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Abstract

In previous work we have described a spatially regularised General Linear Model
(GLM) for the analysis of brain functional Magnetic Resonance Imaging (fMRI)
data where Posterior Probability Maps (PPMs) are used to characterise regionally
specific effects. The spatial regularisation is defined over regression coefficients via
a Laplacian kernel matrix and embodies prior knowledge that evoked responses are
spatially contiguous and locally homogeneous. In this paper we propose to finesse
this Bayesian framework by specifying spatial priors using Sparse Spatial Basis
Functions (SSBFs). These are defined via a hierarchical probabilistic model which,
when inverted, automatically selects an appropriate subset of basis functions. The
method includes nonlinear wavelet shrinkage as a special case. As compared to
Laplacian spatial priors, SSBFs allow for spatial variations in signal smoothness,
are more computationally efficient and are robust to heteroscedastic noise. Results
are shown on synthetic data and on data from an event-related fMRI experiment.

Key words: Variational Bayes, fMRI, Sparse spatial prior, Wavelet denoising,
General linear model, Hierarchical model.

1 Introduction

Functional Magnetic Resonance Imaging (fMRI) is an established technique
for making inferences about regionally specific activations in the human brain
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du Général Leclerc, 91401 Orsay, France. Fax: +33 1 69 86 77 86.

Preprint submitted to Elsevier 26 September 2006



(Frackowiak et al., 2003). Blood Oxygen Level-Dependent (BOLD) effects
are modelled in a statistical framework such as the General Linear Model
(GLM) to obtain probability maps of the underlying neuronal activations for
a particular task (Friston et al., 1995b).

In the GLM framework, fMRI times series are modelled at each and every voxel
by a linear combination of several regressors, defined as explanatory variables
corresponding to some experimental effects. These regressors are built using
a convolution model: putative neuronal signals are convolved with a set of
hemodynamic basis functions such as the canonical Hemodynamic Response
Function (HRF) and its latency and dispersion derivatives (Friston et al.,
1998). This accounts for variability in the shape of the response from one
brain region to another. The inversion of this mass univariate model yields
voxel-wise estimates of the regression coefficients as well as their variance.
Classical statistical inference can be performed to provide activation maps
linked to a particular contrast. Random Field Theory (RFT) then provides a
correction to the obtained p-values that accounts for spatial correlation in the
data.

The spatial aspect of the hemodynamic response is usually taken into account
indirectly, i.e. not modelled explicitly, by spatially smoothing the data with a
fixed Gaussian kernel, as a preprocessing step. This corresponds to averaging –
or blurring – the measured signal over a neighbourhood, which will increase the
spatial correlation. The size of this neighbourhood is defined by the Full Width
at Half Maximum (FWHM) of the Gaussian kernel, often chosen to be around
three times the voxel width size (between 6 and 12 millimeters). The rationale
for this spatial filtering is threefold. First, it helps improve the signal to noise
ratio (SNR). This is because the signal of interest usually extends over several
voxels. This is due both to the possibly distributed nature of neuronal sources
and the spatially extended nature of the hemodynamic response. The matched-
filter theorem (Worsley et al., 1996) states that one improves the SNR if one
smoothes the data with a filter whose kernel equals the spatial point response
function (PRF) of the process that generated them. Second, Random Field
Theory has been elaborated for spatially continuous fields and appropriate
smoothing ensures that discretely sampled imaging data is a good ‘lattice
approximation’ to a continuous field. Third, activation location is known to
vary across subjects and smoothing accommodates for these between-subject
differences in functional anatomy.

Smoothing the data with a nonadpative fixed Gaussian kernel can however
suffer from drawbacks. Indeed, the spatial hemodynamic point response func-
tion is not known and has to be guessed: over- or under specification of the
FWHM will lead to a sub-optimal increase in SNR. Too much smoothing will
blur activations, leading to a biased estimate of both height and location of
activation peaks, while too little will leave unnecessary noise in the data. Fur-
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thermore, if the PRF is nonstationary, then smoothing with a nonadaptive
fixed size Gaussian kernel is clearly sub-optimal.

The other arguments advocating for smoothing the data are here irrelevant
because in this paper we will work within a Bayesian inference framework
(Friston and Penny, 2003), so we have no need to appeal to RFT. Further-
more, this paper describes a model for single subject analysis and there is
thus no need to take into account intersubject variability. If, however, one
were interested in multi-subject analysis an alternative to spatial smoothing
is provided by parcellation (Thirion et al., 2006).

In the recent literature, several approaches have been proposed to replace
Gaussian smoothing of the data by more elaborate denoising techniques from
the image processing and computer vision research fields: anisotropic filtering
(Solé et al., 2001; Kim et al., 2005), adaptive spatial filters (Friman et al.,
2003), scale space analyses (Poline and Mazoyer, 1994), Markov random fields
(Descombes et al., 1998), surface based analyses (Kiebel et al., 2000; Andrade
et al., 2001), mixture models (Everitt and Bullmore, 1999; Hartvig and Jensen,
2000; Penny and Friston, 2003; Woolrich et al., 2005) or wavelet shrinkage
(Wink and Roerdink, 2004). Many of these techniques still consider spatial
modelling of the data as a preprocessing step that is applied before statistical
analysis. We contend that a better approach is to have spatial features of the
data as part of a probabilistic model, removing the need for preprocessing with
arbitrary parameters. This is in contradistinction with preprocessing which do
not allow spatial filtering strength to be automatically adapted to the data.
This kind of approaches has already been introduced in some of the cited
references and it motivates the work in this paper.

Spatial characteristics of fMRI can be naturally described in a Bayesian frame-
work. Several approaches have been proposed in the recent literature to model
spatial dependencies in this context (Gössl et al., 2001; Woolrich et al., 2004;
Penny et al., 2005b). In particular, Penny et al. (2005b) have proposed a fully
Bayesian model with spatial priors defined over the regression coefficients of a
General Linear Model, using Laplacian operators or Gaussian Markov Random
Fields (GMRF). Spatial regularisation is then part of the estimation proce-
dure and smoothing the data with an arbitrary Gaussian kernel is no longer
required. Results show an improvement in sensitivity compared to other spa-
tially non-informed approaches (Penny et al., 2003). However, these kinds of
priors does not handle spatial variations in smoothness arising, e.g. from re-
gional differences in vasculature or functional anatomy.

In this work, we propose to finesse this previous approach by replacing the
GMRF prior with a Sparse Spatial Basis Function (SSBF) prior in which ir-
relevant bases are automatically switched off using a mixture model. One of
the key features of decomposing data with an appropriate basis is that deter-
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ministic signal will be explained by a few large coefficients while background
noise will be modelled by many very small coefficients. Setting these coeffi-
cients to zero, or at least reducing their value, performs an intrinsic shrinkage
or denoising. This can be implemented automatically using a sparse prior on
the spatial basis set coefficients.

Among all spatial basis sets, wavelet bases (Mallat, 1989, 1999) are of primary
interest because they lead to a multiresolution decomposition that shows a nat-
ural adaptivity to nonstationary features, as well as providing decorrelation
and compaction properties. The use of wavelets for fMRI has already been
proposed in the literature (Ruttimann et al., 1998; Van De Ville et al., 2004;
Aston et al., 2005, 2006), see (Bullmore et al., 2004) for an overview. They
have been used for denoising, multiresolution hypothesis testing, linear model
estimation in the wavelet domain and “wavestrapping” (data resampling in the
wavelet domain). In this paper, we are primarily interested in data denoising
that can be obtained via wavelet shrinkage, also referred to as nonparametric
regression (Donoho and Johnstone, 1994, 1995; Antoniadis et al., 2001). The
basic concept is very simple and involves three steps: first, noisy data are pro-
jected into wavelet space, then the coefficients are thresholded or shrunk, and
finally data are projected back into their original space. This yields adaptively
regularized nonparametric estimates of the signal underlying the data.

As compared to monoresolution Gaussian smoothing, spatial wavelet-based
denoising techniques for fMRI have been shown to better preserve image sharp-
ness and retain the original shapes of active regions (Wink and Roerdink,
2004). The relationship between Gaussian smoothing and wavelet shrinkage
has also been explored in (Van De Ville et al., 2003; Fadili and Bullmore, 2004).
Another alternative to monoresolution Gaussian analysis is to perform a scale
space analysis using multiple Gaussian kernels of different widths (Poline and
Mazoyer, 1994; Godtliebsen et al., 2004), but this has the drawback that dif-
ferent levels in scale space are highly correlated. This is in contradistinction
to wavelet bases that have a whitening property and allow for a parsimonious
representation.

The SSBF approach that we propose in this paper results in a very general
Bayesian inference framework for imaging data. It contains both nonlinear
wavelet shrinkage analysis and Ordinary Least Square estimation as special
cases. More generally, the proposed model is a fully non-separable spatio-
temporal model in which the GLM is used for a temporal decomposition with
parameters that are spatially constrained by a SSBF prior.
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Overview

The rest of the paper is organized as follows. In the “Theory” section we
describe our probabilistic generative model of fMRI time series with a par-
ticular emphasis on the SSBF prior. We then show how a Variational Bayes
approach is used to define approximate posteriors and how it provides a set
of updates for the sufficient statistics of these distributions. Then, after pro-
viding implementation details, we present results obtained on synthetic data
and an event-related fMRI dataset. In the “Discussion” section we outline the
main qualities of our model compared to other spatio-temporal models already
published in the literature and suggest starting points for further work. In Ap-
pendices A and B, we give definitions of the probabilistic density functions we
use and an overview of the Variational Bayes framework. Practical details of
the derivation of the approximate posterior distributions for the SSBF model
are available as an online supplementary material 2 .

2 Theory

2.1 Notation

We denote a matrix in upper case, while a vector is lower case. Subscripts are
used to select a particular row/column of a matrix, e.g., if X is a M×N matrix
then xn is the nth column of X while xT

m is the mth row. Unless stated other-
wise, subscripts k, l, m and n are respectively indexes over regressors, wavelet
levels, mixture components and voxels. Following a Matlab-like notation, we
define the diag operator which transforms a vector in a diagonal matrix and
the blkdiag operator which concatenates several matrices to create a block
diagonal one. tr denotes the trace of a square matrix. See Appendix A for
a definition of probability distributions and standard results used throughout
this article.

2.2 Hierarchical Bayesian fMRI model

Our model of fMRI time series can be described as several levels embedded in
a hierarchy, where each level acts as a prior on the level underneath. Temporal
modelling of the data is implemented using the General Linear Model (GLM).
This level is then constrained via the wavelet transform, which implements
spatial modelling of the data, in association with the sparse prior on the

2 http://www.fil.ion.ucl.ac.uk/spm/doc/papers/gf_sparse_vb_supp.pdf
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coefficients of that transformation. The overall probabilistic generative model
is shown in Fig. B.1. In the next sections we chose to describe the formulation
of the model starting from the data up to the highest priors, which means
reading the graphical representation of Fig. B.1 in a bottom-up manner.

[Fig. 1 about here.]

2.2.1 Problem formulation

The standard mass-univariate method to analyse fMRI data relies on the GLM
(Friston et al., 1995b). Data Y comprising N voxels with time courses of length
T (stored as a T ×N matrix) are explained in terms of a T ×K design matrix
X containing K regressors at each of N voxels

Y = XW + E(1) (1)

i.e. for each time course
yn = Xwn + e(1)

n (2)

where W is a K × N matrix of regression coefficients and E(1) is a T × N
error matrix. We assume that the noise follows an independent identically
distributed (i.i.d.) Gaussian distribution

p(e(1)
n ) = N

(
e(1)

n ; 0, λ−1
n IT

)
(3)

where λn denotes the noise precision for voxel n. This assumption is of course
approximate because of the presence of temporal autocorrelation in the data,
but in this paper we focus on the signal model. We could, however, easily
update the present model to deal with serial correlation using autoregressive
(AR) processes as described in (Penny et al., 2003). This is referred to in
Fig. B.1 which augments the probabilistic model accordingly.

2.2.2 Likelihood

Assuming conditional independence, we get the following factorisation over
voxels

p(Y |W, λ) =
N∏

n=1

p(yn|wn, λn) (4)

with
p(yn|wn, λn) = N(yn; Xwn, λ

−1
n IT ) (5)

This linear model is the same as in classical maximum likelihood analysis but
here Bayesian analysis relies upon the specification of prior expectations about
the parameters of the model {W, λ}. One can then compute the probability
of the activation given the data, i.e. the posterior density (Friston and Penny,
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2003), via Bayes rule. This is precluded in classicial inference, which simply
reports the probability of observing a statistic derived from the data (or more
extremal value) assuming no activation.

2.3 Priors

In this section we define priors over the parameters of the GLM. The next
subsection describes the spatial decomposition of the regression coefficients
and following subsections describe the sparse prior defined on the basis set
coefficients.

2.3.1 Regression coefficients

Each regression coefficient image wT
k (a row of matrix W ) is decomposed using

a spatial basis set. This spatial decomposition is at the heart of our model
and should be chosen to represent data with parsimony. In other words, the
transformation of the regression coefficients images should yield a very sparse
representation with many coefficients near to zero. In data compression, many
basis sets have been proposed e.g. wavelets (Discrete Wavelet Transform –
DWT), Fourier (Discrete Fourier Transform – DFT), cosine (Discrete Cosine
Transform – DCT), Karhunen-Loève (Principal Component Analysis – PCA),
Independent Component Analysis (ICA). Projecting data onto these bases is
a linear operation that can be inverted without losing information whereas
lossy representations can be formed by removing components. The DCT, for
example, has an energy compaction property such that most of the information
in natural images tends to be concentrated in a few low-frequency components.
These features allow for image compression.

In the following, we will consider wavelets as the spatial basis set of choice be-
cause of their specific features that we describe below, but the same framework
can be applied to any other transform. Wavelet bases have been described at
length in (Mallat, 1989, 1999). They consist of a multiresolution hierarchy
in which an image is represented at a number of spatial resolutions. These
are known as the “coarse” levels where lower levels correspond to succes-
sively lower frequency aspects of the original image. The difference between
successive coarse level images are the “detail” images. These correspond to
high frequency components 3 . Overall, a wavelet decomposition transforms a
d-dimensional image into a d-dimensional image of wavelet coefficients. These
coefficients constitute the coarse and detail levels making up the multiresolu-
tion hierarchy as shown in Fig. B.2.

3 In this paper only the lowest frequency coarse level is referred to as the ‘coarse
level’

7



[Fig. 2 about here.]

Importantly, the discrete wavelet transform (DWT) is orthogonal and can be
implemented efficiently through quadrature mirror filterbanks (QMF). This
uses an algorithm whose computational complexity is O(N) where N is the
number of input samples. An image can then be exactly reconstructed using
a fast inverse discrete wavelet transform (IDWT). Furthermore, the decom-
position easily extends to the multidimensional case by using tensor-product
basis functions. In the 2D case, detail coefficients can be split into diagonal,
horizontal and vertical subbands.

In this paper we represent the spatial wavelet basis set by a N ×N matrix V .
The decomposition for each regression coefficient image wT

k is

wT
k = V zT

k + e
(2)
k (6)

where zT
k is the corresponding wavelet coefficient image. If some “basis switches”

are turned off (see below), wT
k cannot be reconstructed exactly from zT

k . This

inexactness is accounted for by the error term e
(2)
k . Equation 6 can be rephrased

to deal with all the regression coefficients W at the same time

W = ZV T + E(2) (7)

where Z is a K×N matrix containing the coefficients of the wavelet transform
of the regression coefficients. E(2) denotes the residuals of this decomposition,
considered as following an i.i.d. Gaussian distribution. This is true for an
orthogonal basis set, which transforms i.i.d. Gaussian noise into i.i.d. Gaussian
noise. The orthonormality property of the wavelet transform can be written
as V T V = IN . Non orthogonal wavelet bases exist and could be used as
well in our framework. We will focus here on orthogonal ones for the sake of
simplicity, although a description of the model with a generic basis, orthogonal
or not, is available in the supplementary material 2 . It is important to point
out that orthogonal wavelet transforms suffer from missing shift invariance
(translation and rotation) and exhibit Gibbs-like artefacts, that might affect
their performance. A more accurate description of these problems and possible
solutions to handle them will be addressed in the “Discussion” section of this
article.

The prior over regression coefficients is then given by

p(W |Z, α) =
K∏

k=1

p(wT
k |zT

k , αk) (8)

with
p(wT

k |zT
k , αk) = N(wT

k ; V zT
k , α−1

k IN) (9)

where αk is the precision of the wavelet residuals for regressor k.
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2.3.2 Wavelet coefficients

The prior defined over wavelet coefficients relies on two assumptions regarding
the wavelet transform that are observed on a very broad variety of images:

• Wavelet coefficients are independent even if the original image contains spa-
tial dependencies. This is the decorrelation feature of the wavelet transform.

• Most wavelet coefficients are very small and model noise. A few large coeffi-
cients suffice to model signal. This is the compaction feature of the wavelet
transform.

The independence of the wavelet coefficients yields a factorisation of the prior
over voxels. The wavelet transform gives a multiresolution hierarchical de-
scription of the data: at each level (or scale) l, an image is decomposed in two
components: detail coefficients and coarse (or ‘approximation’ or ‘smooth’)
coefficients. See Fig. B.2 for a 2-dimensional example. Here we propose to
leave the coarse level unchanged by not specifying a prior over its coefficients.
But a prior will be defined for each detail level and each subband (horizontal,
vertical, diagonal) in a level. We denote L as the overall number of groups
of coefficients (three times the number of “wavelet detail levels”) and will
loosely call it the number of levels. For each level l, we denote Nl as the num-
ber of detail coefficients, while Nc is the number of coarse coefficients. We
have

∑L
l=1 Nl = Nd and Nd +Nc = N . The splitting of the wavelet coefficients

between coarse and detail levels then gives for each regressor k

zk = [zk11, · · · , zk1N1︸ ︷︷ ︸
detail level l=1

| · · · | zkL1, · · · , zkLNL︸ ︷︷ ︸
detail level l=L

| zc
k1, · · · , zc

kNc︸ ︷︷ ︸
coarse level

] = [ zd
k︸︷︷︸

details

| zc
k︸︷︷︸

coarse

].

(10)

The wavelet basis set matrix V is also divided into Vd and Vc such that

wT
k = [Vd Vc]

 zdT
k

zcT
k

 (11)

The compaction feature of the wavelet transform will be used to specify the
prior for each level of the spatial hierarchy. This feature can be embedded
into the model through a sparse prior so that small wavelet coefficients will
be explained as noise rather than signal. Probabilistic inversion of the model
will then achieve signal estimation and denoising simultaneously. The sparsity
property of the wavelet transform has been extensively applied for denoising
with wavelet shrinkage (Donoho and Johnstone, 1994, 1995; Clyde et al., 1998;
Antoniadis et al., 2001). In the Bayesian approach, following (Chipman et al.,
1997), we propose to use a mixture model with M zero-mean Gaussian compo-
nents (M = 2 here): the first Gaussian with a large variance (small precision)
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describes “signal” while the second Gaussian with a variance close to zero
(high precision) describes “noise”. An example of such a prior is displayed in
Fig. B.3.a.

[Fig. 3 about here.]

The Gaussian mixture model prior is then defined on the wavelet coefficients
separately for each level

p(Z|S, π) =
K∏

k=1

L∏
l=1

Nl∏
n=1

p(zkln|skl, πkl) (12)

with

p(zkln|skl, πkl) =
M∑

m=1

πklm p(zkln|sklm, πklm)

=
M∑

m=1

πklm N(zkln; 0, s−1
klm) (13)

where π are the mixing proportions and S are the wavelet coefficient precisions.
For each regression coefficient k, and detail level l, we have a different mixture
model with different mixing proportions πklm and precisions sklm for m = 1, 2.

We introduce the latent binary variable D, indicating which component of the
mixture produced each sample. We will refer to D as the wavelet switches (see
below). If dklnm = 1 and dklnp = 0 for p 6= m, then sample zkln was produced
by the mth component. The conditional distribution of Z given D is then

p(Z|D, S) =
K∏

k=1

L∏
l=1

Nl∏
n=1

M∏
m=1

N(zkln; 0, s−1
klm)dklnm (14)

and the joint probability of Z and D is

p(Z,D|S, π) = p(D|π)p(z|D, S) =
K∏

k=1

L∏
l=1

Nl∏
n=1

M∏
m=1

(
πklm N(zkln; 0, s−1

klm)
)dklnm

(15)

This formulation as a joint distribution is useful for deriving the approximate
posteriors in the Variational Bayes framework.

2.3.3 Wavelet switches

The hidden random variable D, introduced in the previous section, can be seen
as a switch whereby each basis component is “switched” on or off according
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to the binary value of the corresponding coefficient in D. The prior on the
wavelet switches is given by

p(D|π) =
K∏

k=1

L∏
l=1

Nl∏
n=1

p(dkln|πkl) (16)

with

p(dkln|πkl) = Mult(dkln; πkl) =
M∏

m=1

πdklnm
klm (17)

where Mult is a Multinomial distribution (see Appendix A).

2.3.4 Mixing proportions

The mixing proportions of the Gaussian mixture models are defined as

p(π) =
K∏

k=1

L∏
l=1

p(πkl) (18)

with

p(πkl) = Dir(πkl; f0) =
1

c(f0)

M∏
m=1

πf0m−1
klm (19)

where Dir is a symmetric Dirichlet distribution, the conjugate prior of a multi-
nomial distribution, with parameters f0 as defined in Appendix A. It would
also be possible to use a non-symmetric Dirichlet, which could embody prior
knowledge that e.g. wavelet bases are more likely to be required at lower rather
than higher spatial frequencies.

2.3.5 Precisions

Finally, we use Gamma priors on the noise precisions λ, wavelet residuals α
and wavelet coefficients S, which are the standard conjugate priors for inverse
variances.

p(λ) =
N∏

n=1

p(λn) =
N∏

n=1

Ga(λn; bλ0 , cλ0),

p(α) =
K∏

k=1

p(αk) =
K∏

k=1

Ga(αk; bα0 , cα0), (20)

p(S) =
K∏

k=1

L∏
l=1

M∏
m=1

p(sklm) =
K∏

k=1

L∏
l=1

M∏
m=1

Ga(sklm; bs0 , cs0).

11



The quantities bλ0 , cλ0 , bα0 , cα0 , bs0 and cs0 are referred to as hyperparameters.
These are set so as to specify vague priors (see below, in the implementation
details section).

2.3.6 The generative model

The probabilistic dependencies underlying the generative model are displayed
in Fig. B.1. From this graph, the joint probability can be written as

p(Y, W, λ, Z, α, D, S, π︸ ︷︷ ︸
Θ

) =p(Y |W, λ)p(λ)p(W |Z, α)p(α)p(Z|D, S)p(S)p(D|π)p(π)

=

(
N∏

n=1

p(yn|wn, λn)p(λn)

)(
K∏

k=1

p(wT
k |zT

k , αk)p(αk)

)
×(

K∏
k=1

L∏
l=1

p(πkl)

)(
K∏

k=1

L∏
l=1

M∏
m=1

p(sklm)

)
× K∏

k=1

L∏
l=1

Nl∏
n=1

p(zkln|dkln, skl)p(dkln|πkl)

 (21)

where the first term is the likelihood and the other terms are priors.

2.4 Posteriors

Given a data set Y , our aim is to estimate the distribution of the unknown
parameters Θ = {W, λ, Z, α, D, S, π} using Bayesian estimation theory. This
posterior distribution is related to the likelihood of the observations and the
parameter priors via Bayes rule p(Θ|Y ) ∝ p(Y |Θ)p(Θ).

However, computing the exact posterior p(Θ|Y ) is an extremely difficult task
because, as it can be seen in equation 21, the true posterior over regression
coefficients has dependencies between voxels and regressors, resulting in very
high dimensions for its definition. This would require a prohibitive amount of
computer time using standard Markov Chain Monte Carlo (MCMC) methods
(Woolrich et al., 2004).

A recent efficient method to bypass this problem is the Variational Bayes (VB)
framework (see appendix B) (Lappalainen and Miskin, 2000; Beal, 2003), al-
ready used in previous publications (Penny et al., 2003, 2005b), which pro-
vides an approximate factorised posterior distribution q(Θ|Y ), with minimal
Kullback-Leibler (KL) divergence from the true posterior (see below).

In the following section, we give a short overview of Variational Bayes, a more
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detailed version being available in Appendix B. Then in subsequent sections
we summarise, for each parameter, the results obtained when applying VB to
the SSBF model. Details of the derivations can be found in the online supple-
mentary material 2 . The equations that appear in this paper are appropriate
for an orthonormal spatial basis, whereas the more general case is presented
in the supplementary document.

2.4.1 Approximate posteriors

In the VB framework, the posterior distribution over parameters is assumed
to factorise

q(Θ|Y ) =
∏
i

q(θi|Y ) = q(θi|Y )q(θ|i|Y ) (22)

where θ|i denotes those parameters not in the ith group. In practice, VB will
find the factorised posterior distribution q(Θ|Y ) that best matches the true
posterior p(Θ|Y ), in the sense of the Kullback-Leibler divergence between
these two distributions. As described in Appendix B, update rules for compo-
nents of the approximate posterior can be found using the formulae

q(θi) =
exp [I(θi)]∫

exp [I(θi)] dθi

with I(θi) =
∫

q(θ|i) log [p(Y, θ)] dθ|i (23)

Application of VB leads to a set of approximate posteriors and equations for
updating their sufficient statistics. This formulation of VB is also referred
to as ‘free-form’ VB, as the optimal form of each component (e.g. Gamma,
Gaussian, Dirichlet) is also derived. This is to be contrasted with ‘fixed-form’
VB in which posteriors are assumed to be e.g. Gaussian. This distinction is
described further in (Friston et al., 2006).

In our case, we consider the following factorisation for the approximate poste-
rior distribution (we omit the ‘conditional on Y’ notation for ease of reading)

q(Θ|Y ) =

(
K∏

k=1

q(zT
k )q(αk)

)(
N∏

n=1

q(wn)q(λn)

)(
K∏

k=1

L∏
l=1

q(πkl)

)
×

(
K∏
k

L∏
l=1

M∏
m

q(sklm))

) K∏
k

L∏
l=1

Nl∏
n=1

q(dkln)

 (24)

Importantly, we enforce a factorisation of regression coefficients in the pos-
terior distribution q(W |Y ) that will dramatically lower the dimensionality of
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the problem (see next section). Because of the spatial priors, the true poste-
rior will be correlated. But as we will see later on, update equations for the
approximate factorised densities show that the effect of spatial correlation is
to bias estimation of the posterior means through a top-down prediction from
the wavelet stage.

2.4.2 Regression coefficients

As previously mentioned, the approximate posterior over regression coefficients
is assumed to factorise over voxels

q(W |Y ) =
N∏

n=1

q(wn|Y ) (25)

It can then be shown that the posterior over regression coefficients at voxel n
follows a Gaussian distribution whose parameters are given by

q(wn|Y ) = N(wn; w̄n, Σwn) (26)

where  w̄n = Σwn

(
λ̄nX

T yn + r̄T
n

)
Σwn =

(
λ̄nX

T X + diag(ᾱ)
)−1 (27)

and r̄T
n is nth row of the N×K matrix R̄ whose columns contain the top-down

predictions from the spatial prior

R̄ =


...

...
...

ᾱ1V z̄T
1 · · · ᾱKV z̄T

K

...
...

...

 =


· · · r̄1 · · ·

...

· · · r̄N · · ·

 (28)

These equations show that the updated mean of the regression coefficients at
each voxel comes from a weighted average of the data itself XT yn and a term
from the wavelet prior r̄n

T , the weights given by their relative precisions. This
is a standard feature of Bayesian estimation where the posterior distribution
is formed thanks to the likelihood on one hand and the prior on the other.

If the wavelet residual precision α is set to zero, then R̄ is the null matrix
and the posterior mean becomes w̄n = (XT X)−1XT yn, which is the Ordinary
Least Square (OLS) estimate for a GLM. Indeed, setting α to zero means that
there is no error in the wavelet stage of the hierarchical model, which means
that no shrinkage is performed on the wavelet coefficients.
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2.4.3 Wavelet coefficients

The approximate posterior over wavelet coefficients Z is assumed to factorise
over regressors. With the supplementary assumption that we use an orthonor-
mal basis, we have V T V = IN and this leads to a further factorisation of the
posterior over wavelet levels and wavelet coefficients in each level

q(Z) =
K∏

k=1

q(zdT
k ) =

K∏
k=1

L∏
l=1

Nl∏
n=1

q(zkln) (29)

q(zkln) = N(zkln; z̄kln, σ
2
zkln

) (30)

where 
σ2

zkln
=
(
ᾱk +

∑M
m=1 s̄klmγklnm

)−1

z̄kln =
ᾱkV T

lnw̄T
k

ᾱk+
∑M

m=1
s̄klmγklnm

(31)

and Vln is the wavelet basis for the nth element of the lth detail level.

Equation 31 plays a central role as it embodies the wavelet shrinkage proce-
dure through the sparse prior. Indeed, we can see that the estimate of the
posterior mean of a particular wavelet coefficient z̄kln is proportional to the
corresponding bottom-up estimate V T

ln w̄T
k (wavelet transform of the regression

coefficient w̄T
k ). The multiplicative term,

(
1 + 1

ᾱk

∑M
m=1 s̄klmγklnm

)−1
, deter-

mines the amount of shrinkage. If the corresponding wavelet coefficient z̄kln

is large, it probably belongs to the Gaussian component m1 modelling signal
so that γklnm1 ' 1. Because this component has low precision (s̄klm1 is small),
the multiplicative term is close to 1 and the wavelet coefficient is preserved.
In the alternative case, γklnm2 ' 1 which means that the wavelet coefficient is
modelling noise (s̄klm2 is very large) and the multiplicative term is thus very
small, shrinking the estimate of the posterior mean towards zero. Fig. B.3.b
shows the profile of the posterior mean of the wavelet coefficients as a func-
tion of their bottom-up estimates from the regression coefficients (i.e. without
mixture prior). This highlights the nonlinear shrinkage produced by the sparse
prior.

2.4.4 Wavelet switches

The approximate posterior over wavelet switches D factorises over regressors,
wavelet levels and voxels

q(D) =
K∏

k=1

L∏
l=1

Nl∏
n=1

q(dkln) (32)
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The VB framework gives the following updates

q(dkln) = Mult(dkln; γkln) (33)

where

γklnm =
γ̃klnm∑
m′ γ̃klnm′

and γ̃klnm = π̃klms̃
1/2
klm exp

(
− s̄klm

2
(z̄2

kln + σ2
zkln

)
)

(34)

with

log π̃klm =
∫

q(πklm) log πklmdπklm and log s̃klm =
∫

q(sklm) log sklmdsklm

(35)

Closed form equations for computing log π̃klm and log s̃klm are given in the
following sections. The term γklnm is the posterior probability that component
m is responsible for data point zkln. The equations we obtain here are similar
to those presented in (Attias, 2000; Penny, 2001) for a Gaussian mixture model
with zero mean components.

2.4.5 Mixing proportions

The approximate posterior over mixing proportions is given by

q(π) =
K∏

k=1

L∏
l=1

q(πkl) (36)

q(πkl) = Dir(πkl; fkl) (37)

where

fklm = N̄klm + f0m with ‘data counts’ N̄klm =
Nl∑

n=1

γklnm (38)

We also use the following result

log π̃klm =
∫

q(πklm) log πklmdπklm = Ψ(fklm)−Ψ

(
M∑

m′=1

fklm′

)
(39)

2.4.6 Noise precisions

The approximate posterior over noise precisions is given by
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q(λ) =
N∏

n=1

q(λn) (40)

q(λn) = Ga(λn; bλn , cλn) (41)

where 
1

bλn
= 1

2

[
(yn −Xw̄n)T (yn −Xw̄n) + tr(ΣwnXT X)

]
+ 1

bλ0

cλn = T
2

+ cλ0

(42)

The expectation of λn is then given by λ̄n = bλncλn .

2.4.7 Wavelet residual precisions

The approximate posterior over wavelet residual precisions is given by

q(α) =
K∏

k=1

q(αk) (43)

q(αk) = Ga(αk; bαk
, cαk

) (44)

where
1

bαk
= 1

2

[
tr(Σwk

) +
∑L

l=1

∑Nl
n=1 σz2

kln
+ (w̄T

k − V z̄T
k )T (w̄T

k − V z̄T
k )
]
+ 1

bα0

cαk
= N

2
+ cα0

(45)

The term tr(Σwk
) can be obtained from {Σwn}N

n=1 using

tr(Σwk
) =

N∑
n=1

Σwn [k, k] (46)

where Σwn [k, k] is the kth diagonal term of the covariance matrix Σwn . The
expectation of αk is given by ᾱk = bαk

cαk
.

2.4.8 Wavelet coefficient precisions

The approximate posterior over wavelet coefficient precisions is given by

q(S) =
K∏

k=1

L∏
l=1

M∏
m=1

q(sklm) (47)
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q(sklm) = Ga(sklm; bsklm
, csklm

) (48)

where 
1

bsklm
= 1

2

[∑Nl
n=1 γklnm(σ2

zkln
+ z̄2

kln)
]
+ 1

bs0

csklm
= N̄klm

2
+ cs0 with N̄klm =

∑Nl
n=1 γklnm

(49)

The expectation of sklm is given by s̄klm = bsklm
csklm

. We also use the following
result

log s̃klm =
∫

q(sklm) log sklmdsklm = Ψ(csklm
) + log bsklm

(50)

2.4.9 Implementation details

This section describes the choice of hyper-parameters, algorithm implementa-
tion and initialisation.

Hyper-parameters. We set vague priors (b = 1000 and c = 0.1) for preci-
sion distributions λ and α: this corresponds to Gamma densities with mean
100 and variance 100,000. For the wavelet coefficient precisions S, we set the
same vague prior for the ‘signal’ component but a much peakier one for the
‘noise’ component (b = 10 and c = 0.1). These settings implement the sparsity
constraints. For all the Dirichlet distributions, we use a scale factor f0 = 1.

The number of wavelet levels to be governed by the sparse prior is set using
the following formula

L = log2

(
log

(√
N
))

+ 1 (51)

which has been prescribed asymptotically for wavelet shrinkage in (Antoniadis
et al., 2001). This choice was found to provide a good trade-off between speci-
ficity and sensitivity (Fadili and Bullmore, 2004). The number of detail levels
can, in principle, also be tested via Bayesian model comparison.

Initialisation. The algorithm is initialised using Ordinary Least Square
(OLS) estimates for regression parameters, on a voxel by voxel basis. The
posterior means of the mixing proportions corresponding to the signal com-
ponent are set to exp(l)/

∑
exp(l) for each wavelet level l, to model the fact

that we expect to remove most of the coefficients for the most detailed levels
and less for coarser ones. Wavelet switches are initialised such that all detail
coefficients are switched off to start with.

[Fig. 4 about here.]
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VB algorithm. The Variational Bayes algorithm is then an iterative pro-
cedure, which updates the summary statistics of each posterior distribution,
using equations 26, 30, 33, 36, 41, 44 and 47. Fig. B.4 provides an overview
of all the update equations for all the parameters of the model. In the it-
erative scheme, we first update Z, then W , π, α, λ, D and finally S. One
important remark about the implementation is that we never have to explic-
itly construct the N × N matrix V containing the wavelet basis set. Indeed,
when using an orthonormal basis set, matrix V only appears when applying
the wavelet transform or its inverse to regression coefficients or wavelet coef-
ficients: V z̄T

k for q(W ) and q(α), V T
d w̄T

k for q(Z). It is then possible to apply
the very efficient Discrete Wavelet Transform (DWT), or its inverse IDWT,
on the corresponding images whenever such computations are required. This
yields a relatively fast algorithm because operations related to spatial priors
that are traditionally very time consuming are here replaced by a dedicated
algorithm with a complexity in O(N) (Mallat, 1999).

In our Matlab (The MathWorks, Inc.) implementation, we used the free soft-
ware wavelet toolbox WaveLab (WaveLab, 1999). More precisely, we used the
Battle-Lemarié wavelet family, which is a symmetric orthogonal spline basis
set that displays good smoothness properties (Ruttimann et al., 1998). In-
deed, Battle-Lemarié wavelets are cubic spline wavelets that correspond to a
good trade-off between number of zero moments and compact support. These
wavelets are symmetric so that they do not introduce phase differences between
decomposition levels, orthogonal so that they transform white noise into white
noise and are well localised in both the spatial and frequency domains.

All computations are performed slice by slice, using two dimensional trans-
forms, to reduce the amount of memory required. However, there is no the-
oretical limitation that prevents the model being estimated using data from
all slices at the same time, in a 3D fashion, as the DWT can be extended to
multiple dimensions using tensor product basis functions. It should be pointed
out, though, that by using a separable wavelet transform, one makes the as-
sumption that fMRI data have an isotropic spatial resolution. Raw data have
often non cubic voxel sizes, the slice thickness being bigger than the in-plane
one. But, after preprocessing – normalisation in particular – fMRI data are
traditionally reinterpolated to an isotropic resolution so this is not really a
problem. Wavelet bases well suited to non-isotropic sampling are described in
(Van De Ville et al., 2003). Another issue comes from the way volumes are
acquired: in a standard Echo Planar Imaging (EPI) sequence, each 3D volume
is acquired slice by slice yielding time delays between slices. A slice timing
correction can be used to reinterpolate data so as they look as if they were
acquired at the same time for all the slices of each volume. Applying such a
correction is essential if a 3D prior is applied to the data using a same design
matrix and its robustness would need to be evaluated but this is out of the
topic of this paper.
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Convergence. The overall criterion of the Variational Bayes algorithm is
the log evidence of the data, for which a lower bound is given by the so called
negative free energy (see Appendix B). Model fitting is then terminated when
the relative change in free energy (equations not provided) drops below 0.01%.
However, the computation of the free energy at each iteration of the algorithm
is time consuming and we explicitly set up a fixed number of iterations, 8, as
we noticed that only a few iterations were required to attain convergence.

3 Results

In this section, we present results obtained from synthetic data and an event-
related fMRI dataset.

3.1 Synthetic data

In a first experiment, we illustrate our method on a synthetic Gaussian blobs
dataset where we generated noisy data from a known GLM. The design matrix
describing the temporal part of the simulation is shown in Fig. B.5 on the left.
It comprises two regressors, the first being a boxcar with a period of 20 scans
and the second a constant. The length of the time series was chosen to be T
= 40. Two identical 32 × 32 images of regression coefficients (N = 1024) were
formed by placing Dirac functions at three locations and then smoothing with
Gaussian kernels having FWHMs of 2, 3 and 4 pixels (going clockwise from
the top-left blob), see Fig. B.5 on the right. White Gaussian noise of precision
λ = 10 was added to generate the T × N data matrix, using the previously
defined design matrix and regression coefficient images.

[Fig. 5 about here.]

Note that by creating blobs with different Gaussian kernel widths, we put
ourselves in the presence of spatial variations in smoothness of the data. Thus,
there is no optimal smoothing filter, according to the matched-filter theorem
(Worsley et al., 1996), that will improve the signal to noise ratio for all three
blobs. If the data were to be smoothed, a Gaussian kernel of FWHM = 3 pixels
would provide optimal signal recovery for the third blob, but the estimates
of the regression coefficients for the first two would be underestimated. A
wavelet shrinkage procedure, however, embedded in a spatial prior allows us
to parsimoniously model this non uniformity in the spatial correlation.

We have fitted the SSBF model to this simulated dataset and the results are
presented in Fig. B.6. If we compare the Ordinary Least Square estimate of the
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first regressor and the one obtained via our model, we can observe the intrinsic
spatial smoothing performed by the shrinkage procedure. Importantly, signal
intensities are largely preserved. The posterior estimate of the mean of the
wavelet coefficients after convergence (not shown), shows that most of the
coefficients are indeed zero and only a very small subset of them has been
kept nearly unchanged (see also next example).

[Fig. 6 about here.]

We also used synthetic data to compute Receiver Operating Characteristic
(ROC) curves. These are plots of sensitivity versus one minus specificity un-
der the variation of a parameter. This curve allows us to see if a more sensi-
tive method conserves specificity: the more on the top left of the figure, the
better. To do so, we generated another dataset with the same known GLM
as before (same dimensions, same design matrix) but with different images
of regression coefficients, see Fig. B.7.a. These are obviously non Gaussian
activation shapes. Estimated effects corresponding to the first regressor are
displayed in Figs. B.7.b, B.7.c and B.7.d with, respectively, Ordinary Least
Squares (OLS), Gaussian Markov Random Field (GMRF) prior and SSBF
prior. The sum of square errors (difference between estimated and true effect)
are respectively 101.1 (OLS), 30.08 (GMRF) and 26.65 (SSBF). We can see
that GMRF and SSBF priors remove most of the background noise observed
with OLS. Furthermore, SSBF yields better estimates as signal intensities are
closer to their true simulated values. Fig. B.7.e shows the estimated wavelet
coefficients z1 corresponding to the first regressor, after convergence of the
Variational Bayes algorithm. We can see that only a few coefficients are non
zero (about 8% here), thanks to the sparse prior. The inverse wavelet trans-
form of Fig. B.7.e is displayed in Fig. B.7.f: this is the top-down estimate of the
effect. Equation 27 shows that the estimated regression coefficient (Fig. B.7.d)
is indeed obtained from a bottom-up estimate from the data (Fig. B.7.b) and
a top-down estimate from the SSBF prior (Fig. B.7.f). We display in Fig. B.8
the ROC curve obtained when declaring a voxel to be active if the effect size
was larger than some arbitrary threshold. We varied this threshold between
0.1 and 0.9 to produce each point in the curve. Here, we compared estimates
from (i) SSBF prior, (ii) GMRF prior and (iii) OLS. We observe that OLS is
the least sensitive method, while GMRF and SSBF give good results, with an
advantage for SSBF, due to the highly non-Gaussian pattern of activations.
We can conclude that SSBF is the superior method.

[Fig. 7 about here.]

[Fig. 8 about here.]

We performed another simulation to study the performance of the model in
the presence of heteroscedastic noise. Indeed, in real fMRI data, one often
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observe regions of high noise variance which can produce false positives in
these regions. To illustrate this phenomenon, Fig. B.9 displays a typical slice
of variance of the residuals estimated from an fMRI dataset using a GLM.
This points out that noise is highly non uniform, with important fluctuations
between brain tissues and from region to region. To quantify the robustness of
our model towards spatially varying noise, i.e. heteroscedasticity, we created
a synthetic dataset containing only noise time series, but where its standard
deviation was 1 in the background and 10 in a square in the middle of the
image (32 × 32) (see Figs. B.10.c and B.10.f). We fitted our SSBF prior
model and the GMRF prior model described in (Penny et al., 2005b) on these
data using a random design matrix: it consisted of two regressors, the first
one being an event-related one where events where chosen randomly across
time and the second a constant. Such a GLM should reveal no activation,
and we are thus testing for false positive rates. Fig. B.10 displays estimates
of the parameters of the two models. Figs. B.10.a and B.10.d show the effect
size estimates and B.10.c and B.10.f the noise standard deviation estimates.
We can see that while the estimates of the standard deviation of the noise
are similar and precise (we find back what has been simulated), we observe
some important difference in the estimates of the effect sizes. If we compute a
Posterior Probability Map (PPM) using the thresholds as detailed in (Penny
and Flandin, 2005), i.e. q(wn > 0) > 1− 1/N , we obtain the PPMs presented
in Figs. B.10.b and B.10.e. All surviving voxels are false positives and we can
see that there are clearly more false positive with the GMRF prior than with
the SSBF prior described in this paper. We replicated this experiment many
times and the same conclusion was met each time: SSBF yields zero or very
few false positives while the GMRF prior leads to a significantly non-zero false
positive rate in regions of high noise variance. This is displayed in Fig. B.11
where we generated 1000 simulated datasets and computed the number of
false positives with GMRF and SSBF. The histogram in Fig. B.11.b confirms
the overall better performance, in terms of false positive rate, of SSBF. We
conclude that a nonstationary spatial prior is useful for dealing with noise
heteroscedasticity.

[Fig. 9 about here.]

[Fig. 10 about here.]

[Fig. 11 about here.]

Finally, we compared the computer time required to estimate parameters of
the model using two different priors: SSBF or GMRF. To do so, we fixed the
number of iterations to 4 in both cases and simulated data with different image
sizes. Parameters were T = 40, K = 2, and N = [162 322 642 1282]. Results
are presented in Fig. B.12 on a logarithmic scale. We can see that the GMRF
prior leads to a dramatic increase of computer time with an increase of the
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dimension of the data. On the contrary, the time increase for the SSBF prior
is nearly linear with data size. Speed is thus a great benefit of the method
presented in this paper.

[Fig. 12 about here.]

3.2 Event-related fMRI data

This dataset 4 corresponds to functional and anatomical images from a sub-
ject that participated in an experiment studying a repetition priming effect
for famous and non famous faces (Henson et al., 2002). This was a 2 x 2 fac-
torial event-related fMRI experiment where famous and non famous grayscale
photographs, randomly interleaved, were presented twice (first and second
presentation) against a baseline of an oval checkerboard which was present
throughout the interstimulus interval. Images were acquired using a continuous
Echo-Planar Imaging (EPI) sequence on a 2T VISION system (Siemens, Er-
langen, Germany) with TE = 40ms and TR = 2s, producing 351 T∗

2-weighted
full-brain covered scans. Each volume is composed of 24 transverse slices of
dimension 64×64 with a voxel size of 3×3×3mm3 and a 1.5mm gap between
slices. During the same experiment, a T1-weighted volume was also acquired
to get anatomical information from the subject.

We performed the standard preprocessing steps to analyse this dataset using
SPM5 (SPM, 2005), following the tutorial attached to the data. First, all func-
tional images were spatially realigned to the first image using a six-parameter
rigid-body transformation (Friston et al., 1995a). To correct for the fact that
different slices were acquired at different times, time series were interpolated
to the acquisition of the reference slice (slice 12, in the middle of the volume)
(Henson et al., 2002). The mean functional image and the structural were
then coregistered using a mutual information criterion (Friston et al., 1995a).
A non linear transformation was then estimated to register the anatomical
image with a standard T1-weighted template image in MNI space. This was
implemented in the unified segmentation procedure that iteratively corrects
for intensity inhomogeneities in the image, segments gray matter, white mat-
ter and cerebrospinal fluid using default tissue probability maps as prior and
performs a nonlinear warping method (Ashburner and Friston, 2005). The es-
timated deformation field was then applied to the 351 realigned, slice-timing
corrected functional scans. Importantly, and contrary to the standard pipeline
of preprocessing, we did not perform any spatial smoothing of the data, this
step being replaced by a spatial prior.

4 This dataset, a full description of the experiment and a tutorial to analyse it with
SPM5 are available from http://www.fil.ion.ucl.ac.uk/spm/data/face_rep_
SPM5.html
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A scaling factor was then applied to each volume, computed as being 100 over
the global mean value over all time series, excluding non-brain voxels. By do-
ing so, the regression coefficient values become meaningful and correspond to
“percentage of global mean signal”. Also, each time series was high-pass fil-
tered using a set of discrete cosine basis functions with a cutoff of 120 seconds,
to remove slow drifts.

The paradigm was then modelled via a GLM with the design matrix shown
in Fig. B.13. There are five regressors relating to the 4 types of event – first
or second presentation of images of famous and non-famous faces, the last
regressor being an offset. Each regressor has been built from the corresponding
onsets and convolved with a canonical hemodynamic response function.

[Fig. 13 about here.]

Figs. B.14.a and B.14.b depict the histograms of the first regression coeffi-
cients (estimated by OLS) and of its wavelet transform. This highlights the
compaction feature of the wavelet transform. Indeed, histogram B.14.b is much
narrower towards zero than B.14.a, and its distribution can be efficiently mod-
elled by a zero mean Gaussian mixture model, as displayed in Fig. B.14.b.

[Fig. 14 about here.]

We then fitted the SSBF model and the following results correspond to a
single slice at z = −18 mm in MNI space coordinates. We used the orthogonal
cubic Battle-Lemarié wavelet transform with 3 detail levels (L=3). Fig. B.15
shows the contrast image for the main effect of faces, obtained by applying the
contrast weight vector cT = 1

4
[11110], using different estimators: (i) with OLS

on raw data, (ii) with SSBF on raw data and (iii) with OLS on data smoothed
by a Gaussian kernel of FWHM=8mm. This corresponds to the standard intra-
subject amount of smoothing that is applied as a preprocessing step. The same
contrast images have been thresholded at 5% of the global mean and displayed
in Fig. B.16.

[Fig. 15 about here.]

[Fig. 16 about here.]

If we compare the raw-OLS and SSBF estimates, we can see that we ob-
tain much smoother estimates with SSBF, while maintaining a distinction
between activation and noise. The OLS estimate on smoothed data incor-
porates a uniform and isotropic smoothing which introduces blurring of the
activations between gray and white matter and an under-estimation of their
amplitude. On the contrary, SSBF allows, via the sparse wavelet shrinkage
prior on the regression coefficients, a non-uniform and anisotropic smoothing
of the data so that signal intensities can be preserved. Also, the computational
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burden is maintained to a manageable amount thanks to the use of the dis-
crete wavelet transform. For example, the 8 iterations used for fitting the SSBF
model (T=351, K=5, L=3, N=1282) on this dataset took about 100 seconds
on a standard desktop computer. This is an important improvement compared
to the Laplacian/GMRF prior implemented in (Penny et al., 2005b), where
the update step for lower resolution images (N=642) and fewer iterations (4
instead of 8), took 132 seconds. For this data, SSBF is approximately 8 times
faster.

4 Discussion

In this paper, we presented a statistical framework where spatial correlation in
the data is captured as part of the model and is not left to a non probabilistic
pre- or postprocessing step. The main idea is to decompose the data on an
appropriate spatial basis set where signal and noise can be easily separated.
Wavelet bases are well suited for that purpose as they allow modelling of
transient, non-stationary or spatial varying phenomenon. The sparsity of the
transformed data is a key feature of the model. We used a sparse prior defined
by a mixture of two Gaussian components. This sparse spatial basis set prior
is embedded in a spatio-temporal model where temporal decomposition of
the data is performed through the usual General Linear Model. The model is
inverted via a variational Bayes scheme that yields an efficient algorithm for
computing the posterior distributions.

The benefits of our approach are that (i) we can capture non-uniform spa-
tial regularities in the effects of interest, thus providing Posterior Probabili-
ties Maps with an increased sensitivity, (ii) fast algorithms are available for
the spatial transform involved in the VB framework (e.g. Discrete Wavelet
Transform), which allows for a very computationally efficient alternative to
Laplacian or GMRF priors and (iii) we are robust to heteroscedastic noise.
Furthermore, as only a few wavelet coefficients are required, it becomes pos-
sible to reduce the size of the data that have to be dealt with through the
iterations of the VB algorithm.

The VB framework not only allows one to build an efficient algorithm to
estimate the posterior densities of the model, but also allows for Bayesian
model comparison. Indeed, the objective function is the negative free energy
F (M), which is a lower bound on the log evidence log p(Y |M), for model M .
Comparing negative free energies obtained when inferring different models
on the same dataset can then be used for model selection. This has been
done in (Penny et al., 2005a) to compare noise models, hemodynamic basis
sets and to perform Bayesian ANOVAs. Here, it would be very interesting to
compare the relative performance of different basis sets, wavelets versus DCT
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for example, but also to compare different wavelet bases, different number of
wavelet levels in the decomposition, the separability or not of the wavelet detail
coefficients in horizontal, vertical, diagonal subbands, etc. The computation of
the negative free energy and its application to model selection will be presented
in a subsequent paper.

The ability of the wavelet transform to concentrate signal information in a few
large coefficients is behind the success of wavelet based denoising algorithms.
However, wavelet denoising with an orthogonal transform suffers two main
drawbacks: (i) it is not shift invariant and (ii) it exhibits Gibbs phenomenon
around discontinuities. These artefactual oscillations around edges are due
to the shift-variance of the orthogonal wavelet transform and to the fact that
wavelet coefficients are thresholded independently, so the dependency between
wavelet coefficients is not exploited.

Shift variance of the orthogonal DWT means that wavelet coefficients of a
shifted or translated signal are not the same as the shifted coefficients of the
original signal. An example of the dramatic effect of that can be found in (Van
De Ville et al., 2006). Also, multi-dimensional wavelet transforms implemented
using a separable orthogonal basis are also non optimal as they have some
directional selectivity: for instance, 2D transforms have a directionality to
horizontal, diagonal and vertical features. Singularities, such as edges, might
not be modelled efficiently using an orthogonal transform. A solution is to
use redundant wavelet transforms (also called undecimated spatial wavelet
transform, shift invariant wavelet transform, complex wavelet transform, etc).
This requires a modification of the DWT algorithm to remove the subsampling
step and keep all the wavelet coefficients at each level of the transformation.
This yields a shift-invariant transform at the expense of an increase in the
number of coefficients (and loss of the orthogonality property).

Our framework is generic enough to allow such overcomplete spatial trans-
forms, even if, as detailed in the supplementary material 2 , the VB update
equations are more computationally expensive. This will be investigated in
future work. Van De Ville et al. (2006) compared redundant DWT and multi-
ple non-redundant DWTs where the same model is applied to data shifted by
a small amount and conclude that the combination of multiple non-redundant
DWTs allows shift invariant analysis while keeping the demand for storage
and computation to a manageable level.

Also, even if the DWT tends to decorrelate the data, wavelet coefficients are
not independent and one observes some correlation between coefficients of
different levels. Indeed large “detail” parent coefficients tend to have large
“children” in the same location at coarser levels. This is not taken into ac-
count in our hierarchical model, where wavelet coefficients are assumed to
be independent and factorise over voxels. A solution would be to model the
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statistical dependencies between wavelet coefficients in the definition of the
prior. This has been proposed in (Sendur et al., 2005) for fMRI data by using
a Bayesian bivariate shrinkage operator, that introduces parent-child relation-
ships between wavelet coefficients to model inter-scale dependencies. A similar
empirical Bayes approach is taken in (Turkheimer et al., 2006) in the context
of PET data. Modifying our proposed model to handle these correlations is an
interesting area of future research. Importantly, we will be able to assess their
usefulness for imaging data using Bayesian model comparison (Penny et al.,
2005a).
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Appendix

A Densities, Divergences and Expectations

We include here definitions of the densities used throughout this article. We
also include standard formulae used in the derivation of the approximate pos-
teriors.

A.1 Multivariate Normal Density

The multivariate Normal density for d-dimensional variable x with mean m
and variance Σ is given by

N(x; m, Σ) = |2πΣ|−
1
2 exp

(
−1

2
(x−m)T Σ−1(x−m)

)
(A.1)

A quadratic expectation of a Normal random variable x ∼ N(m, Σ) is

E[xT Ax] = tr(AΣ) + mT Am (A.2)

A.2 Gamma Density

The Gamma density for variable x with parameters b and c is defined by

Ga(x; b, c) =
1

Γ(c)

xc−1

bc
exp

(−x

b

)
for x ≥ 0 and 0 otherwise (A.3)

where Γ(x) is the Gamma function. Mean and variance are respectively given
by bc and b2c.

An expectation formula used in the Variational Bayes framework is

E[log x] = Ψ(c) + log b (A.4)

where Ψ is the digamma function (logarithmic derivative of the Gamma func-
tion Γ).
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A.3 Multinomial Density

The density of a Multinomial discrete distribution for variable x = {x1, . . . , xN}
with parameters π = {π1, . . . , πN} is defined by

Mult(x; π) =
M !∏N
i=1 xi!

N∏
i=1

πxi
i (A.5)

where

xi ≥ 0∑N
i=1 xi = M

and

 πi > 0∑N
i=1 πi = 1

(A.6)

A.4 Dirichlet Density

The probabilistic density function of the N -state Dirichlet distribution for
variable π = {π1, . . . , πN} with parameters f = {f1, . . . , fN} is defined by

Dir(π; f) =
Γ(
∑N

i=1 fi)∏N
i=1 Γ(fi)

N∏
i=1

πfi−1
i (A.7)

where Γ(x) is, as before, the Gamma function. Restrictions on variable π and
parameter f are the following

πi ≥ 0 ∀i,
N∑

i=1

πi = 1 and fi > 0 ∀i

Parameters fi are prior observation counts for events governed by πi. The
Dirichlet distribution is the conjugate prior of the parameters of a multinomial
distribution. One special case is the symmetric Dirichlet distribution where
fi = f0 ∀i. In this case, the density is given by

Dir(π; f0) =
1

c(f0)

N∏
i=1

πf0−1
i (A.8)

where c(f0) is a normalizing factor depending only on N and f0.

We also use the following expectation

E[log πi] = Ψ(fi)−Ψ

(
N∑

i′=1

fi′

)
(A.9)
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B Variational Bayes Learning

Parameter estimation within the Bayesian framework reduces to an inference
problem, that of evaluating the posterior probability p(Θ|Y ) over the param-
eters Θ given the observed data Y .

In many cases, this results in a high-dimensional problem involving computa-
tionally intensive multidimensional integrals over a large number of random
variables. Thus, the exact computation of posterior probabilities in such mod-
els is prohibitive. Approximate but computationally efficient learning methods
are therefore of special interest and Variational Bayes is one of those.

The main idea is to find an analytical and simple distribution q(Θ|Y ) to ap-
proximate the complicated posterior probability p(Θ|Y ), such that the Kullback-
Leibler (KL) divergence of these two distributions is minimized. Indeed, the
log likelihood of the data can be written as

log p(Y ) =
∫

q(Θ|Y ) log p(Y )dΘ

=
∫

q(Θ|Y ) log
p(Y, Θ)

p(Θ|Y )
dΘ

=
∫

q(Θ|Y ) log
p(Y, Θ)q(Θ|Y )

q(Θ|Y )p(Θ|Y )
dΘ

=
∫

q(Θ|Y ) log
p(Y, Θ)

q(Θ|Y )
dΘ︸ ︷︷ ︸

F (q(Θ|Y ))

+
∫

q(Θ|Y ) log
q(Θ|Y )

p(Θ|Y )
dΘ︸ ︷︷ ︸

KL(q(Θ|Y )||p(Θ|Y ))≥0

(B.1)

The first term F (q) is also known as the negative variational free energy, while
the second term is the Kullback-Leibler divergence between the approximate
density q(Θ|Y ) and the true posterior p(Θ|Y ). Furthermore, it is easy to see
that the log evidence is lower bounded by F (q) since the KL divergence is
always nonnegative. Then, by maximizing the lower bound F (q) with regard
to q, an optimal approximation of p(Θ|Y ) can be obtained with q∗(Θ), and a
closest value of the log evidence log p(Y ) by F (q∗). The first output will be
used for Bayesian inference while the second one, F , can be used for Bayesian
Model Comparison (BMC) (Penny et al., 2005a).

The main idea of the VB framework is to find the best approximation q(Θ) of
p(Θ|Y ) within a family of densities which will yield good properties, such as
analytical approximations. Factorized forms prove useful and these correspond
to a mean field approximation. Thus, parameters are split into several groups
Θ = {θi} and it is assumed that the approximate posterior density factorises
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over these groups of parameters

q(Θ|Y ) =
∏
i

q(θi|Y ) (B.2)

= q(θi|Y )q(θ|i|Y )

where θ|i indicates components of Θ other than θi.

The maximisation of the negative free energy F , lower bound of the log like-
lihood, over the posterior density q using Lagrange multipliers yields

q(θi|Y ) =
exp

(∫
q(θ|i|Y ) log p(Y, Θ)dθ|i

)
∫

exp
(∫

q(θ|i|Y ) log p(Y, Θ)dθ|i
)
dθi

=
exp (I(θi))∫

exp (I(θi)) dθi

(B.3)

where
I(θi) =

∫
q(θ|i|Y ) log p(Y, Θ)dθ|i = 〈log p(Y, Θ)〉q(θ|i)

(B.4)

Note that the latter integral need only to contain terms dependent on θi:
this is the feature which lowers the dimensionality of the Bayesian inference.
Furthermore, this provides a way to analytically obtain approximate equations
for the posterior distributions

q(θi|Y ) ∝ exp (I(θi)) (B.5)

Using well behaved priors, such as conjugate priors, the approximate poste-
rior distributions will have a known form, giving closed form equations for
the updates of their sufficient statistics. The VB algorithm is then simply the
iterative computation of these update equations, that will converge so as to
maximize the objective function, the negative free energy, by finding the ap-
proximate posterior distribution, in the factorized family, that will best match
the true posterior in the sense of KL divergence.
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Fig. B.1. Graphical representation of the probabilistic generative model for fMRI
with SSBF priors. Each parameter of the model is a node in the graph, whose
links correspond to directed probabilistic dependencies. Circles are used to represent
unknown quantities to be inferred, and squares for fixed values. Dashed variables
A and β are parameters of an autoregressive model, not presented in this article,
that could be incorporated here to deal with short term temporal correlation of the
noise, as described in (Penny et al., 2003).
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Fig. B.2. Wavelet representation using three resolution levels of a sagittal (2D) slice
of a structural MRI (following (Mallat, 1989)). Each detail level (l = {1; 2} here)
contains diagonal DDl, horizontal DHl and vertical DV l orientation coefficients. The
top left box C contains the coarse level.
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Fig. B.3. (a) Sparse prior: A two component Gaussian mixture enforces sparsity
over wavelet coefficients zk. Each Gaussian is zero mean and the precisions are
such that one component has low precision, modelling signal, and the other high
precision, modelling noise. (b) Posterior mean of wavelet coefficients, as a function
of the bottom-up estimate (i.e. without mixture prior), highlighting the shrinkage
effect.
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Fig. B.4. Approximate posteriors and update equations for their sufficient statistics.
The top equation describes the full approximate posterior with each component in
a box below. These equations are valid for any spatial basis V wheras equations in
the main text contain simplifications obtained for an orthonormal basis.
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Fig. B.5. Material for the generation of the synthetic data: (a) Design matrix X
constituted of two regressors – a boxcar and a constant of dimension T = 40 and
(b) 32 × 32 image of regression coefficients. This is the same for both regressors.

(a) (b)

Fig. B.6. (a) Effect as estimated using OLS. (b) Effect as estimated using SSBF. In
these images, black denotes 0 and white 1.
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(a) (b) (c)

(d) (e) (f)

Fig. B.7. (a) 32 × 32 image of regression coefficients used to generate synthetic data
with the design matrix displayed in figure B.5.a. Estimated effects using (b) Ordi-
nary Least Square (OLS), (c) Gaussian Markov Random Fields (GMRFs) and (d)
Sparse Spatial Basis Function (SSBF) prior. The estimated wavelet coefficients after
convergence of the VB algorithm are displayed in (e). Its inverse wavelet transform
is displayed in (f).
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Fig. B.8. ROC curve for the synthetic data of figure B.7 with (i) the SSBF prior
model, (ii) the GMRF prior model and (iii) OLS estimates.
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Fig. B.9. Typical axial slice image of residual variances ( 1
λn

), after a GLM model has
been estimated on fMRI data. We observe that the noise is far from being uniform
across the brain with variations between gray and white matter but also varying
inside gray matter.
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(a) (b) (c)

(d) (e) (f)

Fig. B.10. Simulated null dataset with heteroscedastic noise (see text). Standard
deviation of the noise in a square in the middle of the image is 10 times higher
than the one in the background. (a) and (d) show estimated effect using GMRF
and SSBF priors. (b) and (e) display the corresponding PPMs and the last column
shows the estimated standard deviations for the two models.
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Fig. B.11. 1000 simulated null datasets with heteroscedastic noise (as in figure B.10)
have been generated. (a) displays the number of false positives observed on each
simulation with either GMRF or wavelet-based prior. (b) displays the histogram of
these observations. Use of the SSBF prior leads to a much lower false positive rate.
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Fig. B.12. Computation time as a function of the dimension of the data. Bayesian
estimation was performed with an SSBF prior and a GMRF prior on synthetic
images of sizes 16× 16, 32× 32, 64× 64 and 128× 128, using the same number of
iterations in both cases. The y axis uses a logarithmic scale.
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Fig. B.13. Design matrix for the analysis of the event-related fMRI dataset. The first
four columns model the four conditions of the factorial design (fame vs. repetition),
while the last column models the mean response.
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Fig. B.14. Histograms of (a) regression coefficients wT
1 of the first column of the

design matrix for the event-related fMRI dataset and (b) corresponding wavelet
coefficients zT

1 with a fitted zero mean Gaussian mixture model (red curve) super-
imposed.
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(a) (b)

(c) (d)

Fig. B.15. Contrasts images for the main effect of faces, obtained by applying the
contrast weight vector cT = 1

4 [11110] on an axial slice. (a) Normalized structural
scan and images of estimated contrasts using (b) Ordinary Least Square (OLS), (c)
a Sparse Spatial Basis Function (SSBF) prior and (d) OLS on images smoothed by
a Gaussian kernel of 8mm FWHM.
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(a) (b)

(c) (d)

Fig. B.16. Thresholded contrasts images for the main effect of faces, obtained by
applying the contrast weight vector cT = 1

4 [11110] and thresholding at 5% of the
global mean value on an axial slice. (a) Normalized structural scan and thresholded
images of estimated contrasts using (b) Ordinary Least Square (OLS), (c) a Sparse
Spatial Basis Function (SSBF) prior and (d) OLS on images smoothed by a Gaussian
kernel of 8mm FWHM.
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