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Summary

Working memory allows information from transient events

to persist as active neural representations [1] that can be
used for goal-directed behaviors such as decision making

and learning [2, 3]. Computational modeling based on
neuronal firing patterns in animals suggests that one

putative mechanism enabling working memory is periodic
reactivation (henceforth termed ‘‘replay’’) of the maintained

information coordinated by neural oscillations at theta
(4–8 Hz) and gamma (30–80 Hz) frequency [4–6]. To investi-

gate this possibility, we trained multivariate pattern classi-
fier decoding algorithms on oscillatory brain responses to

images depicting natural scenes, recorded with high
temporal resolution via magnetoencephalography. These

classifiers were applied to brain activity recorded during

the subsequent five second maintenance of the scenes.
This decoding revealed replay during the entire maintenance

interval. Replay was specific to whether an indoor or an
outdoor scene was maintained and whether maintenance

centered on configural associations of scene elements or
just single scene elements. Replay was coordinated by

the phase of theta and the amount of theta coordination
was correlated with working memory performance. By con-

firming the predictions of a mechanistic model and linking
these to behavioral performance in humans, these findings

identify theta-coupled replay as a mechanism of working
memory maintenance.

Results and Discussion

We investigated replay under experimental conditions that
allowed controlling how much associative configural informa-
tion is retained during maintenance (see Figure 1A; see the
Supplemental Information available online). To that end, eight
healthy adults participated in two variants of a delayed match-
to-sample (DMS) working memory task, one with and the other
without associative configural maintenance demands. We also
used a control task without maintenance requirements. In all
three task conditions, the trial structure and stimulus timing
were identical. In the two DMS variants, participants were pre-
sented with the image of an indoor or an outdoor scene for 3 s
(all images were grayscale photographs that were normalized
*Correspondence: l.fuentemilla@ucl.ac.uk (L.F.), e.duzel@ucl.ac.uk (E.D.)
to the same mean gray value). This sensory input (here termed
‘‘sample’’) was followed by a 5 s delay interval during which the
sample had to be consciously maintained in working memory
(in the two DMS conditions). After the delay, two probe stimuli,
both images of scenes from the same category (indoor or
outdoor), were presented side by side. Only one of the two
probes (matching probe) was identical to the sample and
participants were required to indicate which by a button press
using the index or middle finger of the right hand. In the asso-
ciative configural (henceforth called configural) variant of the
DMS task, the nonmatching probe differed from the matching
probe only in the relative location or omission of one scene
element. To be able to detect the match, therefore, it was
necessary to maintain a detailed record of all objects in the
scene as well their associative-configural arrangement. In
the nonconfigural condition, the nonmatching probe displayed
a completely different scene. This allowed detecting the match
by maintaining just one element of the sample scene. The
control task was matched to the configural DMS condition in
perceptual difficulty at the probe phase but did not require
any maintenance of sample information. Here, both probe
images were different from the sample. Subjects were in-
structed to indicate by button press if the two images were
identical to each other and that maintaining the sample
stimulus in memory would not help them to make this discrim-
ination. Configural and nonconfigural conditions and the
control task were separated in blocks of ten trials with four
blocks each.

In summary, our methodological approach was to train
individual multivariate pattern classifiers (MVPCs) to distin-
guish indoor from outdoor scenes separately in each of the
three task conditions. These MVPCs were then used to detect
replay of the sample category (indoor versus outdoor) during
the delay. Specifically, we used MVPCs to test (1) whether
category-selective patterns of activity elicited during sensory
input would be reactivated during the delay interval, (2)
whether the number of reactivations would reflect the stronger
demands on maintenance in the configural than the nonconfi-
gural condition, (3) whether these reactivations would be
specific to the task condition (configural, nonconfigural, or
control) in which the MVPC were trained, (4) whether category-
and task condition-selective reactivations were modulated by
theta (i.e., were more likely to occur at a particular phase of
ongoing theta oscillation, i.e., were ‘‘nested’’), and lastly (5)
whether the number of reactivations and/or their nesting within
ongoing theta correlated with the participant’s ability to
perform the DMS task.

MVPC training to distinguish indoor and outdoor categories
of the sample was conducted every 80 ms from 236 ms prior
to sample presentation to 764 ms after sample onset, indepen-
dently for each time point, using the amplitudes of 38 frequen-
cies spanning a range from 13 to 79 Hz from all 275 MEG
sensors. After training, the MVPCs were successful in discrim-
inating indoor and outdoor scenes showing similar time
courses of discrimination accuracy for all three experimental
conditions (Figure 1C). Successful discrimination was ob-
tained with MVPCs trained on data acquired after the first
200 to 300 ms of sample presentation (Figure 1C).
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Figure 1. The Trial Structure, Subjects’ Behavioral Performance, and MVPC Accuracy during Sample Presentation

(A) Trial structure of the two variants of a blocked DMS working memory task, one with (configural) and the other without (nonconfigural) associative

configural maintenance demands and a control task without maintenance requirements.

(B) Behavioral performance at probe for each experimental condition. Working memory performance was better in the nonconfigural than the configural

condition [paired t test: t(7) = 4.02, p = 0.005] and accuracy in control and configural was similar [paired t test: t(7) = 0.8, p = 0.45], showing that the two

conditions were equated for difficulty. *p < 0.05; ns: p > 0.4.

(C) Single-subject indoor and outdoor MVPCs were computed separately every 80 ms from 236 ms prior to 764 ms after sample onset during encoding.

X axis labels time points where the MVPC was trained and tested. Plots represent subjects’ mean MVPC accuracy at sample encoding for control (Cont;

black line), nonconfigural (N-Conf; blue line), and configural (Conf; red line) conditions. MVPC results showed correct classification of sample pictures

into indoor and outdoor categories from 200–300 ms onward. The statistical threshold for correct MVPC classification was set at p < 0.04 and at

p < 0.002 after correcting for multiple comparisons. Error bars denote standard error of the mean (SEM) in (B) and (C).
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Using these MVPCs we observed that the category-selec-
tive activity patterns evoked by sample presentation were
reactivated during the delay interval of the two DMS condi-
tions. We defined ‘‘reactivation times’’ as those time points
for which the classification accuracy was above a given statis-
tical threshold (see Experimental Procedures). ‘‘Reactiva-
tions’’ are then defined operationally as patterns producing
correct classifier outputs at reactivation times. We observed
a high degree of accurate category-specific reactivation
during the delay interval (Figure 2). Reactivations were
observed in each participant for both stimulus categories
and were distributed across the entire delay (Figure 2A), that
is, they were not confined to either the early or late phases of
the delay interval.

The total number of reactivations during maintenance was
higher in the configural than the nonconfigural DMS condition
(Figure 2B). This finding indicates that the demand to actively
maintain associative configural information in working mem-
ory led to more frequent replay of information (see Figure 1B
for behavioral performance in the DMS tasks). Also, both



Figure 2. Category-, Condition-, and Task-

Specific Reactivations during Maintenance

(A) Category-specific replay during the mainte-

nance period (4.5 s; x axis) for each experimental

condition and for the 11 different classifiers

trained at different time points of sample picture

encoding (y axis). Plots represent the percentage

of subjects that showed significant (p < 1.8 3

1025) reactivations for different classifiers (y)

and time points (x).

(B) Sum of all significant reactivations for all ten

(44 to 764 ms after onset of sample image) classi-

fiers collapsed across categories and time points

(paired t test one-tailed, *p < 0.05 and **p < 0.01).

(C) Similar replay count as in (B) but displayed for

each classifier. The x axis refers to each of the

classifiers trained at different time points during

sample picture encoding.

(D)–(F) Condition specificity (nonconfigural

versus configural DMS condition) and task spec-

ificity (DMS tasks versus control task) of reactiva-

tions.

(D) Number of significant indoor/outdoor neural

pattern reactivations when classifiers trained

during control and nonconfigural encoding were

tested along indoor/outdoor scene maintenance

of the configural condition. This was contrasted

(paired t test) with the number of significant

reactivations obtained when trained and tested

classifiers belonged to configural task.

(E) As in (D), but contrasting the number of reac-

tivations obtained during the delay of the control

task when classifiers were trained during config-

ural, nonconfigural, and control encoding.

(F) As in (D), but contrasting the number of

reactivations obtained during the delay of the

nonconfigural condition when classifiers were

trained during configural, nonconfigural, and

control encoding.

**p < 0.01; *p < 0.05; ns denotes nonsignificant.

In (B)–(F), error bars denote SEM.
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nonconfigural and configural maintenance intervals showed
a greater number of reactivations when compared to those
obtained during the delay period of the control task where
no sample information needed to be maintained (Figure 2B).
These findings confirm the hypothesis that maintenance in
working memory is associated with replay of sensory input
and show that the number of replay events increases with
maintenance demands.

We then assessed whether the category-specific mainte-
nance replay of sensory input was specific to each DMS
condition. This was achieved by testing MVPCs trained
during sensory input of the three task conditions on the delay
intervals of the remaining two. We observed that classifier
performance decreased when it was trained in another task
condition (Figures 2D–2F). Fewer reactivations were found
during nonconfigural delays when control or configural
MVPCs were applied (Figure 2F). Likewise, fewer reactivations
were found during configural delays when tested with control
and nonconfigural MVPCs (Figure 2D). These findings show
that, even within the same category, the content of replay
was specific to each task condition. More detailed fre-
quency-based analyses of classifier features confirmed this
specificity (see Supplemental Information and Figure S3 for
the spatial distribution of stable beta and gamma band
features of classifiers trained in configural and nonconfigural
conditions). Thus, despite the fact that the categories (indoor
and outdoor) were the same and the scene images themselves
were counterbalanced across each condition, participants
maintained different aspects of the scenes in the configural
and nonconfigural DMS conditions. This condition specificity
of maintenance replay conforms to the experimental require-
ment to maintain associative configural information in the
configural version as opposed to object-based information in
the nonconfigural version. At the same time, it rules out trivial
accounts of maintenance replay. Condition specificity is
incompatible with the possibility that replay merely reflected
some passive reverberation of the sample input that was
stronger in the configural than the nonconfigural condition
simply because participants were more attentive due to task
difficulty.

Having identified the existence of condition-specific (config-
ural versus nonconfigural DMS), task-specific (DMS versus
control), and category-specific (indoor versus outdoor) reacti-
vations during delay maintenance in working memory (see [7]
for why it is appropriate to consider our DMS tasks as working
memory), we then tested the hypothesis that these reactiva-
tions were periodically modulated by theta oscillations. In
order to quantify the relationship between maintenance reac-
tivations and the ongoing theta (4, 5, and 6 Hz) rhythm in the
delay, we calculated the ‘‘phase-locking value’’ (PLV) between
reactivations and theta phase [8]. This value quantifies to
what extent reactivations were more likely to occur at certain



Figure 3. Theta Phase Coupling of Category-Specific Reactivations during Maintenance

(A) Sensor-specific significant (p < 0.05) 6 Hz theta phase locking of reactivations during nonconfigural and configural maintenance. In the topographic plots,

C1–C4 denote clusters (minimum of eight significant adjacent sensors) of sensors where phase locking in nonconfigural and configural conditions exceeded

phase locking in the control task. Of these clusters, C2 and C3 in the nonconfigural condition and C2, C3, and C4 in the configural condition survived

correction for multiple comparisons (see Supplemental Information and Figure S3 for details).

(B) Mean 6 Hz PLVs obtained for each cluster identified in (A). Error bars denote SEM.

(C) Topographic distribution of significant (red; p < 0.05, minimum of eight significant adjacent sensors) correlations between PLVs (6 Hz) at bilateral

frontotemporal sensors and behavioral working memory accuracy in the configural condition.
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phases of theta. A PLV of 1 denotes perfect phase locking
with each reactivation occurring at exactly the same phase
of theta, whereas a value of 0 denotes that reactivations are
completely independent of the theta phase (see Experimental
Procedures). For this analysis we merged the reactivations
detected by MVPCs trained at different time points of sample
presentation (i.e., from 44 to 764 ms after the onset of sample
presentation) and calculated PLVs to theta, considering theta
recordings of each of the 275 MEG sensors separately.

Consistent with the hypothesis that maintenance replay
would be modulated by theta, we found significant theta
(6 Hz; see Figure S6 for PLV results at 4 and 5 Hz) phase locking
for both nonconfigural and configural delay reactivations. As
shown in Figure 3A, phase-locking for the nonconfigural and
configural conditions engaged distinct sensor configurations.
Theta phase locking for the nonconfigural delay reactivations
was confined to frontoparietal and occipital sensor clusters
(minimum of eight adjacent sensors), whereas theta phase
locking of configural delay reactivations occurred over bilateral
frontotemporal sensor clusters (for the identification of sensor
clusters see Supplemental Information and Figure S4). Further-
more, in both the nonconfigural and configural conditions,
sensors from significant clusters showed higher 6 Hz theta
PLVs when compared to the control task (Figure 3B). This
was also confirmed by a within subject and condition permuta-
tion analysis (see Supplemental Information and Figure S5).
This topographic separation indicates that nonconfigural and
configural replay was modulated by different theta networks:
a frontoparietal and occipital theta network modulated replay
of nonconfigural information, whereas a frontotemporal theta
network modulated configural replay (Figure 3A).

Having shown that category- and condition-specific replay
during maintenance was periodically modulated by different
theta networks, we then assessed to what extent the number
of reactivations and theta modulation of replay were correlated
with working memory performance. As expected, the configu-
ral DMS was more difficult than the nonconfigural DMS condi-
tion [mean rate of identifying the correct match: nonconfigural:
97%, and configural: 79%; t(7) = 4.01, p < 0.01; Figure 1B],
whereas there was no performance difference between the
control task (mean rate of detecting whether the two probes
were the same or not: 83%) and configural DMS [t(7) < 1],
showing that we were successful in matching the difficulty
between the configural DMS and the control task. We
observed a positive correlation (Pearson’s coefficient,
r > 0.7; p < 0.05, two-tailed, minimum of eight significant adja-
cent sensors) between frontotemporal sensors theta PLVs and
the accuracy in correctly identifying the matching probe in the
configural condition (Figure 3C). Since both probes were from
the same category, this correlation argues against the possi-
bility that participants merely maintained a ‘‘semantic label’’
of the sample category (i.e., indoor/outdoor). The total number
of category reactivations during the delay was not correlated
with working memory accuracy (all sensors p > 0.05). A corre-
lation analysis was not performed for the nonconfigural condi-
tion because working memory performance was nearly perfect
(mean 97%, SD 0.2%). These results indicate that associative
configural working memory performance depends on the
clocking and coordination of periodic replay by ongoing theta
dynamics rather than the absolute number of reactivations.

Our findings provide evidence for the prediction from animal
physiology [9] and computational modeling [4, 6] that working
memory maintenance in humans is associated with periodic
replay of sensory input and that the periodicity of replay is
modulated by slow oscillatory rhythms in the theta frequency
range. Indeed, in animals it is meanwhile well established
that theta phase can modulate the stimulus-specific spiking
of neural ensembles in many different brain regions, such as
the hippocampus, visual cortex, and prefrontal cortex [9–13].
During spatial exploration, the theta rhythm modulates the
activity of rodent hippocampal [11, 14, 15] and entorhinal
[16, 17] place-coding neurons in a phase-dependent manner.
In nonhuman primates, neuronal spiking in visual area V4 is
modulated by theta phase during delay maintenance [9].
Recently, invasive recordings in humans showed that fast
oscillatory rhythms, which presumably code stimulus-specific
information, are also ‘‘nested’’ within theta phases [18].

Theta-coupled periodic replay is likely to interact [19] with
another neural mechanism of working memory that cannot
be directly measured with MEG, namely, the persistence of
neural firing from stimulus processing into maintenance.
Although persistent neural firing during delay maintenance
has been observed in many different brain regions, including
medial temporal, prefrontal, and parietal regions [20, 21], in
some regions, such as area V4, neural delay firing is largely
periodic and theta coupled [9]. Despite such anatomical
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separation, it is physiologically plausible that persistent firing
and theta periodic activity could functionally interact to sustain
each other [19, 22]. Through such interaction, persistent firing
coding multimodal stimulus attributes [22] or task-related
information such as goals and cognitive control signals could
sustain periodic replay of stimulus-specific information.
Indeed, an influential model of working memory in humans
[1] postulates a rehearsal mechanism (which we see as being
related to replay) controlled by the central executive. The non-
configural version of our working memory task has the closest
correspondence to a working memory study in nonhuman
primates demonstrating theta-coupled replay in visual area
V4 [9]. We observed quite widespread activity in this task
involving not only the occipital MEG sensors but also frontal
and parietal sensor regions (Figure 3A and Figure S6). This
widespread distribution suggests that persistent firing and
periodic replay may have the opportunity to interact locally
within frontal and parietal regions.

Recent animal recordings suggest that the hippocampus
may actively control the transfer of cortical information to the
hippocampus itself via theta-phase biasing of neocortical
network dynamics [13]. On the basis of the MEG sensor data
reported here, we cannot separate such hippocampal theta
entrainment from a cortico-cortical theta entrainment (for
review see [23, 24]) during periodic replay. We also cannot
exclude the possibility that hippocampal theta generation
has directly contributed to our measures.

The possibility of investigating periodic replay noninvasively
and at high temporal resolution opens new perspectives for
uncovering the neural mechanisms underlying cognitive pro-
cesses where chronometry is a critical factor [4, 6]. Given the
distributed nature of the neural populations that are likely to
contribute to replay, high-density whole-head recordings (by
MEG or EEG) with their very large sampling space seem ideal
for this purpose in humans. Focal, anatomically targeted
recording techniques, such as intracranial recordings, offer
insight into how single neurons and small neuronal populations
are entrained into network behavior but the clinical constraints
on these recordings and their limited sampling space should
make it challenging to detect replay in humans. Hence, the
combination of high density MEG/EEG with focal intracranial
recordings seems particularly suited to understand how replay
is coordinated with local neuronal ensembles.

By decoding working memory content at high temporal
resolution we confirm the core prediction based on animal
physiology [9, 15] and a model based on animal physiology
[6] that theta-coupled periodic replay serves as a neural mech-
anism underlying the maintenance of information in human
working memory. This holds particularly for associative con-
figural working memory where theta phase coupling during
maintenance correlated with working memory performance.
These results help to narrow a long-standing gap between
memory research in humans and data and models based on
the temporally fine grained dynamics of memory mechanisms
identified in animals.
Experimental Procedures

Subjects

Eight right-handed healthy subjects (two female; mean age 21, SD 1.3)

participated in the experiment after giving written informed consent. The

study was approved by the University of London Research Ethics

Committee for human-based research. All participants were financially

compensated for their participation.
MEG Recordings

MEG data was recorded with a 275 channel CTF Omega whole-head

gradiometer system (VSM MedTech, Coquitlam, BC, Canada) with a 480

Hz sampling rate and 120 Hz low-pass filtering. After participants were

comfortably seated in the MEG, head localizer coils were attached to the

nasion and 1 cm anterior of the left and right tragus to monitor head move-

ment during the recording sessions.

Single-Trial Time-Frequency Analysis

Data were analyzed offline with Matlab v7.1 (Mathworks, Natick, MA).

Epochs of 9 s, including a 1000 ms baseline preceding the onset of sample

presentation, 3000 ms of sample presentation, and 5000 ms of maintenance

period, were used in the time-frequency (TF) analysis. The 1000 ms

preceding sample onset and following the end of the maintenance period

were included in order to avoid edge-effects in the subsequent wavelet

analysis. Data were downsampled to 250 Hz after TF analysis. TF was

computed by a continuous wavelet transformation (CWT) on single-trial

data for each subject and sensor via a complex Morlet wavelet defined as:

wðf ; tÞ=
�
2ps2

t

�2 1=2
e

2 t2

2s2
t e2ipf0 t;

where the relation f0/sf (where sf = 1/(2pst) was set at 7 [25]. The TF

representation of the signal s(t), trial k, frequency f, and time t was

computed as

Fkðf ; tÞ= wðt; fÞ3 skðtÞ;

where x denotes the complex convolution. Frequencies were selected

in steps of 1 Hz within the 2–20 Hz frequency range and in steps of 2 Hz

within the 21–79 Hz frequency range. For every time window and frequency

bin, instantaneous spectral amplitude was computed by taking the modulus

of the resulting CWT coefficient, squaring and adding them, and then taking

the square root (i.e., for each time and frequency bin). Spectral amplitude

data were then normalized at the single-trial level by subtracting mean

spectral amplitude during the baseline period, defined as 500 to 100 ms

prior to picture onset at the sample.

MEG Multivariate Pattern Classification Analysis

MVPC analysis was implemented with the Matlab Neural Network Toolbox

(Mathworks) and some of the software routines available from the Princeton

Multi-Voxel Pattern Analysis for fMRI website (http://www.csbmb.

princeton.edu/mvpa) but modified and adapted to MEG data.

We used univariate statistics at each sensor and TF bin in order to select

those features that would constitute the independent variables (i.e., the

inputs) for the classifier (feature selection). Those features (i.e., spectral

amplitude at particular TF bins and sensors), which were found to be signif-

icantly different between categories (using n = 20 indoor and n = 20 outdoor

exemplars) by a two-tailed paired Student’s t test (p < 0.05), were selected.

This data-led process served to reduce the dimension of the pattern

classification problem. This feature selection process was repeated for

classifiers trained on data from different time points during sample encod-

ing (see below)—that is, classifiers trained at different times in the encoding

interval used different features.

Low-frequency components (2–12 Hz) were not used to train MVPCs.

This reasoning was based on two arguments. First, we assumed that low

frequency components were not needed for capturing neural representa-

tions of visual category-specific information. Indeed, previous studies [26]

suggest that higher frequency M/EEG components in the gamma range

(i.e., 31–79 Hz) can represent specific object properties (see Figure S3).

Second, we wished to investigate whether these representations were

replayed in short-term memory through a patterned reactivation process

that is phase coupled with the ongoing theta rhythm [4, 27].

We trained 11 separate classifiers from data at 236, 44, 124, 204, 284, 236,

444, 524, 604, 684, and 764 ms relative to the onset of sample presentation.

Given that data from the baseline interval (236 ms) did not contain any

category-specific visual stimulation, we hypothesized that pattern classifier

prediction accuracy should be at the chance level (i.e., 0.5 for two cate-

gories) for all the experimental conditions. Each subject viewed 20 indoor

and 20 outdoor pictures per experimental condition during encoding.

Each of the 11 classifiers was trained with data from each experimental

condition separately. This yielded 40 training patterns (20 per category)

for each of the 11 classifiers (n = 11) and for each experimental condition

(control, nonconfigural, and configural). Indoor and outdoor information

across conditions was not grouped to a single classifier training session

http://www.csbmb.princeton.edu/mvpa
http://www.csbmb.princeton.edu/mvpa
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in order to assess possible differences related to sample encoding during

the three experimental conditions. Here, neural network optimization (i.e.,

learning) was based on the conjugate gradient algorithm (‘‘traincgb’’ in

Matlab) [28]. Neural network topology was defined by an input layer, which

contained each of the sensor/frequency features, a hidden layer comprising

20 units, and an output layer, defined by two units, one for each of the

category-specific patterns in our study (indoor and outdoor scenes). The

target patterns were (1 0) for an indoor scene and (0 1) for an outdoor scene.

Neural network training was always stopped after 20 iterations.

We then applied (i.e., tested) these trained MVPCs to (1) MEG responses

elicited by different exemplars at the same encoding time point and (2)

during the maintenance interval.

First, we determined the development of category-specific (indoor/

outdoor scenes) neuronal representations during the encoding period.

This was implemented with a cross-validation process. Cross-validation is

the statistical practice of partitioning a sample of data into subsets such

that the analysis is initially performed on a single subset (training set), while

the other subset (testing set) is retained for subsequent use in confirming

and validating the initial analysis. For each classifier we used the leave-

one-out cross-validation (LOOCV) method to obtain an unbiased estimate

of classification accuracy [28]. In LOOCV, a single observation (i.e., a trial)

is first removed from the original data set and a model is built on the remain-

ing observations (i.e., n 2 1 trials). Subsequently, the model is used to

predict the response for the held-out observation. This process is then

repeated for each remaining observation and prediction accuracy is aver-

aged over the held-out observations. In each LOOCV-iteration test data

and training data are strictly separated. In a second step, we used trained

classifiers to test, at single-trial level, whether TF data of the maintenance

interval could be accurately classified as indoor versus outdoor. For these

analyses, a cross-validation procedure is not required as the exemplars

during the maintenance interval are independent of those used to train the

classifiers.

For a given trained classifier, we tested at 250 consecutive time points of

the maintenance interval (corresponding to 4.5 s after excluding the first and

the last 250 ms of the maintenance interval) whether the trained classifiers

could discriminate between indoor/outdoor scene maintenance based on

selected TF features at that time point. At each time point on each trial

the classifier outputs were then thresholded [by using a value of >0.95

from a possible output value range of 0 to 1 (perfect discrimination)]. In other

words, if the relevant output was >0.95 the classification was deemed

correct, e.g., (0.96 0.31) for correct indoor and (0.42 0.98) for correct

outdoor. We based our decision criteria on a probability function to consider

only correct category outputs during the maintenance period [see Figure S1

for an analysis of the degree to which a classifier could estimate (again

by using a threshold classifier output of >0.95) that neural activity for

a particular trial and time bin could be simultaneously classified into both

categories]. The resulting thresholded output was then set to y = 1 for

a correct output and y = 0 for an incorrect output. We then assessed within

task condition (control, nonconfigural, and configural) classifier accuracy

over trials for each subject. This was computed separately for each scene

category (indoor/outdoor). If C is the number of trials correctly classified

then P(C) follows a binomial distribution with correct probability r and

n = 20 (we have 20 observations of each trial type). We tested against the

null hypotheses of classification at the chance level (r = 0.5) by using the

normal approximation to the binomial density, which allowed us to compute

p values. A p value of 0.01 for example corresponds to w15/20 correct trials.

We then applied a correction for multiple comparisons (over the 250 time

points). A corrected p value of 0.05 was then obtainable with a threshold

of p = 1.8 3 1025 (i.e., 250 time points 3 11 classifiers). This corresponded

to 20/20 correct trials (i.e., ‘‘perfect’’ classification accuracy). We then

defined reactivation times as those time points for which the classification

accuracy reached this threshold. Reactivations are then defined operation-

ally as patterns producing correct classifier outputs at reactivation times.

We then counted the number of reactivations for classifiers trained at

different points during the encoding interval and computed the total.

This total number of reactivations was computed separately for each task

condition, category, and subject.
Theta Phase Coupling of Category-Specific Reactivations

For quantification of the degree to which reactivations during maintenance

were phase coupled to the ongoing theta rhythm, single-trial data were

high-pass filtered at 3 Hz with a zero-phase filter (‘‘filtfilt’’ in Matlab), and

then instantaneous theta phase was estimated for each time point and

sensor. During CWT, a normalization factor assured that a signal with a
maximum amplitude of 1 resulted in a transform with maximum amplitude

of 1. The modulus of the resulting TF coefficient matrix denotes absolute

amplitude, whereas the inverse tangent of its imaginary-to-real part ratio

denotes phase. Instantaneous phase information was calculated separately

for 4, 5, and 6 Hz.

Phase coupling of reactivations to a given theta oscillation implies a phase

concentration of reactivation times. We therefore computed, for each

sensor, the degree of phase alignment of the given phases. Phase alignment

for each trial j was measured with the PLV of Tallon-Baudry et al. [8] as

PLVj =
1

Nj

j
XNj

n = 1

exp
�
ifnj

�
j;

where fnj is the theta phase at the nth reactivation on the jth trial and j j
represents the complex norm. A value of 1 would correspond to perfect

phase alignment and a value of 0 to uniform phase distribution across

time points (see Supplemental Information for a discussion of why PLV

values should not be affected by the reactivation criterion mentioned

above).

The PLVs were then z normalized by the use of the arcsine transform [29]

as

zp
j = sin2 1

�
2PLVj 2 1

�
:

The normalized z variates were then used to make comparisons between

conditions at each sensor. First, we used paired Student’s t tests to see

whether PLVs differed significantly between DMS task trials (configural or

nonconfigural) and control task trials. The control delay period provides

a good ‘‘baseline’’ condition because the physical characteristics of the

visual stimulation (i.e., fixation cross) are identical to those during DMS

maintenance. While subjects were required to maintain a memory of the

sample stimulus during the delay period in the nonconfigural and configural

task conditions, there were no working memory requirements during the

control delay period. Those sensors that showed significant (p < 0.05) differ-

ences during the t test analysis were brought to a cluster-based nonpara-

metric permutation test to deal with the multiple comparisons problem

(see Supplemental Information for details). Finally, we also conducted

a within-subject permutation analysis to estimate the probability of

observing significant phase locking (between theta and reactivations)

based on the true temporal correlation structure of the reactivation vectors

(see Supplemental Information for details and Figure S5 for results).
Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, Supplemental Results, and seven figures and can be found with

this article online at doi:10.1016/j.cub.2010.01.057.
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