effects (photic stimulation, attention and
confounds) have been explained away. The agreement is not
surprising because one could produce a perfect prediction given
583 voxels and only 360 scans. The key thing is that the match is
not perfect but is optimised under the empirical priors prescribed
by the model. To illustrate the specificity of this analysis, we
repeated exactly the same analysis but randomised the target
variable by convolving a time-series of independent Gaussian
variables with the hemodynamic response function used to create
the real target variables. Fig. 10 shows the results of this analysis,
using the same format as the previous figure. The prediction is
now, properly, much poorer, because there is no mapping between
the neuronal activity and target. Critically, this can be inferred from
the optimised log-evidence (upper left panel), which fails to
provide strong evidence over the null model.

Model comparison

To illustrate model comparison we repeated the analysis above
using five different models; null, spatial, smooth, singular and
support. The smooth patterns were based on a Gaussian smoothing
kernel with a standard deviation of 4 mm. The singular vectors
were selected automatically so that they explained 95% of the
variance in the data features. After optimising the log-evidence
with the greedy search, the model evidences were compared
directly. Fig. 11a shows that the best model was a spatial model
and therefore indicates that the representation of motion is
anatomically sparse; as one would predict under functional
segregation. Interestingly, of the non-null models, the smooth
vectors were the worst. This suggests that, even though the fMRI
data were smoothed, the underlying representation of motion is not
dispersed spatially; again this would be expected under patchy
functional segregation (see Zeki, 1990). One would imagine that,
in the absence of smoothing, the model with smooth patterns
would fare even worse. Although the informed singular vectors
outperform the image-based support vectors, there is no strong
evidence for the former model relative to the latter. This simple
example illustrates the sorts of questions that can be addressed
using MVB.

In the previous example, we compared models that differed in
the patterns encoding the form of the empirical priors. Clearly
models can also differ in terms of which data features we chose as
predictors. In imaging, this translates into comparing the predictive
ability of different brain regions (or combinations of brain regions)
using model comparison. As a simple example, we selected a
16-mm spherical volume of interest in the prefrontal region and
repeated the MVB analysis. The log-evidence for both regions and
the null model are provided in Fig. 11b. These show that canonical
motion can be readily decoded from both regions but, if one
wanted to ask which region afforded the better model, then clearly
the visual region supervenes. We have deliberately chosen a rather
trivial question to illustrate model comparison; however, it is easy
to imagine interesting questions that can be formulated using
MVB. For example, using combinations of regions it is possible to
compare models with two regions (say right and left hemispheric
homologues), one or the other or neither and infer on the
lateralisation of representations. This allows one to ask specific
questions about the nature of distributed codes in the brain and
how they are integrated functionally.

Cross-validation

This section concludes with a comparison with a standard
classifier and cross-validation of the MVB decoding. Point
classifiers like SVM cannot be assessed in terms of model
evidence because the requisite probability densities are not
formally parameterised. However, we can assess the MVB model
using cross-validation by evaluating the predictive density using
q(θ). In this example, we used the occipital volume of interest of
16-mm radius above, encompassing 538 voxels. We addressed
cross-validity by trying to classify each scan as a motion or non-
motion scan; this entailed thresholding the target variable, WX
around its median to produce a list of class labels (one or minus
one). The median threshold ensures that there are an equal number
of targets in each class. Because the target variable has been
convolved with a hemodynamic response function, these labels
reflect the amount of motion under the support of this function
(i.e., within the preceding few seconds).

We used a leave-one-out strategy by designating one scan in the
time series as a test scan and estimating the pattern weights using
the remaining training scans. We used a MVB model with sparse
spatial patterns. The pattern weights were then used to form a
prediction, which was thresholded around its median and
compared with the target class. This was repeated 360 times (for
every scan) and the significance of the classification assessed
against the null hypotheses of chance performance, using the
binomial distribution. The MVB classification performed at 64.4%,
(232 out of 360; p=1.25×10−8), which appears extremely
significant (but see below). For comparison purposes, we trained
a standard SVM classifier8 with exactly the same training and test
samples, using the adjusted imaging data RY as data features. To

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Fig. 10. This figure uses the same format as the previous figure but shows the results of an analysis applied to a randomised target in which any coupling between
data features and targets was destroyed.

198 K. Friston et al. / NeuroImage 39 (2008) 181–205
ensure we optimised the SVM we repeated the leave-one-out
scheme for nine levels of the hyperparameter C=100, …, 10−8.
The best performance of the SVM (with C=10−3) was well above
chance level, correctly classifying 61.4% (221 out of 360;
p=5.58×10−6) of scans; however, its performance was poorer in
relation to the Bayesian classification (64.4%). See Fig. 12.

The voxel weights for the SVM and MVB classifiers are shown
in Fig. 13 (upper panels). The difference is immediately obvious;
the MVB profile shows the anatomical sparsity implicit in
characterisations above; whereas the SVM weights are not sparse.
However, if we plot the MVB weights against the cubed SVM
weights we see that, with one exception, when the MVB found a
large positive or negative weight, so did the SVM.
One may ask why the MVB decoding model was better than
the SVM, given both sought sparse solutions and the SVM was
explicitly optimising classification performance (while the decod-
ing scheme optimised free energy). The most parsimonious
answer is that the SVM is using a suboptimal model. The results
of model comparison in Fig. 11a suggest that visual motion has a
sparse anatomical representation and this is the model used by
Bayesian decoding. Conversely, the SVM is obliged to use a
sparse mixture of non-sparse patterns and is consequently poorer
at classifying.

This intuition was confirmed by repeating the MVB classifica-
tion but using support vectors. As can be seen in Fig. 12, the
classification performance fell from 64.4% to 63.0%. This is still



Fig. 11. Bayesian model comparison: Left: (a) Log-evidences for five models of the same target and voxels. These models differ in terms of the spatial patterns
that might be used to encode motion. Right: (b) log-evidences for three models of the same target but now using different voxels. These voxels came from two
16mm spherical volumes of interest in the visual and prefrontal regions, depicted by the red circles on the maximum intensity projection.
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better than the SVM, with a difference of 1.66%. However, this
difference is less than the standard deviation of the underlying
binomial distribution; 2:63% ¼
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Fig. 12. Classification performance of the MVB scheme (horizontal lines)
and SVM (bars) over different levels of the SVM hyperparameter, C.
Performance is shown in terms of percentage correct classification of motion
scans using the occipital volume of interest in the previous figures. The
MVB models here employed sparse (top line) and support (lower line)
vectors, where as the SVM used, by definition, support vectors.
pate that a finer-tuned optimisation of the SVM hyperparameters
would equate the performance of the SVM and MVB, under
support vectors. Note that MVB optimises its own hyperparameters
automatically (without needing the true test class).

Classical inference with cross-validation

One might ask whether the p-values from the leave-one-out
scheme could be used for inference? Unfortunately they cannot,
because the removal of confounds and serial correlations render
them invalid. In other words, the binomial test assumes that the
training and test data features are independent and this
assumption is violated when we use data features that have been
adjusted for confounds; or when the data are serially correlated as
in fMRI. In what follows, we describe a cross-validation scheme
that resolves this problem and produces p-values for any MVB
model.

The solution rests on using weighted samples of data features
for training that are linearly independent (i.e., orthogonal) of the
test data. This is achieved by removing serial correlations and
eliminating the test data before estimating the voxel weights. These
weights are then applied to de-correlated features, with the training
data eliminated. Critically, elimination proceeds by treating un-
wanted data as confounds, as opposed to simply discarding
portions of the data. More precisely, consider a k-fold scheme in
which the test subset is encoded by indicator variables in the
leading diagonal matrix, I(k). The model is optimised using a
residual forming matrix, R−k=(I−G−kG−k

− )S; where (i) the con-
found matrix G−k=[SG,I

(k)] includes any effects due to the de-
correlated test data and (ii) S=V−1/2 is a de-correlation matrix that
renders the errors spherical. The ensuing weights μk

β are then
applied to test-features, Yk=RkY. These test features are formed



Fig. 13. Comparative analysis if the encoding of visual motion using MVB and SVM. Upper panels: voxel weights from SVM (left) and MVB (right) showing
the sparsity over voxels of the latter, relative to the former. Lower panel: The same weights plotted against each other, showing that large values in one correspond
to large values in the other.
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using a residual forming matrix, Rk=(I−GkGk
−)S with confounds

Gk=[SG,(I− I
(k))] that allow the effects due to the de-correlated

training data to be explained away. The result is a cross-validation
prediction, Xk=Yk μk

β, that accounts properly for serial correlations
and confounds by ensuring that the cross-validation weights cannot
be influenced by the test data and the prediction is conditionally
independent (to first order) of the training data. Furthermore, it
ensures, under the null hypothesis, that the test and training data
are linearly independent; i.e.,

Y�kY
T
k

� � ¼ R�k YYT
� �

Rk ¼ R�kVRk ¼ 0 ð19Þ

The predictions can now be added to give a cross-validation
prediction for the entire sequence of weighted targets; i.e., X̂=S−1

(X1+…+XK). Under the null hypothesis, there can be no
correlation between WX and X̂. Furthermore, because the random
effects in this model are mixtures of random effects over features
(i.e., voxels), we know by central limit theorem that they are
normally distributed. This means the most powerful test of the null
hypothesis is a simple t-test; testing for dependency between the
observed and predicted targets, in the presence of confounds. This
can be tested using the simple model

X̂¼ ½TX ;G�bþ e ð20Þ

under normal parametric assumptions about the serially correlated
errors with a test of the null hypothesis that β1=0. The astute reader
may notice that we have come full-circle; in that this test is exactly
the same as testing a contrast, i.e., cTβ=0, under the original
encoding model; X̂=Xβ+ε. The only difference is that we have
replaced the original voxel values with a summary of the activity
over voxels, using a cross-validation procedure.

To ensure the assumptions above are not violated in a
practical setting, we applied the procedure using a two-fold cross-
validation scheme to the empirical data above, using weighted
targets formed by convolving random vectors with a hemody-
namic response function. We repeated this a thousand times and
accumulated the p-values from the t-test on the model in
Eq. (21). Fig. 14 shows the results of this analysis in terms of a
Q-Q plot (i.e., cumulative frequency of ranked p-values). An



Fig. 15. Results of a two-fold cross-validation using the motion target and
the 360 scans of 583-voxel features from the visual volume of interest.
Upper panel: The target variable (solid line) and its prediction (broken line)
from the cross-validation. Lower panel: the same data plotted against each
other. These results can be compared with the lower panels in Fig. 9. The
difference here is that the prediction of one half of the time-series is based on
data from the other.

Fig. 14. Results of a simulation study to ensure the exact nature of cross-
validation p-values. This Q-Q plot shows the cumulative frequency of
ranked p-values from one thousand, two-fold cross-validation tests using the
data features from the fMRI study (V5/MT volume of interest) and a
randomised weighted target. Ideally the Q-Q plot should be a straight line
passing though the origin. The number of p-values falling below p=0.05
was 0.056, suggesting a reasonably exact test.
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exact and valid test should produce a straight line though the
origin; happily this is what we observed. This is important
because it gives a reasonably powerful test that enables classical
inference about multivariate models for which no conventional
results exist.

Fig. 15 shows the results of the cross-validation prediction for
the 16-mm occipital volume of interest. This prediction should be
compared with that in Fig. 9 that was obtained without the cross-
validation constraint. It can be seen that the accuracy of this
prediction is unlikely to have occurred by chance; the correspond-
ing cross-validation p-value was p=0.000046 and was extremely
significant.

Summary

In summary, this section has demonstrated the nature of
inference with MVB. We anticipate that most analyses could use
both Bayesian and classical inference. First, [Bayesian] model
comparison would be used to identify the best qualitative form of
model for any structure–function relationship, using the log-
evidence over models. Having established the best model the
cross-validation p-value can be used for a quantitative [classical]
inference that any dependencies between observed brain mea-
sures and their consequences are unlikely to have occurred by
chance.

Discussion

This paper has described a multivariate Bayesian (MVB)
scheme to decode neuroimages. This scheme resolves the ill-
posed many-to-one mapping, from voxels or data features to a
target variable, using a parametric empirical Bayesian model
with covariance hyperpriors. This model is inverted using
expectation maximisation to furnish the model evidence and
the conditional density of the parameters of each model. This
allows one to compare different models or hypotheses about the
mapping from functional or structural anatomy to perceptual and
behavioural consequences (or their deficits). The primary aim of
MVB is not to predict or classify these consequences but to
enable inference on different models of structure–function
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mappings; such as the distinction between distributed and sparse
representations. This allows one to optimise the model itself and
produce predictions that can outperform standard pattern clas-
sification approaches.

MVB is a model comparison approach that is well suited for
testing specific hypotheses about structure–function mappings;
e.g., is the representation of objects sparse or distributed in the
visual cortex? The outputs of MVB are the log-evidences for the
models tested, which allows inference about spatial coding and the
conditional density of the voxel weights. In addition, one can also
derive a cross-validation p-value for MVB models. On the other
hand, classifier approaches like support vector machines (SVM)
optimise the parameters of a discriminating function to maximise
classification accuracy. They are useful when one wants to make
predictions about new examples, especially when there is no prior
hypothesis available or the model assumptions can not be
guaranteed (e.g., classifying patients vs. controls, predicting
treatment response, predicting subject decisions about novel
stimuli, etc.). The outputs of this approach are the classification
accuracy and the voxel weights.

Model inversion and inference in MVB uses exactly the same
empirical Bayesian procedures developed for ill-posed inverse
problems (e.g., source reconstruction in EEG). However, the
MVB scheme extends this approach to include an efficient greedy
search for sparse solutions. In contradistinction to top-down
strategies, employed by things like automatic relevance determi-
nation, MVB uses a computationally expedient bottom-up search
for the optimum partition; i.e., number and composition of pattern
weight subsets with the same variance. It should be noted that
there is a distinction between the abstraction of model comparison
as the computation of a metric (e.g., likelihood ratio) and a search
algorithm (e.g., greedy search). One reason to make this
distinction lies in the need to consider when a particular search
algorithm is appropriate; for example, a greedy search may be
suitable for our purposes, in optimising linear models, yet may fail
for nonlinear multivariate associations (e.g., the exclusive- or
(XOR) association that eluded early neural-network solution
algorithms).

We have illustrated MVB using simulated and real data, with a
special focus on model comparison; where models can differ in the
form of the mapping (i.e., neuronal representation) within one
region, or in terms of the regions themselves. These demonstra-
tions concluded with a procedure to compute exact p-values for
classical inference on the model selected, using cross-validation.
We organise the rest of the discussion around some obvious
questions; many of which have been posed by colleagues after
discussing the material above.

Can one use Bayesian decoding with event-related fMRI
paradigms?

Yes. In fact the scheme can be applied to any data and design
that can be formulated as a conventional linear model. This
includes convolution models for fMRI studies with efficient
design. Unlike classification schemes, the model does not map to
classes or labels, but to continuous, real-valued target variables;
therefore, one is not forced to assign each scan to a class.
Furthermore, the target variable is convolved by a hemodynamic
response so that the delay and dispersion inherent in fMRI
measures of neuronal activity becomes an explicit part of the
decoding.
Does the scheme assume the same hemodynamic response function
in all voxels?

Not if variations in voxel-specific hemodynamic response
functions are included as confounds. For example, to a first-order
approximation, one can model differences in hemodynamic latency
with the temporal derivative of the target variable (and any other
confounds). This derivative enters the projection matrix, R, which
effectively removes variations in latency in both the target variable
and voxel time series. Similar arguments apply to other variations
in the response function. In practice, decoding uses exactly the
same model specification as encoding. The target variable is
specified with contrast weights in the usual way but they are used
to subtract the corresponding column (or mixture of columns) from
the design matrix. This reduced design matrix now becomes the
confound matrix in a decoding model and will contain regressors
necessary for explaining away differences in hemodynamic
responses (provided a suitable basis set was specified for the
conventional analysis).

Can MVB be applied to structural images or contrasts in
multi-subject studies?

Yes. As mentioned above, it can be used in any context that
lends itself to conventional modelling. This includes the analysis
of grey matter segments in voxel-based morphometry. This
means it is possible to infer on structure–function mappings
explicitly; for example one can use grey matter segments from a
group to predict neuropsychological deficit, diagnosis or
response to treatment. In fact, this application was one of the
primary motivations for this work (see below).

Can the scheme cope with serial correlations in the errors?

Yes. These can be accommodated by adding extra error
covariance components modelling any non-sphericity. The asso-
ciated hyperparameter will be estimated in the EM scheme along
with the others. In the current implementation, this is not necessary
because we use the serial correlations V from a conventional
analysis using ReML.

Is a greedy search for a sparse solution appropriate if the neuronal
representation is not sparse (i.e., if it is distributed)?

Yes. A sparse solution in the space of pattern weights does not
mean the solution is anatomically sparse because the patterns can be
sparse or distributed. Both the hyperpriors and greedy search can
accommodate sparse solutions in the space of pattern weights. This
sparsity is a useful constraint on the many-to-one nature of the
decoding problem; it means the scheme will seek an optimum
sparse solution for any set of patterns that are specified. However,
the patterns that model the anatomical deployment of neuronal
activity may or may not be sparse. This means one can infer a
representation is distributed by comparing two models with sparse
(e.g., spatial vectors) and non-sparse (e.g., support vectors) patterns.

Will the greedy search find significant subsets when there is no
mapping?

No. The free energy bound that is optimised by both the greedy
search, and each iteration of the EM scheme, embodies both



9 The symbol⊗ means Kronecker tensor product and is equivalent taking
all the products of elements in two vectors (or matrices).
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accuracy and complexity. This means that adding a hyperparameter
to the model will only increase the bound, if the increase in
accuracy (i.e., fit) more than compensates for increased model
complexity. This is why the log-evidence did not exceed the null
model during the greedy search, using the null data in the
simulations (see Fig. 5).

Why does Bayesian inference not use cross-validation like
classification schemes?

Because it does not need to; classification schemes are
generally obliged to use cross-validation or generalisation error
to assess how good they are because they do not furnish
inference on the mapping they are trying to model. Making
inferences with classification still rests on model comparison but
does so only at the last step, where one compares classification
performance with a null model of chance classification (e.g.,
using a binomial distribution). From the perspective of model
comparison, classification performance is a surrogate for the
likelihood ratio. We exploited this approach to compute a p-
value for classical inference using cross-validation.

Can the Bayesian decoding model be used to classify?

Generally, if a model is to be applied to classification
problems, where the class labels are discrete, one usually uses
logistic or multinomial regression, where the log-likelihood ratio
is a linear function of some parameters. These models are based
on binomial/multinomial distributions, as opposed to the
Gaussian densities used in MVB. However, the continuous
target variables, assumed by MVB, can be thresholded to give
distinct classes or labels (for an example, see the comparison
between MVB and SVM above). Having said this, the objective
of Bayesian decoding is more general and is not simply to
establish a statistical dependency between neuronal representa-
tions and a perceptual or behavioural consequences; it is con-
cerned with comparing different models of that mapping. This is
not possible with simple classification because classification
schemes use only one model (the model that has been optimised
with respect to generalisation error). Classification is therefore a
special application of the more general MVB framework pre-
sented here.

We conclude with a brief review of extensions of the linear
model presented here. These include nonlinear models and
extensions to cover multiple target variables.

Nonlinear models

As mentioned above, we envisage applying this sort of
analysis to look at structure–function relationships in the brain,
using structural images (e.g., grey matter segments from
multiple subjects). An important application here is lesion-
deficit analysis, where one wants to understand how damage to
different brain areas conspires to provide a behavioural deficit.
A critical aspect of this mapping is that is may be nonlinear. In
other words, the production of a deficit following damage to
one region depends on the integrity of another (as in
degenerate structure–function mappings). We have emphasised
the necessary role of multivariate models in this context
previously, when qualifying the use of voxel-based morpho-
metry (Friston and Ashburner, 2004). There have been some
exciting developments in this context; using directed Bayesian
graphs (see Herskovits and Gerring, 2003). In the context of
our parametric model, nonlinearities are easy to include,
through the use of polynomial expansions. For example,9

WX ¼ R
y1U y1U � y1U
v v

ysU ysU � ysU

2
4

3
5 g1

g2

	 

þ 1 ð21Þ

can be treated as in exactly the same way as the first-order
model above to provide the log-evidence and conditional
estimates of the first and second-order pattern weights; η1 and
η2. The first-order weights play exactly the same role as
previously; however, the second-order weights model interac-
tions between patterns in causing the target. An important
example of this is predicting a psychological deficit by damage
to two regions that have a degenerative (many-to-one)
structure–function relationship (see Price and Friston, 2002).
Under second-order degeneracy, a deficit would not be evident
in damage to either region alone and would require a non-zero
second-order weight on bilateral regional damage to predict a
deficit. In principle, one could establish second-order degen-
eracy by comparing the second-order model above to its
reduced first-order form.

WX ¼ R
y1U
v

ysU

2
4

3
5g1 þ 1 ð22Þ

which is exactly the same as Eq. (13). We will exploit
nonlinear MVB in future work on multi-lesion deficit analyses
of structural scans.

Comparing different representations

This paper has dealt with the simple case, where X is univariate
(e.g., a subspace of a fuller design, specified with one-dimensional
contrast). The more general case of multivariate decoding entails
exactly the same formulation but with vectorised variables. An
important example of this would be models for two contrasts or
targets (e.g., house and face perception). A model for two
perceptual targets X1 and X2 is

W1X1

W2X2

	 

¼ R1Y �R1Y

R2Y R2Y

	 

UgðþÞ

Ugð�Þ

	 

þ 11

12

	 

ð23Þ

This model has the same form as Eq. (13) but has been arranged
so that the pattern weights η(+) map activity in patterns to both
targets, whereas η(−) map differential activity to the target. This
means that η(+) are weights that mediate overlapping representa-
tions and η(−) determine which patterns or voxels predict the targets
uniquely. Note that the errors are uncorrelated because they are
mixture of orthogonal voxel weights. By comparing this full model
with a reduced model

W1X1

W2X2

	 

¼ �R1Y

R2Y

	 

Ugð�Þ þ 11

12

	 

1 ð24Þ

one should be able to test for common or overlapping representa-
tions and disambiguate between category-specific representations
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that are functionally selective (with overlap) and functionally
segregated (without). We will explore this in future work.

Software note

The Bayesian decoding scheme, described in this paper, will
be available in the next release of SPM5 (http://www.fil.ion.ucl.
ac.uk/spm). It is accessed through the results panel (multivariate
Bayes) after displaying a contrast as an SPM. It is assumed that
the target variable is the compound or contrast of regressors
specified by the contrast weights of the SPM. If an F-contrast is
specified, the first component is used for decoding. The volume
of interest is specified in the usual way (sphere, box or mask)
and the greedy search is initiated for the model (spatial, smooth,
singular or sparse) requested. After the model has been
optimised or selected its cross-validation p-value can be accessed
using a two-fold scheme illustrated in the main text. The results
are displayed using the same format used (Figs. 9, 10 and 15)
above.
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