
www.elsevier.com/locate/ynimg
NeuroImage 41 (2008) 408–423
Technical Note

Diffusion-based spatial priors for functional magnetic
resonance images

L.M. Harrison,⁎ W. Penny, J. Daunizeau, and K.J. Friston

Wellcome Trust Centre for Neuroimaging, UCL, London, UK

Received 20 November 2007; revised 25 January 2008; accepted 1 February 2008
Available online 20 February 2008
We recently outlined a Bayesian scheme for analyzing fMRI data using
diffusion-based spatial priors [Harrison, L.M., Penny, W., Ashburner,
J., Trujillo-Barreto, N., Friston, K.J., 2007. Diffusion-based spatial
priors for imaging. NeuroImage 38, 677–695]. The current paper
continues this theme, applying it to a single-subject functional magnetic
resonance imaging (fMRI) study of the auditory system. We show that
spatial priors on functional activations, based on diffusion, can be
formulated in terms of the eigenmodes of a graph Laplacian. This allows
one to discard eigenmodes with small eigenvalues, to provide a com-
putationally efficient scheme. Furthermore, this formulation shows that
diffusion-based priors are a generalization of conventional Laplacian
priors [Penny, W.D., Trujillo-Barreto, N.J., Friston, K.J., 2005.
Bayesian fMRI time series analysis with spatial priors. NeuroImage
24, 350–362]. Finally, we show how diffusion-based priors are a special
case of Gaussian process models that can be inverted using classical
covariance component estimation techniques like restricted maximum
likelihood [Patterson, H.D., Thompson, R., 1974. Maximum likelihood
estimation of components of variance. Paper presented at: 8th
International Biometrics Conference (Constanta, Romania)]. The
convention in SPM is to smooth data with a fixed isotropic Gaussian
kernel before inverting a mass-univariate statistical model. This entails
the strong assumption that data are generated smoothly throughout the
brain. However, there is no way to determine if this assumption is
supported by the data, because data are smoothed before statistical
modeling. In contrast, if a spatial prior is used, smoothness is estimated
given non-smoothed data. Explicit spatial priors enable formal model
comparison of different prior assumptions, e.g., that data are generated
from a stationary (i.e., fixed throughout the brain) or non-stationary
spatial process. Indeed, for the auditory datawe provide strong evidence
for a non-stationary process, which concurs with a qualitative
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comparison of predicted activations at the boundary of functionally
selective regions.
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Introduction

Imaging neuroscience now pervades nearly every aspect of
neurobiology; from cognitive psychology to neurogenetics. Its
principal strength is the ability to make inferences about structure–
function relationships in the brain. However, statistical parametric
mapping (SPM) (Friston et al., 2006), one of the most widely used
analyses of brain imaging data, does not support explicit inferences
about the spatial aspects of functional anatomy. This is because it uses
a mass-univariate approach, which models each voxel (i.e., point in
the brain) separately. The need for models that consider influences
among voxels, or multivariate models, stems from the fact that
neuroimaging data are generated by spatially extended structures that
necessarily involve more than one voxel, for example, the organiza-
tion of retinotopically mapped responses in visual cortex is segregated
into distinct cytoarchitectonic areas with defined boundaries. Despite
this, it is currently not possible to infer whether a model with non-
stationary smoothness (i.e., with boundaries) of functionally selective
responses is better than a model with stationary smoothness (i.e.,
without boundaries).

This paper generalizes and finesses the framework described in
Harrison et al. (2007) that allows one to infer the presence of spatially
organized responses and evaluate the evidence of different multi-
variate models of these responses. Critically, we now formulate a
spatial prior in terms of the eigensystem of the diffusion kernel of a
weighted graph Laplacian (Chung and Yau, 2000). This reduces the
computational complexity of the scheme substantially and discloses a
clear link with two important methods used to analyze brain imaging
Inc. All rights reserved.
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data; (i) restricted maximum likelihood (ReML) (Patterson and
Thompson, 1974), used to estimate covariance components of a
general linear model (GLM) (Friston et al., 2002b) and (ii) Bayesian
schemes based on Markov random field (MRF) theory (Bishop,
2006); e.g., the Laplacian priors used in Penny et al. (2005).
Furthermore, we generalize the scheme to spatiotemporal models of
evoked responses. We demonstrate this by inverting models of
functional magnetic resonance imaging (fMRI) time-series data, as
opposed to the (second-level) GLMs of static data considered in
Harrison et al. (2007). We formulate the problem in terms of diffusion
kernels on arbitrary graphs (Grady and Schwartz, 2003) and use them
as constraints or empirical priors on the causes (i.e., model
parameters) of observed data within a hierarchical Bayesian model.
The diffusion kernel can be considered as the covariance of a
Gaussian process prior (GPP) (MacKay, 1998). In general, this prior is
non-Gaussian as it is embedded on a surface, which encodes local
(spatial) geometry of the functional anatomy, i.e., GLM parameter
estimates. In this paper, we apply this framework to standard res-
olution (3×3×3 mm) fMRI data; however, we expect it to benefit
analyses of, for example, high resolution fMRI, diffusion tensor
imaging (DTI) and magneto-encephalographic (MEG) data. Indeed,
ideas fromHarrison et al. (2007) for stationary processes have already
been implemented in a model for source reconstruction of MEG data
in SPM (Friston et al., 2008).

Critically, this work provides a hypothesis-driven framework; in
that a formal model embodies a hypothesis about how we think data
are caused. This is important as we develop models that explicitly
include spatiotemporal aspects of functional and anatomical princi-
ples. These aspects form the basis of empirical priors that are
optimized in an informed way using the data. In addition, this enables
us to formalise the question, “which model do our data support?”
using Bayesian model comparison. Within a Bayesian paradigm, the
intuition is that data are best explained using an optimal balance
between model accuracy and complexity. For example, a fine-scaled
temporal model of fMRI data is unlikely to enhance temporal feature
detection, as its complexity is inappropriate for the coarse sampling
rate of fMRI. Bayesian spatiotemporal models allow us to compare
models with andwithout spatially coherent responses and askwhether
this coherence is stationary (i.e., the same over space) or not. This sort
of inference is central to asking questions about the nature of func-
tional segregation in the cortex, or indeed subcortical structures, such
as the amygdala or thalamus.

The potential benefits of this approach are far reaching in that it
promises to answer questions, with a measured degree of certainty,
about the ‘texture’ and ‘shape’ of functional responses. These
questions are becoming increasingly important in imaging neu-
roscience, for example, investigating midbrain structures such as the
periaqueductal gray (Mobbs et al., 2007) in anxiety-related disorders,
superior colliculus (Schneider and Kastner, 2005; Sylvester et al.,
2007), retinotopic maps of the visual cortex (DeYoe et al., 1994; Engel
et al., 1994; Sereno et al., 1994; Warnking et al., 2002) and lateral
geniculate nucleus (Haynes et al., 2005), and the fine functional
structure within fusiform face area (Grill-Spector et al., 2006). This last
example is important as the correspondence that followed this paper
indicated that the simple rules used to evaluate the ‘texture’ of response
were not correctly formulated, leading to serious criticism of some of
their results (Baker et al., 2007; Simmons et al., 2007). Amore suitable
analysis would be one that models explicitly the spatial features, or
geometries, of neuronal responses we want to make inference about.

The paper is organized as follows: the first section motivates the
use of multivariate, spatial models in relation to the mass-univariate
approach, followed by a brief description of the theoretical fundaments
of our approach. We then describe the model in detail with emphasis
on using diffusion (heat) kernels to represent covariances within a
hierarchical observation model. We provide intuition using synthetic
data before applying the approach to fMRI data acquired during
auditory processing. We end the paper by discussing some issues with
the current implementation and future developments. Details regard-
ing the implementation of the algorithm are given in Appendices A
and B.

Theoretical background

Tohighlight the importance of explicit spatialmodeling of neuronal
responses,we first consider themass-univariate approach.A schematic
of the data processing stream in SPM (http://www.fil.ion.ucl.ac.uk/
spm/) is shown in Fig. 1. This is (excluding the pre-processing steps of
realignment, co-registration and normalization) a three-stage proce-
dure. The central panel contains a model of responses at one voxel that
can explain data by, and only by, the explanatory variables in the design
matrix (upper central panel). As this model is applied to each voxel
independently, two extra processing stages are required to accom-
modate spatial dependencies; smoothing data (left panel) with a user
specified kernel and post hoc adjustment of p-values (right panel), to
model spatial dependencies. In this three-stage procedure, spatial
properties (that necessarily involve more than one voxel) of neuronal
responses are considered before and after modeling per se.

Spatially correlated fMRI data cannot be generated from this
model, as there are no spatial parameters. As such it is not a generative
model of spatially distributed changes in signal. This may seem trivial;
however, it entails a deeper issue: in order to test a hypothesis, a data
model has to be formulated, which can generate features that are salient
to that hypothesis (e.g., temporally structured activity in spatially
segregated and functionally selective brain regions). Given this, a prior
over GLM parameters (and observation error) can be specified that
encodes spatial dependence. The benefit of having an explicit spatial
model of GLM parameters is that the three-stage procedure can be
subsumed into one generative model. This allows comparison of
different spatial models (e.g., stationary vs. non-stationary) and asks
which of these has an optimal balance between accuracy (i.e., the
expected log likelihood of themodel) and complexity (i.e., the number
of and uncertainty about parameter estimates). The challenge for
requisite multivariate models is to embody the general organizational
principles of functional segregation and integration (Friston, 2002)
into spatial models of how data are generated.

This has led to the development of more sophisticated models of
fMRI data. Current Bayesian formulations of fMRI spatial models
include the stationary Markov random field (MRF) priors of Penny
et al. (2005). However, given the convoluted nature of graymatter and
patchy functional segregation, a non-stationary model, where the
degree of smoothness can depend on spatial location, may be required
tomodel spatial features optimally. A step in this direction has been the
use of themultiscale properties of wavelets as a fixed basis set (Flandin
and Penny, 2007); however, basis functions that adapt, given local
geometric information may provide a more general framework. Non-
Bayesian approaches include non-stationary filtering using scale
(Siegmund and Worsley, 1995) and rotation spaces (Shafie et al.,
2003), Canonical Correlation Analysis (Friman et al., 2003) and edge-
preserving bilateral filter kernels; closely related to the diffusion kernel
used in this paper, via the Laplace–Beltrami operator ((Polzehl and
Spokoiny, 2001; Tabelow et al., 2006; Walker et al., 2006). Although
we consider only the simplest noise model in this paper, more realistic
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Fig. 1. Three-stage procedure in SPM. The statistical model (central panel) models each voxel separately. Several consequences follow; (i) this statistical model is
unable to explain correlations in measurements over anatomical space and (ii) inferences over many voxels have to deal with spatial dependencies when adjusting
for multiple comparisons. These are dealt with in SPM by smoothing data with a user specified fixed Gaussian kernel (left panel) and using RFT to adjust
classical p-values post hoc (right panel).
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models in the literature include non-stationary spatial (Worsley et al.,
1999) and stationary spatiotemporal autoregressive models (Penny
et al., 2007; Woolrich et al., 2004).

Spatiotemporal models for fMRI

The framework we propose has its roots in random field theory
(RFT) (Adler, 1981; Bishop, 2006), image processing (Geman and
Geman, 1984; Sochen et al., 1998; Zhang and Hancock, 2005) and
machine learning (MacKay, 1998; Rasmussen and Williams, 2006).
As such, we consider parameter values of a GLM as a multi-
dimensional random field over anatomical space and use graph-based
models of diffusion to represent spatial dependence between voxels in
a hierarchical Gaussianmodel. Basically, this entails estimatingmodel
parameters of imaging data in the usual way, but coupling the esti-
mation of neighbouring parameters on a graph. This spatial coupling
is represented by a spatial prior over nodes (i.e., voxels). Its covari-
ance matrix is given by the diffusion kernel of a graph Laplacian,
whose hyperparameters, e.g., dispersion of the kernel, are themselves
learnt to provide an anisotropic, non-stationary spatial coherence that
is optimized in relation to data.

We use a combinatorial approach to represent a discrete random
field instead of discretising a continuous field. The advantage is that
we can use standard results from graph theory to formulate the
spatial covariance matrix, i.e., the matrix exponential of a graph (or
combinatorial) Laplacian (Chung, 1997), which, we think, simpli-
fies the approach and avoids discretising a continuous operator over
space. This combination of diffusion on graphs and hierarchical
models provides a principled spatial model of the causes of data. It is
a natural formulation in terms of kernel methods and probability
densities that dissolves the multiple comparisons problem, because
there is only onemodel of the entire image. In this way, we are able to
fold pre-process smoothing and post hoc correction of p-values into
the statistical model, i.e., the left and right panels into the central
panel in Fig. 1.

Random fields, Gaussian processes and diffusion

A few words are required in order to explain some of the termi-
nology used above. A ‘random field’ refers to a collection of random
variables, typically, over more than one dimension. They can be
discrete, e.g., Markov random field, or continuous, e.g., a Gaussian
random field, which is specified by a mean and covariance function.
This idea can be extended to multi-dimensional random fields, where
one or more numbers describe the field at each point in space, e.g.,
flow. Generalizing further, the field can be on a curved surface, e.g.,
temperature fluctuations on the two-dimensional surface of an object.
This is an example of a continuous random field on a curvedmanifold.
Random fields are exactly the same objects that provide distributional
models for the statistics in SPMs and are used to adjust p-values in
classical mass-univariate analyses of imaging data.

A Gaussian process prior is a continuous random field that is used
within a Bayesian framework to constrain the estimation of
parameters in an observation model e.g., autocorrelation functions
over time or GLM parameters over space in a brain volume. GPPs are
powerful as they provide (exact) analytic solutions. They are easily



Fig. 2. Graphical representation of a generative and recognition model (upper
and lower panels respectively). Each node represents a randomvariable (rv). The
observed rv, i.e., data, is shaded and arrows indicate conditional dependence.
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generalized to model non-Gaussian processes through specifying a
transformation, e.g., log-transform to model a random field of strictly
positive numbers (Snelson and Ghahramani, 2007). These have been
referred to as ‘warped’ GPPs in the machine learning literature.
Generalizing this notion further, aGPP can be defined on any arbitrary
surface (sub-manifold), e.g., a cortical surface. We refer to this as an
‘embedded’ GPP.

Diffusion occurs due to the randommotion of ‘particles’within a
random field, e.g., molecules in air, and is an example of a local
Gaussian process. Diffusion in a continuous media has a discrete
analogue on a graph (Chung, 1997) that is comprised of a set of
nodes and weighted edges. The Laplacian of a graph is computed
using the edge weights, and the diffusion kernel is obtained from the
matrix exponential of the Laplacian. This kernel is the solution of the
heat equation that propagates a function on nodes of the graph from
one moment to another. In other words, the diffusion kernel defines
what the function will be at a later time. If the nodes are distributed
over space this kernel contains spatial information and can be used as
a spatial covariance matrix of a Gaussian density, thereby providing
a representation of a discrete random field.

Hierarchal models and inference

Hierarchical models are at the heart of empirical Bayesian methods
used in the analysis of neuroimaging data (Friston et al., 2002a,b).
Their appeal is that they provide an intuitive and easily implemented
scheme to learn priors, given data. The central idea is that a prior over
model parameters can be optimized (or learnt) through further
constraints at a higher level. This leads to an observation model
comprising levels, or a hierarchy,where each level provides constraints
for the one below. Upward and downward passes of sufficient statistics
enable learning of priors, given data and as such are called empirical
priors. Hierarchical models are also used for efficient implementation
of model inversion schemes, specifically with large data sets.

RFT is used for topological inference in neuroimaging; i.e., in-
ference about topological features such as at peaks or the Euler
characteristic (Worsley et al., 1996). This considers the statistical
field, e.g., of classical t-values, as deriving from a random field model
of the data, where the error terms have a known (or estimable) spatial
covariance function. Under this model, null distributions for topo-
logical measures (e.g., the Euler characteristic) can be derived and
used to adjust associated p-values (see Fig. 1). This implicitly controls
false positive rates over the search volume. In our Bayesian setting we
formulate a model to include a covariance function (matrix for a
graph) over both GLM parameters and errors.

The use of RFT, in SPM, can be extended to consider parameter
values of a generative model as a random field. This acts as a
constraint on parameter estimates within a model of data, which
itself has to be optimized or learnt; the random field has to be able to
change shape for learning to occur, which is enabled by formulating
it in terms of a diffusion process. As diffusion processes are locally
Gaussian we can treat them as a GPP, which has been used to analyze
many diverse types of spatial and temporal (Wang et al., 2005) data,
e.g., geostatistics of global weather (Cornford et al., 2005). The
appeal is that hierarchies of GPPs can be built within an analytically
tractable probabilistic model; a Gaussian process model (Rasmussen
and Williams, 2006). In addition they can be used to implement
efficient model inversion schemes for large data sets (Quinonero-
Candela and Rasmussen, 2005), which make them attractive for
modeling neuroimaging data. They can be formulated in terms of
graph-theoretic ideas, which provide a discrete representation of a
continuous random field on an arbitrary manifold through the
weights on a graph. As the graph has a finite number of nodes, this
corresponds to a degenerate GPP (Rasmussen and Williams, 2006).

A simulated volume of brain data is obtained by sampling from the
probability density induced by a hierarchical model. A graphical
representation of the generative and implicit recognitionmodels used in
this paper is shown in Fig. 2. Nodes and arrows represent random
variables and conditional dependence respectively. The model, mk,
represents the structure and probability densities of the graph, which is
a hypothesis of how data are generated. Parameters of a model, β,
weight temporal explanatory variables are contained in a designmatrix.
These encode experimental conditions such as auditory stimulus pre-
sentation. Each voxel contains a vector resulting in a field of vectors.
Hyperparameters, α, control the density over these parameters e.g., its
spatial smoothness. These models can generate synthetic data that
contain features similar to those observed in real data. By ‘reversing’
the arrowswe can invert themodel and use it to recognize parameters of
the model, given data. This recognition is shown in the lower panel of
Fig. 2. The aim is, given data and a model, to estimate the probability
density of the causes of data (i.e., model parameters).

This strategy is used to compute the posterior densities over
parameters, hyperparameters and the model itself. The latter can be
used to compare different models (i.e., hypotheses) of how the data
were caused. A simple example of models we would like to compare
is stationary vs. non-stationary spatial models. This is important, as
it provides a quantitative measure of evidence in favour of one model
compared with a competing hypothesis. The posterior over pa-
rameters encodes not only the most likely response, over anatomical
space, but also a measure of uncertainty about the parameters, given
data. This probability density can be used to identify patterns of
response using posterior probabilitymaps (PPMs) (Friston and Penny,
2003). These are used to visualize structure–function relationships
that include a measure of uncertainty after fitting data. Thresholding
the posterior density produces a map that represents regions of
anatomical space where the probability of parameter values above a
threshold has a specified degree of certainty, e.g., regions that have
parameter values above zero with probability greater than 0.95.
Examples are shown in Figs. 4b and 5e for synthetic and real data
respectively. PPMs are important, as they are the basis for inference
and hypothesis testing.
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A spatial model for fMRI

In this section, we formulate a two-level GLM in terms of matrix-
variate1 normal densities (Gupta and Nagar, 2000). In what follows,
we will denote a vectorised matrix with an arrow vec(X)=X

→
. Our

focus is the formulation of a multivariate normal model, with
emphasis on covariance components and their hyperparameters. We
start with a linear model, under Gaussian assumptions, of the form

Y ¼ Xbþ e1 p Y ; bjXð Þ ¼ p Y jX ; bð Þp bð Þ
b ¼ e2 Z p Y jX ; bð Þ ¼ Nr1 ;c1 Xb; S1 � K1ð Þ
eifNri ;ci 0; Si � Kið Þ p bð Þ ¼ Nr2 ;c2 0; S2;�K2ð Þ

ð1Þ
The left-hand expressions specify a hierarchical linear model and

the right-hand defines the implicit generative density in terms of a
likelihood, p(Y|X, β) and prior, p(β). Nr,c stands for a matrix-variate
normal density, where the matrix A∈Rr × c, has probability density
function (pdf), p(A)~Nr,c(M,S�K), with mean,M, of size r×c, and
two covariances, S and K, of size r× r and c×c, for rows and
columns respectively. Here, Y is a T×N data matrix and X is a T×P
design matrix with an associated unknown P×N parameter matrix,
β, so that r1=T, r2=P, c1=c2=N.

The errors at both levels have covariance Si over rows i.e., time or
regressors and Ki over columns i.e., voxels. Eq. (1) is a typical model
used in the analysis of fMRI data comprising T scans, N voxels and P
parameters. The addition of the second level places empirical shrink-
age priors on the parameters. This model can now be simplified by
vectorising each component using the identity vec(ABC ) = (CT�A)B

→

(see Appendix A and Harville, 1997).

y ¼ Zbþ e1
b ¼ e2
eifNni 0;Rið Þ

ð2Þ

Where y = Y
→
, Z ¼ IN � X , b = β

→
, ei = ε→i, ni ¼ ciri and

Ri ¼ Ki � Si. � is the Kronecker product of two matrices and IN is
the identity matrix of size N. The unknown covariances of the first
and second level errors, Σ(α)1 and Σ(α)2, depend on hyperpara-
meters, α. The model parameters and hyperparameters are esti-
mated using expectation maximization (EM) by maximizing a
lower bound F, on the log-marginal likelihood

ln p yjað Þz F

¼ �1
2
lnjR að Þj þ yTR að Þ�1yþ TN ln 2p

� �
R að Þ ¼ R1 þ ZR2ZT

ð3Þ

with respect to the parameters, b, in the E-step and the covariance
hyperparameters, α, in the M-step. Here, Σ(α) represents the co-
variance of the data induced by both levels of the model. Although the
bound in Eq. (3) appears to be only a function of the hyperparameters,
we will see later that the form of Σ(α) can depend on the parameters.

Confounds, such as scanner drift, and mean signal can be
conveniently accommodated into the model above by transforming
the data. Consider a GLM containing two partitions; one for the
1 A univariate random variable (rv), x, has probability density function
(pdf) (2πσ2)−1/2exp(− (x−μ)2 /2σ2), x∈R, μ∈R, a multivariate rv, x=
(x1,...,xr)

T, has pdf (2π)−1/2| S |−r/2exp(− tr(S −1(x−μ)(x−μ)T / 2), x∈Rr×1,
μ∈Rr×1 and is represented by x~Nr(μ,S ) and a matrix-variate normal rv,
X, has pdf (2π)− rc/2|S |−c / 2|K |− r / 2exp(− tr(S−1(X−M )K −1(X−M)T) / 2),
X∈Rr× c, MϵRr×c represented by X~Nr,c(M,S⊗K) with multivariate
densities over X

→T ~ Nrc(M
→T, S ⊗ K ) and X

→
~ Ncr(M

→
, S � K ).
signal of interest, X1, i.e., experimental design matrix, and con-
founds, X2, containing a discrete cosine set and column of ones.

Y ¼ X1b1 þ X2b2 þ e1 ð4Þ
We can use the change of variables formula (second line, left side

of Eq. (5)) to transform this into a more convenient form. Given a
function of data, R(Y ), the lower bound is given by

Ỹ ¼ R Yð Þ
p Ỹ ja
� �

¼ P Yjað ÞjJ j ZF¼� 1

2
lnjR̃ að Þjþ ỹTR̃ að Þ�1ỹþTN ln 2p� 2lnjJ j

� �
ð5Þ

which now includes an extra term, the Jacobian of the data trans-
formation, J = |∂Y/Y ̃ |. Given the transformation, R(Y)=PrYPc, its
Jacobian is J=|Pr |

−c|Pc|
−r. If we chosePr= IT−X2(X2

TX2)
−1 X2

T, i.e., the
projection matrix to the null space of the confounds, and Pc=IN, the
model reduces conveniently to one partition, i.e., Y ̃=X 1̃β 1̃+ ε̃̃1, where

Ỹ ¼ PrY
X̃ 1 ¼ PrX1

b̃1 ¼ b1
ẽ1fNr1;c1 0; S̃1 � K̃1

� �
S̃1 ¼ PrS1PT

r

K̃1 ¼ K1

ð6Þ

In this case, the Jacobian is constant and so we drop the tilde (i.e.,
by projecting the data and models onto the null space of the
confounds, we can proceed as if there were no confounds). However,
in general, a data transformation can be parameterized, in which case
this term needs to be included in the objective function. The model
inversionwithEMwill be described later (see alsoAppendixA). First,
we look at the hyperparameterization of the spatial covariances and
the specific forms of K(α)i entailed by Σi=Ki � Si.

The spatial priors

In the previous section, we reduced the problem of inverting a
linear empirical Bayesian model to optimizing prior covariance
components for noise and signal (i.e., optimizing the lower bound F
with respect to the covariance parameters). In this section, we describe
diffusion-based priors (Harrison et al., 2007) and consider adaptive
priors that are functions of the GLM parameters. In brief, we will
assume that the error or noise covariance is spatially unstructured; i.e.,
Σ1=K1�S1, where K(α)1=υIN and S1=PrPr

T=Pr (i.e., projection is
an idempotent transformation). For simplicity, we will assume that
this is fixed over voxels; however, it is easy to specify a component for
each voxel, as in conventional mass-univariate analyses.

For the neuronal activity (i.e., signal), we adopt an adaptive prior
using a non-stationary diffusion kernel, which is based on a weighted
graph Laplacian (Chung, 1997), L(μ,H), which is a function of the
conditional expectation2 of parameters, μ=hbi, and the embedding
space metric, H (see next section).

K að Þ2¼ exp �L A;Hð Þsð Þ
S að Þ2¼ g

ð7Þ
2 Technically the Laplacian matrix is a function of the random variable, b,
i.e., L(b,H), which renders it the generator of a nonlinear dynamic system.
This can be approximated by substituting the conditional expectation,
μ= hbi, i.e., L(μ,H ), which is used in the main text.
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The matrix L is a weighted graph Laplacian, which is a discrete
analogue of the Laplace–Beltrami operator used to model diffusion
processes on a Riemannian manifold. An example of the latter is
the dispersion of heat from a source on the curved surface of a
thermally conductive material. Heuristically, this operator propa-
gates quantities locally by dispersing a fixed proportion from each
point on a surface or manifold to neighbouring locations. The
manifold may itself be embedded in a higher-dimensional space,
so that the ensuing diffusion can appear quite complicated. The
diffusion kernel is computed using the matrix exponential, which we
use as the covariance matrix of a spatial prior. Generally, during
optimization the Laplacian is a function of the current image
(parameter expectations) and parameters of the embedding space, L
(μ(m),H (m)), where the superscript indicates the mth iteration.
However, if the Laplacian is approximately constant then K2

(m) can
be evaluated much more simply (Harrison et al., 2007). This
approximation retains the edge-preserving character of the diffusive
flow, without incurring the computational cost of reevaluating the
Laplacian and its eigensystem. In our experience, weighted graph
Laplacians based on the OLS estimate, μols, and an embedding space
metric based on its covariance (see Appendix B) give reasonable
results.

Hyperparameters of this model comprise, α={υ,τ,η}, where the
first hyperparameter controls a stationary independent and identical
(i.i.d.) noise component, the second the dispersion of the parameter
image and third its amplitude. The row covariance η is in general
P×P, where P=1 for all models in this paper. In the next section, we
review graph Laplacians and the diffusion model in more detail
and then conclude with a summary of the EM scheme used for
optimization.

Diffusion on graphs

Here, we describe diffusion on a graph and illustrate how this is
used in a spatial prior. This formulation is useful as it is easily extended
to vector and matrix-valued images, which are necessary when
modeling a general vector field of parameter estimates, e.g., for a
factorial design. We start with some basic graph theory and then
discuss diffusion in terms of graph Laplacians. The end point of this
treatment is the form of the diffusion kernel, K2, of the previous
section.Wewill see that this is a function of the parameters that enables
the prior smoothness to adapt locally to non-stationary features in the
image of parameter estimates.

We consider a graph with vertices (nodes) and edges, Γ= (V,E).
The vertex and edge sets are V and EpV×V, respectively. An
element of each is vkaV and eijaE (note that double indices in
subscript distinguish an edge from an error term used in Eq. (2)),
where an edge connects two vertices vi and vj. The total number of
nodes and edges are NV= |V | and NE= |E |, where the horizontal bars
indicate cardinality, i.e., number of elements in the set. Neighbour-
ing vertices are denoted by i~ j. Each edge has a weight, wij, given
by

wij ¼ exp �ds vi; vj
� �2

=j
� �

for i e j

0 otherwise

(
ð8Þ

The weights wija (0,1] encode the relationship between
neighbouring voxels and are elements of the weight matrix W,
which is symmetric; i.e., wij=wji. They play the role of
conductivities, where a large value enables flow between voxels.
κ is a constant that controls velocity of diffusion, which we set to
one. The degree of the ith vertex is defined as the sum of all
neighbouring edge weights

Dii ¼
X
iej wij 8 eij aE ð9Þ

The graph Laplacian can be conveniently formulated using
results from linear circuit theory (Grady and Schwartz, 2003;
Strang, 2004). This has the advantage of representing node and
edge spaces explicitly and is defined using the NE×NV edge-node
(see subscript) incidence matrix

Aeijvk ¼ þ1 if i ¼ k
�1 if j ¼ k

�
ð10Þ

and NE×NE constitutive matrix, which is diagonal and contains
edge weights, e.g., for the kth edge, Ckk=wij. Given these, the
graph Laplacian is

L ¼ ATCA ð11Þ

This is equivalent to the un-normalized Laplacian of Γ, L=D−W,
used in Harrison et al. (2007). The weights are a function of the
distance, ds(vi,vj), on the surface of a parameter image, μ(u),
between vertices vi and vj. It is this distance that defines the nature of
diffusion generated by the graph Laplacian.

More formally, we specify the distance by choosing a map, χ,
from the surface of the function μ(u) to an embedding space, the
Euclidean space of Rn, where n=nd+nf and nd and nf are the
number of spatial and feature dimensions respectively (see Fig. 1;
Harrison et al., 2007). Each space has a manifold and metric, (M,g)
and (N,h), respectively.

v : MYN
v : uY v1 uð Þ; v2 uð Þ; v3 uð Þ; v4 uð Þð Þ ¼ u1; u2; u3; A u1; u2; u3ð Þð Þ

ð12Þ

where nd=3, i.e., three spatial dimensions, nf =1, i.e., a scalar field
(for the examples in this paper, though this is easily generalized to
vector fields) and (u1,u2,u3) are local coordinates. Choosing a metric,
H, of the embedding space (see below) and computing the Jacobian, J,
we can calculate the induced metric,G, on μ(u) (Sochen et al., 1998).
In matrix form

H ¼ Hd 0
0 Hf

� �
ð13Þ

whereHd is the metric tensor (Frankel, 2004) of the spatial domain. In
this paper, we chose this to be Euclidian, i.e., Hd ¼ Ind , however, it
could be arbitrary, e.g., from a cortical mesh used in anatomically
informedmodels of fMRI orMEG source reconstruction.We fixHf to
that calculated in Appendix B, based on μols.

The Jacobian (note this term refers to the matrix and its deter-
minant) of the map is

J ¼ Av
Au

¼
1
0
0
Au1

0
1
0
Au2

0
0
1
Au3

0BB@
1CCA ð14Þ



Fig. 3. Pseudo-code. Prior densities are specified e.g., diffusion-based prior, and the posterior density optimized, given data, by iterating E and M-steps. The
dimension of posterior multivariate density is n2=P×N.

Table 1
Derivatives of data covariance matrix (using γ=ln α)

K 1 2 3

Hyperparameter υ τ η

AR
Agk

AK1

Ag1
� S1

AK2

Ag2
� XS2X

T K2 � X
AS2
Ag3

XT

Ã
kð Þ
a K1 −LK2τ K2

B̃
kð Þ
a S1 XS2XT XS2XT
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where derivatives are with respect to physical space; i.e., μx=∂μ /∂x,
which are computed using central differences. The induced metric, on
the surface of μ(u), is then

G ¼ JTHJ ð15Þ
which is used to calculate the squared distance

ds2 ¼ duTGdu ð16Þ
where du=(du1,du2,du3)T is displacement in anatomical space. As in
general the Laplacian depends on geodesic distance on the embedded
sub-manifold of an image we call it a geodesic graph Laplacian
(GGL). If Hd ¼ Ind and Hf=0 then the Laplacian is based on
Euclidean distance in anatomical space.We refer to this as a Euclidean
graph Laplacian (EGL). The diffusion kernel can be computed
efficiently using the eigenvalue decomposition.

L ¼ UKUT

K ¼ diag k1; k2; N ; kNð Þ
U ¼ /1;/2; N ;/N½ �
K2 ¼ Uf Kð ÞUT

f Kð Þ ¼ exp �Ksð Þ

ð17Þ

Where the ith eigenvalue and vector of the Laplacian are
represented by λi≥0 andϕi (a column vector of lengthN) respectively.
Given the eigensystem, the matrix exponential can be computed
(Moler and Van Loan, 2003) with the added benefit that many other
computations are simplified. Related work using the eigensystem of a
finite element approximation to the Laplace–Beltrami operator has
been used to smooth structural and fMRI data (Qiu et al., 2006) and its
diffusion kernel to model cortical thickness and density (Chung et al.,
2007). It is instructive to look at the eigenmodes to intuit the co-
variance components they represent. We will do this by relating them
to a restricted maximum likelihood (ReML) (Patterson and
Thompson, 1974) based scheme, where the prior covariance, K2,
can be represented using n components, Qi (Friston et al., 2002b).

K2 ¼
Xn
i¼1

k̃iQi ð18Þ

The weight of each component, k̃i, can then be estimated, given
data, using ReML, where there are n weights or hyperparameters to
estimate. Compare this to an approximation of the diffusion kernel
using n eigenmodes, where nbN

K2 ¼
Xn
i¼1

exp �kisð Þ/i/
T
i ð19Þ

That is, each eigenmode forms a covariance component,
Qi=ϕiϕi

T, which is weighted by a function of the Laplacian
eigenvalue, i.e., k̃i ¼ f ki; sð Þ ¼ exp �kisð Þ, parameterized by τ,
which is an eigenvalue of the diffusion kernel. This perspective
provides a useful interpretation of the diffusion kernel's eigen-
spectrum, examples of which are shown in Fig. 4i. Furthermore, it
shows that our M-step is formally identical to ReML, when the
covariance matrix is given by Eq. (19).



Fig. 4. Synthetic data. Data were simulated using a generative model with non-stationary spatial kernel, producing two distinct regions. (a) design matrix (top), true spatial signal (left), example time-series (lower) and
OLS estimate of first column GLM parameters (right), (b) posterior mean estimates of GSP, EGL and GGL-based priors on top row and PPMs, threshold at p(bN0.33)N0.95, below, (c) local kernels of EGL and GGL
on top row along with plot of edge weights below, (d, e) predictions against data at two locations (same as local kernels in panel, c) inside [outside] the edge of the central region, (f, g) 2nd–5th eigenmodes of EGL
and GGL (1st eigenmode is not included as it is constant over the graph), (h) outer product of 4th eigenmode (covariance component) on top row and full diffusion kernel (sum of all covariance components weighted
by their eigenvalues) below, and (i) spectra of EGL at two values of τ.
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Fig. 4 (continued ).

Table 2
Model comparison for synthetic (Fig. 4) and real data (Fig. 5)

Covariance Synthetic data Real data

GSP −46,891 −36,891
EGL −46,629 −36,292
GGL −46,488⁎ −35,150⁎

Log-evidence for GSP, EGL and GGL. Greatest evidence indicated by ⁎.
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A key difference between the parameterization of the covariance
matrices in Eqs. (18) and (19) is that only one hyperparameter, τ, has
to be estimated in the latter. This is because a functional form
(prescribed by diffusion) has been assumed over the weights. This is
not the case for Eq. (18) where all n weights would have to be
estimated separately. This could be achieved easily; however, it does
not use information about the spatial process encoded in the spectrum
of the Laplacian (i.e., it would not conform to a diffusion prior). An
additional benefit of Eq. (19) is that eigenmodes of a GGL represent
covariance components that are informed by the (spatial) geometry of
GLM parameter estimates (in our case their OLS estimates). We show
examples of these eigenmodes (covariance components) for synthetic
and real data in Figs. 4f–h and 5h–i.

As seen in Eq. (17) the diffusion kernel is a function of the
eigensystem (of the Laplacian matrix). Given a form for the spatial
prior that is in terms of a function of the Laplacian eigenspectrum,
p bð Þ ¼ Nr2;c2 0; S2 � Uf Kð ÞUT

� �
, the Laplacian prior used in Penny

et al. (2005) is recovered using a EGL and f (Λ)=Λ−1, i.e., L is the
spatial precision matrix, and diffusion-based prior using f (Λ)=exp
(−Λτ), where exp(−Lτ) is a spatial covariancematrix. See Appendix
A for derivatives, required by the EM scheme, under these priors.
In this paper, we use a reduced eigensystem of n=N / 10. Note
that the spatial covariance matrix afforded by a diffusion kernel is a
very large (non-sparse) matrix covering many voxels. This means
any reduction helps enormously, in terms of computational load.
This reduction produces reasonable results quickly (one slice ~2min
using a standard personal computer) and can bemotivated gracefully
by noting the eigenvalues fall off relatively quickly, due to the fact
that diffusion induces smoothness (see Fig. 4i). In the next section,
we review briefly the EM algorithm used to optimize the parameters
and covariance hyperparameters.



Fig. 5. Real fMRI data. Mean parameter estimates (two slices through auditory cortex) of standard resolution fMRI (3 mm3) data of one subject's response to an auditory stimulus. (a–c) Posterior mean estimates using
GSP, EGL and GGL respectively, (d) data smoothed with a 6 mm Gaussian kernel (conventional practice), (e) local kernels and PPMs, threshold at p(bN2)N0.95, (f ) PPM for GGL overlaid on anatomical image
(same resolution as functional data), (g) comparison of predictions from EGL and GGL models and (h, i) 2nd–5th eigenmodes (in image format) from EGL and GGL.
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Fig. 5 (continued ).
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Expectation maximization

Inversion of the multivariate model in Eq. (2) is straightforward
and can be formulated in terms of expectation maximization (EM).
EM entails the iterative application of an E-step and M-step
(Dempster et al., 1977; Friston et al., 2007; Friston et al., 2002b).
Pseudo-code is given in Fig. 3 and expressions for computing all
quantities used in the algorithm are provided in Appendix A. We
update hyperparameters using a Fisher-scoring scheme.3 I(α) is the
expected information matrix, see Wand (2002), with element Ikn,
where the expectation, h i, is over the marginal likelihood of the
data, ▿αF is the score, i.e., a vector of gradients (where the kth
element is ∂F /∂αk) with respect to covariance hyperparameters and
3 This is equivalent to a Newton step, but using the expected curvature as
opposed to the local curvature of the objective function.
Σ is the current [restricted] maximum likelihood (ReML) estimate
of the data covariance.

In summary, to invert ourmodelwe simply specify the covariances
and their derivatives (see Table 1). These enter an M-step to provide
ReML estimates of covariance hyperparameters. Σ(α)i is then used in
the E-step to provide the conditional density of the parameters. E and
M-steps are iterated until convergence, after which, F can be used as a
lower bound approximation to the log-evidence or log-likelihood.
This represents the accuracy of a model and its complexity, which
depend on the number of free parameters and uncertainty in their
conditional estimates (see Appendix B; Harrison et al., 2007 and
Friston et al., 2007). This means that if two competing models are
equally accurate, but one has more free parameters than the other; the
model with less parameters has a greater log-evidence. In this way, the
procedure embodies the principle of Occam's Razor, “All things being
equal, the simplest solution is the best” (MacKay, 2003). This enables
comparison of models with a different number of free parameters, as
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we will see later when comparing models based on different spatial
priors. By convention, one requires the difference in log-evidence to
be greater then three (i.e., a relative likelihood of about 20:1).

We now have all the components of a generative model that, when
inverted, provides parameter estimates that are adaptively smooth,
with edge-preserving characteristics. Furthermore, this smoothing is
chosen automatically and optimizes the evidence of the model.

Model comparison

In this section, we compare the performance of three different
models of the same data. These models differed in the form of spatial
covariance of the prior over voxels; (i) global shrinkage priors (GSP)
that are spatially independent, i.e., K2=IN; (ii) diffusion kernel of a
Euclidean graph Laplacian (EGL) and (iii) diffusion kernel of a
geodesic graph Laplacian (GGL). Each model was optimized given
synthetic and real fMRI data using the EMalgorithm described above.
Parameter estimates, posterior probability maps4 (PPMs) and model
evidences were compared as described next.

Synthetic data

Synthetic data are shown in Fig. 4, where a known two-dimensional
spatial signal (shown on the left of Fig. 4a) and designmatrix containing
temporal components (top of 4a),were used to simulate data. The design
matrix contains two partitions; the first column is the effect of interest,
which is weighted by the known spatial signal, while the remaining
columns represent confounds and contain low frequency oscillations
used to simulate scanner drift and a mean term. An example of an
observed time-series (blue) from the marked pixel is shown below. This
comprised a component of interest (red), confounds (green) and i.i.d.
Gaussian noise. The ordinary least squares (OLS) estimates of the signal
of interest, i.e., image of parameter estimates for the first column, are
shown on the right of Fig. 4a. Compare this with posterior mean
estimates from GSP, EGL and GGL-based spatial priors shown in
Fig. 4b, along with PPMs, thresholds at p(bN0.33)N0.95. The
differences are clear, with poor recovery using GSP, blurred mean
with rounded edges of the central imagewith EGL and preservation
of the majority of this edge using GGL. Two kernels,5 which
encode spatial dependences between a pixel (marked with an open
circle) and others in its neighbourhood, are shown in Fig. 4c along
with a plot of edge weights that uses the second and third eigenvectors
as coordinates. Each line segment of this plot represents an edge of the
graph and is a useful way to view the [an]-isotropy of a Laplacian
matrix. These reveal spatial features of the OLS parameter estimates
encoded in the GGL that are not present for EGL. Predictions from the
two marked pixels in Fig. 4c are shown in Figs. 4d and e. Fig. 4e
demonstrates detection of spurious signal that is not present in the
data using GSP and EGL. This does not occur using GGL.

Eigenmodes of EGL and GGL are shown in Figs. 4f and g
respectively (formatted as images). Note that the first eigenmode is
not shown as this is constant over the graph. These can be regarded as
components of the empirical prior covariance over voxels. They
provide insight into the feature preserving nature of GGL; note the
central region of the OLS parameter image is encoded in its
4 A posterior probability map has two thresholds t1∈R and t2∈ [0,1] that
are used to show voxels where the model is at least 100× t2% sure that the
effect size is greater than t1 and is represented by the expression p(βN t1)N t2.
5 The ith local kernel is centred at the ith voxel and is given by (an image

format of) the same row of the spatial covariance matrix.
eigenmodes, which means that parameters at two locations (a fixed
distance apart) within the central region are more likely to covary,
compared to when one location is outside this region. As such, they
are non-stationary functions over the graph. This is not the case for
EGL, whose eigenmodes are stationary. An example covariance
component (fourth eigenmode) is shown in the top row of 4h and full
diffusion kernel (i.e. the sum of all eigenmodes weighted by their
eigenvalues) below. Spectra, i.e. eigenvalues, e�kis, of the EGL
diffusion kernel are shown in Fig. 4i for two different values of τ. This
shows dependence of the spectrum on τ. Note the rapid decay with
larger τ. Eigenmodes with small eigenvalues contribute little to the
total covariance matrix; this is the rationale for using a reduced
eigensystem. The results of Bayesian model comparison are given in
Table 2 and confirm that the evidence for the GGL-based prior is
largest, which concurs with the known non-stationarity of the data set.

fMRI data

Results for fMRI data collected during auditory stimulation are
shown in Fig. 5. These data are available freely at http://www.fil.ion.
ucl.ac.uk/spm/data/auditory.html and were pre-processed as de-
scribed in the SPM manual, with the exception of not smoothing
data. A simple design matrix with two partitions (auditory stimulus
and confounds) was used (see design matrix in upper right of Fig. 5a).
This is a very simple experimental design, with the effect of interest
encoded in the first column. This means that parameter estimates of
this effect form a scalar field over anatomical space. The main effects
of auditory input (first column), from two slices (22 and 23 of 46)
through the auditory cortex, are shown in Figs. 5a–c for GSP, EGL
and GGL-based spatial priors respectively. For comparison, we
include mass-univariate parameter estimates in Fig. 5d, using the
conventional practice of smoothing datawith a 6mmGaussian kernel.
Compared with conventional smoothing of the data, differences in
estimated responses in Figs. 5a–c are clear, with noisy estimates in
Fig. 5a, smooth parameter images in Fig. 5b and less attenuation of
signal at peaks in Fig. 5c, along with smooth estimates within
quiescent regions (the colour scale beneath the images indicates
percent signal change). This is due to the border-preserving nature of
the non-stationary prior, which allows the degree of smoothness of a
parameter image to vary over space. This means that parameter
images look sharper, as edges between functionally segregated
regions are preserved and not blurred by the constraint of stationarity.

Bayesian model comparison revealed the non-stationary GGL
model in Fig. 5c had the greatest evidence (see Table 2). This model
was able to extract the structured deployment of cortical responses
that are otherwise blurred by EGL. Note that this comparison could
not have been made if data were smoothed outside the statistical
model. Local kernels and PPMs, i.e., maps of voxels where the model
is 95% sure that the effect size is greater than 2% of the global mean
(for slice 22 of 46), are shown for EGL and GGL in Fig. 5e. PPMs
represent statistical inferences with clear differences in that ‘active’
voxels using EGL are reduced to ‘blobs’, whereas filamentous
responses are recovered for GGL, corresponding to their genesis in
gray matter. This difference is crucial as decisions regarding data are
based on such inferences. The PPM using GGL is shown in Fig. 5f
overlaid on an anatomical image (at the same resolution as functional
data).Whitematter has, in general, a lighter shade in this image,which
shows ‘activations’ adjacent to white matter and concurs qualitatively
with our expectation that BOLD signal has a cortical origin.

Predictions from EGL and GGL-based models are shown in
Fig. 5g at the boundary of response in the left auditory cortex (at

http://www.fil.ion.ucl.ac.uk/spm/data/auditory.html
http://www.fil.ion.ucl.ac.uk/spm/data/auditory.html
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the location of the green kernel in Fig. 5e). These show a poor fit
for EGL suggesting that the isotropy assumption is inappropriate
for these data. Eigenmodes (in image format) from EGL and GGL
in Figs. 5h–i show peaks in the auditory regions for GGL, but not
for EGL. Again, these reveal the non-stationary nature of the GGL-
based spatial covariance, compared with EGL.

Discussion

We have outlined a Bayesian scheme to estimate the optimal
smoothing of conditional parameter estimates, given a diffusion-based
spatial prior and have applied it to single-subject fMRI data. The
contrast between stationary and non-stationary spatial models is
remarkable and suggests that the isotropic assumption implicit in
conventional smoothing is not appropriate for these data. We have
shown this formally using Bayesian model comparison and qualita-
tively by comparing predictions at a functional boundary. Our approach
provides a principled way to compare assumptions about the spatial
nature of data that would otherwise not be possible using the standard
approach of smoothing data at a pre-processing stage of analysis.
Diffusion-based spatial priors allow the strong assumption of isotropy
to be relaxed. This is important as the brain is comprised of functional
structures that have different spatial scales e.g., cortical and subcortical.

Formulating the model in terms of the eigenmodes of a weighted
graph Laplacian allows us to make contact with classical covariance
component estimation, i.e., ReML-based schemes (Friston et al.,
2002b; Patterson and Thompson, 1974) and conventional Laplacian
priors (Penny et al., 2005). Given these eigenmodes, the emphasis is
then on finding a parameterized function of their eigenvalues that best
explains data; for example, the diffusion-based prior in this paper uses
a function parameterized by τ, i.e., f(Λ,τ)=exp(−Λτ). This diffusion
kernel specifies a spatial process where the shape of a local
neighbourhood is represented by edge weights and whose scale is
controlled by τ. This reduces the problem to optimizing τ, which also
produces compelling results of the sort reported above.

The usefulness of the Laplacian eigensystem has also been
explored in regularization schemes for image restoration and
smoothing. However, there is a substantial distinction between
regularization and Bayesian modeling. Regularization parameters
control the effective complexity of amodel and determine the degree
of over-fitting (Bishop, 2006), whereas Bayesian schemes provide a
principled approach to represent and estimate uncertainty of such
parameters, using hierarchical models. As such the Bayesian
paradigm provides a powerful framework, where model complexity
is included in an estimate of the probability of data, given the model,
e.g., where models may differ depending on the form of prior used to
embody a hypothesis about how data are generated.

In our scheme, data are not regularized (smoothed). Instead
model parameters are represented as random fields that have, in
general, non-stationary smoothness. The aim is not only to estimate
a posterior density on these fields, but also to estimate optimal
regularization parameters, such as the dispersion of a diffusion
kernel. This enables comparison of different hypotheses about the
data; e.g., what are the odds that a non-stationary spatial process
generated the data compared with a stationary process. Given this,
we consider the material in this paper to go beyond simple regu-
larization schemes based on the Laplace–Beltrami operator.

We have reported only two slices of data analyzed using our ap-
proach, which reflects an outstanding issue. As there is only one model
of the data, there is just one Laplacian, which is over all voxels in the
brain. The associated spatial prior corresponds to a covariancematrix of
the order 105, which is computationally prohibitive for current standard
personal computers. This is a general implementation issue forGaussian
process priors that require inversion of large matrices. The current
implementation of Penny et al.'s algorithm inSPMprocesses one slice at
a time, meaning that a 2D Laplacian is used instead of 3D. While data
are measured slice by slice, the underlying functional anatomy is in
general 3D, which suggests that 3D models are appropriate. A possible
solution is to use a weighted graph Laplacian to partition (Grady
and Schwartz, 2003; Qui and Hancock, 2005) a brain volume into
computationally manageable pieces. A diffusion-based prior would
then be used for each partition independently. Another approach, which
we are currently exploring, is to generate data on, and only on, the
cortical surface. This generative model could be used to explain
observed responses that have been assigned to the cortical mesh using
anatomically informed basis functions (Kiebel et al., 2000). Alterna-
tively, the model could generate 3D data by diffusing the 2D cortical
response over a 3Dmesh. Thiswould have the advantage of conforming
to the known anatomical generation of BOLD signal, requiring smaller
prior covariance matrices, while modeling full 3D image data.

Acknowledgments

The Wellcome Trust funded this work and JD is supported by a
Marie Curie Fellowship from the EU.
Appendix A. Linear algebra for the EM scheme

This appendix provides notes on the linear algebra used to
compute the gradients and curvatures necessary for the EM scheme
in the main text. They are not necessary to understand the results
presented above but help optimize implementation.

We require the bound on the log-marginal likelihood, ln p(y|α)
and its derivatives.

F ¼ �1
2
lnjRj þ yTR�1y
� �þ const

R að Þ ¼ R1 þ ZR2ZT

Ri ¼ Ki � Si:

ðA:1Þ

The first term of Eq. (A.1) is

lnjRj ¼ lnjR1j þ lnjR2j þ lnjR�1
2 þ ZTR�1

1 Zj
¼ lnjR1j þ lnjR2j þ lnjPj ðA:2Þ

where jZ þ UWVT j ¼ jZjjW jjW�1 þ VTZ�1U j, see appendix of
Rasmussen and Williams (2006). This can be reduced further using
jRij ¼ jKi � Sij ¼ jKijrank Sið ÞjSijrank Kið Þ. The second term is

yTR�1y ¼ tr YTAe1

� �
Ae1 ¼ S�1

1 ê1K�1
1

ðA:3Þ

where we have used vec(A)Tvec(B)= tr(ATB) and, where ε̂1=Y-Xβ̂
is the matrix of prediction errors, where μ=vec(β̂).

A.1. Conditional moments of parameters (E-step)

The conditional precision is

P ¼ ZTR�1
1 Z þ R�1

2 ¼ K�1
1 � XTS�1

1 X þ K�1
2 � S�1

2 : ðA:4Þ

The conditional covariance can be formulated in terms of
eigenmodes of the second level prior covariance as follows: using
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the matrix inversion lemma, Z þ UWVTð Þ�1¼ Z�1 � Z�1U
W�1 þ VTZ�1U
� ��1

VTZ�1, the data precision is

R�1 ¼ R�1
1 � R�1

1 Z R�1
2 þ ZTR�1

1 Z
� ��1

ZTR�1
1

¼ R�1
1 � R�1

1 ZP�1ZTR�1
1 :

ðA:5Þ

Using the eigenvalue decomposition; Σ2=Φ2D2Φ2
T, where

U2 ¼ UK2 � US2 , D2 ¼ DK2 � DS2 , i.e., Φ and D are eigenvectors
and eigenvalues respectively, then

R ¼ ZU2D2UT
2Z

T þ R1

R�1 ¼ R�1
1 � R�1

1 ZU2 D�1
2 þ UT

2Z
TR�1

1 ZU2

� ��1
UT

2Z
TR�1

1 :

ðA:6Þ
Comparing the last line of Eq. (A.5) with (A.6)

P�1 ¼ U2EUT
2

E ¼ D�1
2 þ UT

2Z
TR�1

1 ZU2

� ��1

¼ D1=2
2 I þ D1=2

2 UT
2 Z

TR�1
1 ZU2D

1=2
2

� ��1
D1=2

2 :

ðA:7Þ

Note, for a diffusion-based prior, DK2 ¼ f Kð Þ ¼ exp �Ksð Þ,
however, we could use DK2 ¼ f Kð Þ ¼ K�1 for a Laplacian prior
(numerically stable expressions for each are given in the last and
penultimate lines of Eq. (A.7) respectively).

The conditional mean is

A ¼ U2EU
T
2Z

TR�1
1 y ðA:8Þ

A.2. Conditional moments of hyperparameters (M-step)

To compute the derivatives6 required for the M-step, we use
standard results for Kronecker tensor products to show the score
and expected information reduce to

AF
Agk

¼ �1
2
trðA kð Þ

a � B kð Þ
a � F kð Þ

a C � G kð Þ
a D

� �
E

þ AT
e B̃

kð Þ
a Ae Ã

kð ÞT
a
Þ ðA:9Þ

and

A
2F

AgkAgn
¼ 1

2
tr A kð Þ

a A nð Þ
b

� �
tr B kð Þ

a B nð Þ
b

� �
þ1

2
tr F nð Þ

b C � G nð Þ
b D

� �
E F kð Þ

a C � G kð Þ
a D

� �
E

� �
�1

2
tr F nð Þ

b A kð Þ
a C � G nð Þ

b B kð Þ
a D

� �
E

� �
ðA:10Þ

where the superscript of matrices A, B, F, and G represents a
Table 3
Column precisions

P
K

�1
a1b ¼ UT

Ka
K�1
1 UKb , where a,b⊂{1,2}

1 2

1 UT K�1U UT K�1U
hyperparameter index, i.e., ko{1,2,3}, while the subscript represents
a level index for error covariances, i.e., ao{1,2}, which will simplify
expressions later. Terms in Eqs. (A.9) and (A.10) are given by

AF
Agk

¼ AR
Akk

A kð Þ
a ¼ K�1

1 Ã
kð Þ
a

B kð Þ
a ¼ S�1

1 B̃
kð Þ
a

C ¼ K�1
1 UK2

D ¼ S�1
1 XUS2

E ¼ D1=2
2 I þ D1=2

2 UT
2Z

TR�1
1 ZU2D

1=2
2

� ��1
D1=2

2

F kð Þ
a ¼ UT

K2
K�1
1 Ã

kð Þ
a

G kð Þ
a ¼ UT

S2X
TS�1

1 B̃
kð Þ
a
:

ðA:11Þ
6 All derivatives are with respect to γ = ln α.
Supporting calculations for the score are

AF
Agk

¼ �1

2
tr R�1 AR

Akk

� �
þ yTR�1 AR

Akk
R�1y

� �
AF
Agk

¼ tr R�1
1 � R�1

1 ZP�1ZTR�1
1

� �
Ã

kð Þ
a �B̃

kð Þ
a

� �
¼ tr A kð Þ

a � B kð Þ
a � C � Dð ÞE F kð Þ

a � G kð Þ
a

� �� �
¼ tr A kð Þ

a � B kð Þ
a � F kð Þ

a C � G kð Þ
a D

� �
E

� �

ðA:12Þ

AF
Agk

¼ vec Aeð ÞT Ã
kð Þ
a �B̃

kð Þ
a

� �
vec Aeð Þ

¼ vec Aeð ÞT vec B̃
kð Þ
a AeÃ

kð ÞT
a

� �
¼ tr AT

e B̃
kð Þ
a AeÃ

kð ÞT
a

� �
ðA:13Þ

where we have used Π−1=Φ2EΦ2
T and the notation in Eq. (A.11).

The expression in Eq. (A.10) is derived from the expected Fisher
information, Ikn=−h∂2F /∂αk ∂αni, see Fig. 3 last line, using
Eq. (A.12) and the cyclic property of trace. These expressions
simplify further using tr(A�B)= tr(A)tr(B). Note, if the data are
transformed, i.e.,Ỹ ¼ PrYPc, then all variables are transformed as
shown in Eq. (6).

The formulation above is not a computationally efficient way to
implement the algorithm. We want to make use of Ki ¼ UKiDKiU

T
Ki

and Si ¼ USiDSiU
T
Si
, in particular, given

L ¼ UK2KU
T
K2

exp �Lsð Þ ¼ UK2DK2U
T
K2

DK2 ¼ f K; sð Þ ¼ exp �Ksð Þ
ðA:14Þ

Computationally efficient expressions are obtained using tr(ABT)=
1T(A○B)1 (where ○ is the Hadamard product, 1 is a column of ones)
and the following

tr
P
A

kð Þ
a

� �
¼ tr A kð Þ

a

� �
tr

P
B

kð Þ
a

� �
¼ tr B kð Þ

a

� �
P
C

kð Þ
a ¼ F kð Þ

a C
P
D

kð Þ
a ¼ G kð Þ

a D
P
F

knð Þ
ab ¼ F kð Þ

a A nð Þ
b C

P
G

knð Þ
ab ¼ G kð Þ

a B nð Þ
b D

ðA:15Þ

together with the expressions in Tables 3−5. Here we have used the
notation

P
X a1b ¼ UT

a X1Ub to represent left and right multiplication of
X1 by bases Фa and Фb respectively. This is important when using a
reduced eigen system, e.g., na,nbbN, as the dimension ofX1 is reduced
K1 1 K1 K1 1 K2

2 UT
K2
K�1
1 UK1 UT

K2
K�1
1 UK2



Table 4
Row precisions

P
S a1b

–1 , where a,b⊂{1,2}

1 2

1 UT
S1
S�1
1 US1 UT

S1
S�1
1 XUS2

2 UT
S2
XTS�1

1 US1 UT
S2
XTS�1

1 XUS2

Table 5
Eigenvalues of derivatives (with respect to γ=ln α)

1 2 3

dDa
(k)

DK1 � DS1
�K2DK2s� DS2 DK2

� DS2
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from N×N to na×nb. Components of Eqs. (A.9) and (A.10) then can
be written

trðAðkÞ
a Þ ¼ 1T ðPK�1

a1aBdDðkÞ
a Þ1

trðBðkÞ
a Þ ¼ 1T ðPS�1

a1aBdDðkÞ
a Þ1

trððFðkÞ
a C � GðkÞ

a DÞEÞ ¼ 1T ððPCðkÞ
a � P

D
ðkÞ
a ÞBET Þ1

trðAðkÞ
a AðnÞ

b Þ ¼ 1T ððPK�1
b1adD

ðkÞ
a ÞBðPK�1

a1bdD
ðnÞ
b ÞT Þ1

trðBðkÞ
a BðnÞ

b Þ ¼ 1T ððPS�1
b1adD

ðkÞ
a ÞBðPS�1

a1bdD
ðnÞ
b ÞT Þ1

trððFðkÞ
a C � GðkÞ

a DÞEðFðnÞ
b C � GðnÞ

b DÞEÞ ¼ 1T ððPCðkÞ
a � P

D
ðkÞ
a ÞEBððPCðnÞ

b � P
D

ðnÞ
b ÞEÞT Þ1

trððFðkÞ
a AðnÞ

b C � GðkÞ
a BðnÞ

b DÞE ¼ 1T ððPFðknÞ
ab � P

G
ðknÞ
ab ÞBET Þ1

ðA:16Þ
The expressions for tr(Aa

(k)) and tr(Ba
(k)) are sparse because dDa

(k)

is diagonal, even if K
�

a1a
–1 or S

�
a1a
–1 are not.

Appendix B. Embedding space metric of graph Laplacian

In this paper the embedding metric (Eq. (13)) is fixed, where
Hd ¼ Ind and

Hf ¼ C�1
ols

Cols ¼ hols �Molsð Þ hols �Molsð ÞT
Aols ¼ vec holsð Þ
Mols ¼ 1

N
hols1N1

T
N

ðA:17Þ

where θols is the P×N matrix of OLS estimates and 1N is a column
vector of ones length N.
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