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1. Supplemental Experimental Procedures 
1.1.  Stimuli and task design 

The stimuli used in this experiment were photographs of 260 indoor and 260 outdoor 

scenes. All pictures comprised 300x300 pixels. They were grey scaled (8 bits; range 0-255), 

normalized to a mean grey value of 127 (SD 75) and superimposed upon a grey background 

(mean grey value of 127). The experiment consisted of two types of tasks; a Delayed-Match-

to-Sample (DMS) and a control task. The DMS task had a nonconfigural and a configural 

condition. In all three task conditions, the trial structure and stimulus-timing were identical. 

After a 2 sec inter-trial interval, an indoor or an outdoor scene (sample) was presented for 3 

sec. This was followed by a blank screen with a fixation cross for 5 sec (delay period) and 

then by two test stimuli (probes) for 5 seconds (Figure 1A). 

Retention of the sample stimulus across the 5 second delay period was necessary only in 

the two DMS conditions. In the DMS task, the two test images after the delay interval were 

used to probe memory for the sample. In the nonconfigural DMS condition, one of the probes 

was an exact repetition of the sample and the other depicted an entirely different novel scene 

of the same category (indoor or outdoor) as the sample. In the configural DMS condition, the 

non-matching probe stimuli were very similar to the sample. This was achieved as in earlier 

studies [1] by manipulating the relations among some elements of the scenes through (i) 

addition or deletion of a new object (56% of all trials) or (ii) a spatial shifting of an object 

within a scene (44 % of all trials). For example, in Figure 1A, the non-matching probe image 

(left) shows that location of the sofa is changed. In the nonconfigural variant, the non-

matching stimulus depicted a completely different scene. Hence, the nonconfigural variant 

could be solved by maintaining non-associative object-based information about the sample 

across the delay interval, while the configural variant could only be solved by maintaining a 

detailed image of all objects in the scenes as well as their configural (spatial) associative 

relationship to each other. In both versions of the DMS task, participants were instructed to 

maintain the sample image in their memory in order to be able to correctly identify the 
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matching sample. The location (left or right) of the matching and the non-matching probes 

were counterbalanced across trials.  

In the test phase of the control task, two scene images, both of which were different from 

the sample, were presented side-by-side and subjects were instructed to indicate if the two 

pictures were the same or different. In half of the trials the pictures were identical and in the 

other half they differed to the same degree as the probes in the configural DMS condition. 

This was achieved by carefully counter-balanced assignment of the same set of images to 

different experimental tasks across subjects. Subjects were instructed that they should not 

maintain the sample stimulus in memory as this would not help them to make the difficult 

same/different discrimination during the test phase. The control task was designed in a way to 

match the difficulty of the configural DMS condition in perceptual decision at probe 

presentation as well as to account for anticipatory neural delay activation in both DMS 

conditions. 

Configural, nonconfigural and control conditions were separated in blocks of 10 trials 

each. Subjects were instructed prior to each block as to which task condition would be tested. 

There were 4 blocks each, resulting in 40 trials per task condition. The presentation of 

indoor/outdoor stimuli was counterbalanced across each block and was kept constant across 

individual trials. There was no response deadline within the 5 second period of probe 

presentation and responses were given using button presses with the index and middle finger 

of the right hand. 
In order to ensure that participants attentive to the content of each sample during 

encoding, 1/10th of trials were so-called “catch trials”. Here, grey scaled images depicting 

male/female faces were presented (these images were normalized in the same manner as the 

indoor/outdoor images). Subjects were required to respond (by button press) with their right 

index finger to each catch trial. A catch trial was followed by a blank period and two empty 

side-by-side squares were presented instead of pictures at probe. 

 

1.2. Cluster-based nonparametric permutation test 

We used an MEG-based nonparametric permutation test described by Maris and 

Oostenveld [2,3] to deal with the multiple comparisons problem (MCP) given by the large 

number of sensors (275). This method provides three important advantages: (1) it provides a 

simple way to solve the MCP, (2) it allows incorporating prior knowledge about the type of 

effect that can be expected and (3) it does not depend on parametric assumptions about the 

probability distribution of the data. 

The analysis was implemented to compare the PLVs in each of the two memory 

conditions (nonconfigural and configural) with the control task. We first selected all sensors 

whose paired t test value (e.g. configural versus control) was larger than the threshold of 
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p<0.05 (uncorrected). We then clustered the selected sensors into connected sets on the basis 

of spatial adjacency, defined by a criterion of a minimum of 8 adjacent sensors. The 

permutation distribution was then obtained by: (1) collecting the trials of the two relevant 

experimental task conditions (e.g. configural and control) in a single set, (2) randomly 

partitioning the trials into two subsets, (3) for each cluster, computing the sum of the t-values, 

and then taking a test statistic equal to the maximum of the cluster-level statistic and (4) 

repeating steps 2 and 3 1000 times to construct a histogram. The nonparametric statistical test 

was finally performed by calculating a “Monte Carlo” p-value under the permutation 

distribution and comparing it with an alpha-level of 0.05.  

 

1.3. Within-subject theta phase-coupling of reactivations 

Note that reactivation time points were defined by perfect classification across all 20 

trials of one category and task type. This means that reactivation time points represent a 

subsample of the “true” within-trial distribution of correct classifications. For the phase-

locking analysis, it is not relevant whether this subsample is sparse (because the necessary 

temporal alignment across trials occurs rarely), or is close to the ‘true’ number of 

reactivations (because there is strong temporal alignment across trials). In both cases, 

reactivation time points should represent the phase-distribution of “true” within trial correct 

classification and are therefore suitable to assess phase-coupling to theta. 

To assess whether reactivations were significantly coupled to theta-phase, we constructed 

a null distribution separately for each task type (nonconfigural and configural). For each 

individual subject we randomly shifted (or rotated) the theta-phase vectors of the 40 

individual trials belonging to one task type without changing the ordering within the 

reactivation vector corresponding to the same task type.  

Hence, theta (6Hz) phase of the jth trial was perturbated randomly by өj (өj is drawn from 

a uniform distribution on {0,2pi}). This means that for all time points (starting from 250 ms 

after the beginning of the delay period to 250 ms before the end of the delay period) the same 

phase shift was applied. After each phase shift we computed a single PLV from all 40 trials of 

a given task type, using data points from the delay period. This was repeated for each sensor 

over 1000 permutations and the resulting 1000 PLVs were z-normalized to create an empirical 

distribution. These steps were first computed separately for each of the 10 classifiers from the 

encoding period and the resulting distributions from the 10 classifiers were then averaged. 

This averaged distribution provides an estimate of the confidence limits on the observed z-

PLVs (averaged over classifiers) at each sensor and for each individual task type and subject. 

Those sensors for which this p-value exceeded an alpha-level of 0.05 were deemed to contain 

significant theta phase-coupling of reactivations. Note that this procedure is suitable to test 

the reliability of theta-phase coupling of reactivations without removing the temporal 
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correlations present within reactivation vectors. This analysis controls for within-trial 

temporal correlations. If the reactivation phases are consistent between trials we should see a 

significantly non-zero PLV. 

We additionally note that the phase-locking analysis in sensor space may be confounded 

by the fact that the same neuronal sources may give rise to activity at multiple diffuse sensors. 

This is only a problem, however, when computing PLVs between sensors. In our analysis we 

computed PLVs of reactivation times within each sensor. 

 

 

2. Supplemental Results 
2.1. Pattern classification accuracy at encoding 

The accuracy of the pattern classifier during encoding was subjected to a repeated 

measures ANOVA including the following within-subject factors: Category (2 levels: Indoor 

and Outdoor), Task condition (3 levels: control, nonconfigural and configural) and Time (11 

levels corresponding to the 11 classifier time points used). Across time, pattern classification 

estimates evolved similarly across conditions, that is after chance level accuracy (i.e. ~50%) 

during pre-stimulus and early stimulus onset periods, all control, nonconfigural and 

configural outcomes increased to 70-80% at around 200 ms post-stimulus onset (Time: 

F[10,70]=28.87; p<0.001; Task condition x Time: F[20,40]<1.51). No main effects were 

found for classifier accuracy between indoor and outdoor scenes (Category: F[1,7]<0.2), 

allowing us to infer that neural network classifiers had similar prediction accuracy across both 

categories.  

 

2.2. Gamma band activity (31-79 Hz) and category-specific neural representation 

The role of gamma band activity in object representation was also investigated [4]. 

Independent pattern classifiers were trained and tested during encoding (at -36, 44, 124, 204, 

284, 236, 444, 524, 604, 684 and 764 ms post-stimulus onset) but only with indoor/outdoor 

category features (i.e. sensor/frequency wise) selected from the gamma range (31-79 Hz). The 

steps of this analysis exactly followed those performed previously with the exception of a 

wider frequency range (13-79 Hz). In a second step, the same analysis was repeated but 

including only features selected from lower frequencies, namely those in the 13-29 Hz range.  

Networks trained only from gamma band activity correctly predicted image category 

(indoor versus outdoor) (Figure S2) and classifier accuracy was higher for the gamma band 

features when compared to the 13-28 Hz range (repeated measures ANOVA; F[1,9]=5.06; 

p<0.06). 
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Finding correct classification based only on gamma band activity opens the possibility of 

further increasing the temporal resolution with which reactivation patterns can be detected. 

However, it should be noted that there is a trade-off between frequency and time resolution in 

our analysis based on continuous wavelet transformation of the data (i.e., uncertainty 

principle). That is, given a signal with some event in it, one cannot assign simultaneously an 

exact time and frequency response scale to that event. The product of the uncertainties of time 

and frequency response scale has a lower bound. Thus, in the scaleogram of a continuous 

wavelet transform of this signal, such an event marks an entire region in the time-scale plane, 

instead of just one point. Due to this trade-off, further improving the temporal resolution of 

MVPC may diminish classifier performance because of a decrease in frequency resolution. 

The meaningful boundary conditions of this time-frequency trade-off for this type of analysis 

remain to be fully investigated. 

 

2.3. Spatial characteristics of the reactivation patterns 

In order to assess the stable contributions of different frequency bands in the different 

task conditions we determined the spatial characteristics of classifier features leading to the 

detection of reactivation patterns. This was done by selecting those frequency/sensor 

classifier features that were identified during the feature selection step of the MVPC analysis 

(t tests). For each of the 10 classifiers trained after stimulus onset, features were grouped into 

frequency bands, namely, low beta (13-15 Hz), high beta (18-29 Hz), low gamma (31-45 Hz) 

and high gamma (55-79 Hz). Using SPM5 (Wellcome Trust Centre for Neuroimaging, 

University College London, UK) individual maps for each frequency band and each of the 10 

encoding time points were converted into NIFTI format. Each point in these maps 

corresponded to the number of frequency bins, within the relevant frequency band, that were 

chosen in the feature selection step. 

Channel space maps were then created by projecting the sensor locations onto a plane 

followed by a linear interpolation to a 64x64 pixel grid (pixel size = 3x3mm). We performed 

one-sample t tests for all subjects to identify significant voxels within each map (p=0.005, 

uncorrected). 

We then sought to identify which classifier features remained stable across the 10 

encoding time points by performing a conjunction analysis, thresholded at p=0.05 

(uncorrected), on the resulting significant voxels from each time point (Figure S3).   

This conjunction analysis revealed that some features in fact did remain stable across the 

10 encoding time-points. For instance, the contribution of low beta oscillations to classifier 

features remained stable in a frontoparietal sensor distribution in both the nonconfigural and 

configural conditions, while showing no stability in the control task. Remarkably, differences 

were found between nonconfigural and configural conditions in the stability of high beta, low 
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and high gamma bands. In the nonconfigural condition, stable features emerged mainly in the 

high beta band with a frontoparietal and bilateral temporal distribution. In the configural 

condition, on the other hand, stable features emerged for the low and in a more pronounced 

fashion for the high gamma band over bilateral frontotemporal regions and extending to 

parietal and occipital regions. Interestingly, the spatial distribution of the stable high-gamma 

band classifier features in the configural condition was remarkably similar to the spatial 

distribution of phase-locking between theta and reactivations during the delay (Figure 3A in 

the main manuscript). 

 

2.4. Theta phase-coupling of reactivations 

Cluster-based permutation results 

Results of the cluster-based nonparametric permutation test over those sensors showing 

significant (p<0.05, uncorrected) theta phase-coupling of reactivations when comparing the 

memory tasks (i.e., nonconfigural and configural) to the control task revealed the existence of 

different clusters of sensors that were above the defined significance level (p<0.05, 

corrected), as estimated from the permutation distribution.  

Figure S4 summarizes these results. Three main clusters were identified when comparing 

theta PLVs in nonconfigural to control task conditions (Figure S4B); right frontal (cluster 1, 

p=0.2, corrected), left parietal (cluster 2, p=0.001, corrected) and right parieto-occipital 

(cluster 3, p=0.04, corrected). Only the latter two clusters were significant after correcting for 

multiple comparisons. For the configural versus control task conditions (Figure S4C) we 

found four clusters; left frontal (cluster 1, p=0.3, corrected), right temporal (cluster 2, p=0.02, 

corrected), left temporal (cluster 3, p=0.01, corrected) and right frontotemporal (cluster 4, 

p=0.02, corrected). Only the latter three clusters were significant after correcting for multiple 

comparisons. 

 

Within-subject theta phase-locking  

Sensors identified by the cluster based permutation test were considered for a 

permutation analysis to determine whether theta phase-locking of reactivations within DMS 

conditions exceeded chance level. This showed significant (p<0.05) theta phase-locking for 

individual subjects in the nonconfigural and configural DMS conditions for most of the 

sensors within clusters (Figure S5). 

 

Reactivation times versus correct classifications within trials  

We defined reactivation times during the delay period as correct classifier outputs (above 

0.95) that consistently occurred in each trial. Using this criterion, the mean number of 

reactivations across all time points of the delay period and all 10 classifiers from the encoding 
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period was 399 (per category) for the configural task. In contrast, when considering correct 

classifier outputs (summing all time points where any of the 10 classifiers outputs from the 

encoding period was above 0.95) independently for each trial, the mean number of correct 

classification per trial was 1384  (per category) in the configural task. Therefore, this shows 

that, as expected, reactivations times reflected a subsample of correct classifier outputs. 

Future studies may provide statistical approaches to utilize correct classifier outputs within 

single trials to assess reactivations. 

 

Theta phase-reset during the delay interval 

Theta (6Hz) phase reset was observed at the onset of the configural condition delay 

maintenance period for those sensor clusters that survived correction for multiple 

comparisons in the previous analysis (see Cluster-based permutation results) (Figure S7). 

This strong theta phase-reset indicates that oscillatory activity was phase aligned at the 

beginning and over frontotemporal sensors also at the end of the delay period. This phase 

alignment may account for the higher proportion of reactivations detected in the first and last 

sections of the delay period. 
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Figure S1. Correct and incorrect MVPC outputs during delay periods from 20 configural 

DMS trials of a single subject. MVPC classifications were based on the two neural network 

outputs, y1 for indoor and y2 for outdoor, at each time point and trial. For trials that were 

truly indoor (i.e., an indoor picture was to be maintained during delay interval), MEG patterns 

were "correctly" classified as indoor if y1>0.95. Similarly, for outdoor patterns (y2>0.95). 

The figure shows the resulting probabilities for correct (blue) and incorrect (red) 

classification, as computed across 20 trials of one subject, for each image category as a 

function of time in the delay. These illustrative results were obtained for a single classifier 

(trained at 284 ms at encoding) from the configural condition. Note that, each neural network 

output (e.g. y1) provides two probability outcomes. One refers to the likelihood that data from 

trial j at time point t belongs to y1 and a second one provides the probability that this same 

trial j and time point t does not belong to y1. Therefore, the sum of the probabilities to the 

correct and incorrect classifier to y1 at trial j and time point t should always equal 1. This 

means that the probability of an incorrect output to y1 equals 1 minus the probability of a 

correct output to y2 and vice versa. Note that these results in correct output being mirror 

images of incorrect outputs for the other category.  
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Figure S2. MVPC accuracies obtained for indoor and outdoor scenes at encoding for control 

(Cont), nonconfigural (N-Conf) and configural (Conf) task conditions when trained and 

tested only with gamma band (31-79 Hz) amplitude data. Error bars denote standard error of 

the mean.  
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Figure S3. Topography of MVPC features that were consistent across the 10 classifiers 

trained after the onset of sample presentation during encoding. Note the consistent 

contribution of high-gamma band oscillations in the configural DMS task. These results 

indicate that high-gamma band MVPC features were strongly redundant across the classifiers 

trained at different time points after the onset of sample presentation. Note that colour scales 

represent different F-values between plots. 
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Figure S4. Results of the cluster-based nonparametric permutation test. (A) Distribution of 

max summed t-values for clusters when concatenating real 6 Hz PLV data from 

nonconfigural and control (left) and configural and control (right) maintenance periods. (B) 

Topography of clusters that were identified based on sensor adjacency for the nonconfigural 

condition. (C) Same as B for the configural condition.  
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Figure S5. Within-subject phase-locking of reactivation time points to theta (6Hz). Results of 

the permutation analyses for those sensors included in the clusters identified in the cluster-

based permutation analyses (see Cluster-based non-parametric permutation test section in the 

Supplemental Data). The colour scale in the topographic plots denotes the number of subjects 

where theta phase-locking of reactivations exceeded an alpha level of 0.05. Note that 

intermediate and blue colours are a mere product of the plotting interpolation function in the 

present figure.  
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Figure S6. Theta phase-locking of reactivations at 4 and 5 Hz. Red areas indicate sensors 

where theta (4 Hz and 5 Hz) phase-coupling of category-specific reactivations during 

maintenance in nonconfigural and configural conditions was stronger (p<0.05) than in the 

control task. Only sensors clustered based on adjacency criteria (two sensors) are displayed. 

Note that finding similar PLV sensor distributions between the two frequencies could also be 

driven by aspects such as frequency resolution in the wavelet-based analyses or due to 

between-subject variability in the frequency PLV data. Also, note that intermediate and blue 

colours are a mere product of the plotting interpolation function in the present figure. 
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Figure S7. Averaged theta (6Hz) PLV from sensors included in the two sensor clusters 

corrected for multiple comparisons shown in Figure S4. PLV analysis was performed at each 

time point during encoding (3 sec) and maintenance (5 sec) periods regardless of the 

reactivation vector. 'This PLV analysis measures phase locking of theta activity between 

trials. Both sensor clusters showed an increase phase-reset at the onset of the delay 

maintenance period. The frontotemporal cluster also showed a phase-reset towards the end of 

the delay period.  
  

 

 


