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ICA: Model order selection and dynamic
source models

W.D. Penny and S.J. Roberts, University of Oxford

R.M. Everson, University of Exeter

In this chapter we investigate ICA models in which the number of

sources, M , may be less than the number of sensors, N ; so-called non-

square mixing.

The ‘extra’ sensor observations are explained as observation noise.

This general approach may be called Probabilistic Independent Com-

ponent Analysis (PICA) by analogy with the Probabilistic Principal

Component Analysis (PPCA) model of (11); ICA and PCA don’t have

observation noise, PICA and PPCA do.

Non-square ICA models give rise to a likelihood model for the data

involving an integral which is intractable. In this chapter we build on

previous work in which the integral is estimated using a Laplace approx-

imation. By making the further assumption that the unmixing matrix

lies on the decorrelating manifold we are able to make a number of sim-

plifications. Firstly, the observation noise can be estimated using PCA

methods, and, secondly, optimisation takes place in a space having a

much reduced dimensionality; having order M2 parameters rather than

M × N . Again, building on previous work, we derive a model order

selection criterion for selecting the appropriate number of sources. This

is based on the Laplace approximation as applied to the decorrelating

manifold and is compared with PCA model order selection methods.

Standard ICA, if there is such a thing, is not a proper time series

model, as each source is considered to be Independent and Identically

Distributed (IID). But with dynamic source models, temporal informa-

tion is used and, as we show, this can lead to much improved source

estimation. The second part of this chapter looks at the use of such dy-

namic source models, where the sources are modelled using a generalised

autoregressive (GAR) process. This is the usual autoregressive process
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but where the noise has a Generalised Exponential (GE) distribution

instead of the usual Gaussian.

This chapter consists of six further sections. The first descibres the

probability model for non-square ICA and derives the Laplace approx-

imation required to calculate the data likelihood. The second section

describes the decorrelating manifold and the third describes ICA and

PCA model order selection methods. Section four describes different

source models including the GAR process. This includes a description

of its own model order criterion for determining the number of taps in

the GAR filter. Section five describes results from applying the above

methods to the unmixing of music sources and the chapter is concluded

in section six.

1.1 A Probabilistic model

The observed variables x, of dimension N , are modelled as

x = As + e (1.1)

where e is zero mean Gaussian observation noise having an isotropic

covariance matrix with precision β, A is the mixing matrix, and the

underlying sources s are statistically independent

p(s) =

M∏
i=1

p(si) (1.2)

where the sum runs over the M sources. The distribution of the obser-

vations conditioned on the mixing matrix and sources is

p(x|A, s) = N (x;As, (1/β)I) (1.3)

where N(x;µ,Σ) is a normal distribution with mean µ and covariance

Σ. The likelihood of a data point is given by

p(x|A) =

∫
p(x|A, s)p(s)ds (1.4)

With a non-square ICA model, optimisation takes place in two iterated

steps; source estimation and mixing matrix estimation.

1.1.1 Source estimation

The sources can be estimated by noting that their posterior distribution

p(s|A,x) ∝ p(x|A, s)p(s) (1.5)
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is proportional to the ‘prior’ distribution, p(s), and the source-dependent

likelihood p(x|A, s). An iterative gradient-based scheme exists for esti-

mating the Maximum A Posteriori (MAP) sources, sMAP . This consists

of two terms; (i) the gradient of the source-dependent log-likelihood and

(ii) the gradient of the log source densities, both of which are given in

later parts of this chapter.

Alternatively, the prior can be ignored and the sources set to their

Maximum Likelihood (ML) source values, sML. These are recovered via

an unmixing matrix

sML = Wx (1.6)

which is given by the pseudo-inverse of the mixing matrix

W = (ATA)−1AT (1.7)

This unmixing minimises the squared reconstruction error, and therefore

maximises the data-likelihood. Computation of the MAP sources will

not improve on the ML reconstruction error or the squared error of

source estimation, but it will reduce ‘cross-talk’ between the sources ie.

make them more independent. An empirical demonstration of this is

given in (1).

1.1.2 Mixing matrix estimation

To compute the likelihood of an observation we must be able to cal-

culate the integral in equation 1.4. If we assume that the distribution

over sources is dominated by a single peak, ŝ, then the integral can be

performed using Laplace’s method (4)∫
p(x|A, s)p(s)ds ≈ p(x|A, ŝ)p(ŝ)(2π)M/2 det(F )−1/2 (1.8)

where

F = −
[
d2 log p(x|A, s)p(s)

dsidsj

]
s=ŝ

(1.9)

In this chapter we use a simplified variant of Laplace’s method where

the above matrix is replaced by the Hessian (4)

H = −
[
d2 log p(x|A, s)

dsidsj

]
s=ŝ

(1.10)

We have

log p(x|A, s) =
N

2
log

(
β

2π

)
− β

2
(x−As)T (x−As) (1.11)
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giving

H = βATA (1.12)

The log-likelihood of an observation, L ≡ log p(x|A) is therefore given

by

L =
N −M

2
log

(
β

2π

)
− β

2
(x−Aŝ)T (x−Aŝ) (1.13)

+ log p(ŝ)− 1

2
log det(ATA)

The mixing matrix, A, can be optimised by following the gradient dL/dA

using a Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer as shown

in (10). The noise precision can then be estimated using a fixed point

of the above likelihood

1

β
=

1

N −M
< (x−Aŝ)T (x−Aŝ) > (1.14)

where the expectation is taken over all observations.

Fitting a non-square ICA model therefore consists of iterating esti-

mates of the mixing matrix with estimates of the noise precision and

the sources. The sources can be estimated either by their MAP or ML

values, ie. ŝ = sMAP or ŝ = sML, as shown in the previous section. In

previous work, (10) has used ML sources.

1.2 The Decorrelating Manifold

In previous work 3 we have constrained the unmixing matrix to be a

decorrelating matrix. The motivation for this is that, for sources to be

statistically independent, they must be at least linearly decorrelating.

Therefore, by ensuring that they are decorrelating, we are at least some

way to finding the ICA solution. The corresponding mixing matrix is

defined as follows.

If X is an N × T matrix of zero-mean data vectors, and each entry is

normalised by 1/T , and the Singular Value Decomposition (SVD) of X

is given by

X = UΛV (1.15)

then U contains the principal components of the observation covariance

matrix and Λ = [λ1, λ2, ...λN ] contains the standard deviations of the

corresponding principal components. The mixing matrix is then given
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by

A = UMΛMQ
TD−1 (1.16)

where UM and ΛM are the first M columns of U and Λ. The transform

is also parameterised by a diagonal scaling matrix D and an orthogonal

matrix Q which are both of dimension M ×M . The matrices Q and D

constitute the ICA transform proper.

1.2.1 Source and noise estimation

The ML source estimates are, as before, given by the pseudo-inverse of

the mixing matrix

W = (ATA)−1AT (1.17)

= DQΛ−1
M UT

M

operating on the observations

sML = Wx (1.18)

The reconstructed observations are given by

AsML = UMU
T
Mx (1.19)

which gives an average reconstruction error of

E = < (x−AsML)T (x−AsML) > (1.20)

= Tr[(X − UMU
T
MX)T (X − UMU

T
MX)]

= Tr[XTX −XTUMU
T
MX] (1.21)

By noting that the projection onto the first M principal components is

Y = XTUM , and their covariance is Y Y T = XTUMU
T
MX, E is seen to

be the variance of the data not explained by the first M components.

Hence

E =

N∑
i=M+1

λ2i (1.22)

and

1

β
=

1

N −M

N∑
i=M+1

λ2i (1.23)

Therefore, if ICA is constrained to the decorrelating manifold and ML

source estimates are used, the observation noise level is not dependent
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on D or Q ie. the ICA transform proper. It can therefore be calculated

ahead of optimising D and Q and fixed to its calculated value.

1.2.2 Mixing matrix estimation

In previous work (3), we showed that for flexible source models (see

later), the mixing matrix can be constrained to have rows of length one.

For these cases we have D = I. The matrix Q is constrained to be

orthogonal by writing it as

Q = exp(Z) (1.24)

where Z is a skew-symmetric matrix (ZT = −Z) whose non-zero entries

zij are known as Cayley coordinates (6).

By substituting in the average reconstruction error and our chosen

form for the mixing matrix, the log-likelihood becomes

L =
N −M

2
log

(
β

2πe

)
+ log p(sML) (1.25)

+ log det(D)− log det(Q)− log det(ΛM )

As Q is an orthonormal matrix, we always have det(Q) = 1. Therefore

the only term in the likelihood that depends on Q is the log source

density where the dependence is introduced via equations 1.17 and 1.18.

In previous work (3) we show how to compute the derivative of this

term and combine it with an expression for dQ/dZ. This then gives the

gradient of the likelihood with respect to the Cayley coordinates. Fitting

the ICA model therefore corresponds to simply following this gradient

using, for example, a BFGS optimiser.

1.3 Model order selection

The optimal number of sources, M̂ , can be computed by plotting the

log-likelihood, log p(x|A), as a function of M and choosing the maxi-

mum. For most signal processing models, eg. autoregressive models,

wavelets or neural networks, model order selection using a maximum

likelihood criterion is doomed to failure. This is because as more ba-

sis functions are added the likelihood increases monotically; the optimal

model order is therefore infinite. ICA however, is more like a product

model than an additive model, because the sources are independent. As

too many sources are postulated, the independence criterion is violated



ICA: Model order selection and dynamic source models 7

thus reducing the overall likelihood. ICA model order selection using

ML is therefore plausible.

For the case of Gaussian sources the ICA model reduces to PCA. We

are then able to use PCA model order selection methods such as the

Laplace approximation used by (6). By using conjugate priors for the

eigenvectors, eigenvalues and noise level and parameterising the eigen-

vectors using Cayley coordinates (6) shows that the evidence for a PCA

model with M sources is

p(X|M) ≈ p(U)

 M∏
j=1

λj

−T/2

βT (N−M)/2(2π)(m+M)/2|AZ |−1/2T−M/2

(1.26)

where m = NM −M(M + 1)/2 and

p(U) = 2−M
M∏
i=1

Γ((N − i+ 1)/2)π−(N−i+1)/2 (1.27)

where Γ() is the Gamma function and

|AZ | =
M∏
i=1

N∏
j=i+1

(λ̂−1
j − λ̂

−1
i )(λi − λj)T (1.28)

and λj are the eigenvectors from PCA, and λ̂j are identical except for

j > M where λ̂j = (1/(N −M))
∑N

j=M+1 λj . Minka’s experiments and

our own, show this to be a remarkably consistent model order criterion,

even with very few data points. Moreover, Minka produces empirical

evidence to show that for selected non-Gaussian sources (sound samples

with skewed and kurtotic densities), accurate model order selection is

still feasible.

1.4 Source Models

1.4.1 Inverse-Cosh Sources

In (2) the source densities are assumed to be inverse-cosh densities

p(si) =
cosh−1(si)

Z
(1.29)

where Z is a normalising constant. This form arises from the choice of

nonlinearity used in the learning algorithm, as discussed in (5). This
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gives rise to a gradient

d log p(si)

dsi
= − tanh(si) (1.30)

which is the hyperbolic tangent squashing function used in neural net-

work implementations of ICA models. The normalising constant can be

approximated as

logZ = a log(c+ 1) + b (1.31)

where a = 0.522,b = 0.692 and c = 1.397. A drawback of the IC density,

however, is its inability to model sub-Gaussian densities, such as the

uniform density.

1.4.2 Generalised Exponential Sources

A more general parametric form which can model super-Gaussian, Gaus-

sian and sub-Gaussian forms is the ‘Exponential Power Distribution’ or

‘Generalised Exponential (GE)’ density

p(si) ≡ G(si;Ri, βi) =
Riβ

1/Ri

2Γ(1/Ri)
exp(−βi|si|Ri) (1.32)

This density has zero mean, a kurtosis determined by the parameter Ri

and a variance which is then determined by 1/βi. 3 show how to calculate

the derivative of the log source density and describe an embedded line

search method for estimating {Ri, βi}.

1.4.3 Generalised Autoregressive Sources

7 have proposed a ‘contextual-ICA’ algorithm where the sources are con-

ditioned on previous source values. The observations are then generated

from an instantaneous mixing of the sources. Their work focuses on us-

ing generalized autoregressive (GAR) models for modelling each source.

The term ‘generalised’ is used because the AR models incorporate ad-

ditive noise which is non-Gaussian. Specifically, Pearlmutter and Parra

use an inverse-cosh noise distribution.

Pearlmutter and Parra have shown that contextual-ICA can separate

sources which cannot be separated by standard (non-contextual) ICA al-

gorithms. This is because the standard methods utilise only information

from the cumulative histograms; temporal information is discarded.

In this chapter we use GAR models with p filter taps and additive

noise drawn from a generalised exponential distribution; for p = 0 these
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models therefore reduce to the GE sources described in the previous

section. The density model is

p(si) = G(ei[t];Ri, βi) (1.33)

where ei[t] = si[t] − ŝi[t] is the GAR prediction error and ŝi[t] is the

GAR prediction

ŝi[t] = −
p∑

k=1

ci(k)si[t− k] (1.34)

where ci(k) are the GAR coefficients for the ith source which can collec-

tively be written as a vector ci. The GAR coefficients can be estimated

by minimising the error

E =

T∑
t=1

|ei[t]|R (1.35)

8 derive the corresponding gradients and, again, use BFGS for optimi-

sation. This procedure is embedded within the algorithm for estimating

the unmixing matrix, W . The GAR models are re-restimated once for

every ten updates of W .

The optimal number of filter taps, p̂, can be chosen using a Minimum

Description Length (MDL) model order selection criterion. For a data

set D and estimated parameters θ̂ of dimension p, the MDL criterion is

given by

MDL(p) = − log p(D|θ̂) +
p

2
log T (1.36)

where T is the number of data points. For a GAR model this gives

MDLGAR(p) = −T log

(
Rβ(1/R)

2Γ(1/R)

)
+

T∑
t=1

β|et|R +
p

2
log T (1.37)

For R = 2, if we ignore terms not involving p or β, this reduces to the

well known MDL criterion for an AR model

MDLAR(p) = −T
2

log β +
p

2
log T (1.38)

This criterion can be applied to each GAR source in an ICA model,

allowing each to have a different number of taps, thus reflecting the

dynamic complexity or otherwise, of each source.
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1.5 Results

1.5.1 Selecting the number of sources

We now give some results of applying the various model order selec-

tion methods for estimating the optimal number of sources. The first

method, which we call ICADEC-L, uses the Laplace approximation and

constrains the unmixing matrix to be on the decorrelating manifold.

This results in the likelihood expression in equation 1.25.

The above measure is compared with PCA model order selection

methods. The first of these methods, which we call PCA-L, uses Minka’s

Laplace approximation described earlier. The second, which we call

PCA-MDL, uses an MDL criterion described in (12). The last method,

which we call PCA-EV, is the evidence method described in (9).

The methods are applied to four datasets. The first consists of two

music sources (the top two in figure 1.1) which are mixed into six obser-

vations to which is then added observation noise of variance 1/β. The

second data set consists of four music sources (see figure 1.1) which are

again mixed into six observations to which we add observation noise.

All music sources were normalised to zero mean and unit variance. Fifty

data sets of each type are created, where each time, the mixing matrix

was set randomly according to a Gaussian distribution. The observation

noise sequence was generated afresh each time.

Tables 1 and 2 show the number of times each model selection cri-

terion selected the correct order, for 100 data points and various noise

levels. The PCA-L and PCA-MDL criterion appear to offer the best

performance, with PCA-L always being slightly better. The ICADEC-L

criterion always degrades more rapidly in the presence of noise. The

PCA-EV criterion is inconsistent; outperforming all methods on the 4-

source task (and actually getting better with increasing noise level), but

doing poorly on the 2-source task.

The next two datasets involve EEG sources which were derived as fol-

lows. We applied ICADEC to a 22-channel EEG recording, over a time

period for which the signal statistics were considered to be stationary

(this was found by embedding the ICA model in a hidden Markov pro-

cess; see 8 for details). The true number of sources underlying this data is

unknown, but applying PCA-L gave an answer of 15. We then extracted

two data sets; one consisting of 3 sources, shown in Figure 1.2, and one

consisting of 10 sources (not shown). All sources were normalised to

zero mean and unit variance. These sources were then mixed up to form

20-dimensional observations to which noise was added. Fifty data sets
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Table 1.1. Model order selection with 2 music sources of unit variance.

The numbers indicate the percentage of times the correct model order

was selected.

1/β PCA-L PCA-MDL PCA-EV ICADEC-L

0.1 100 100 100 100
0.3 94 96 64 86
0.5 96 94 0 62
1.0 78 71 0 8

of each type were created, where each time, the mixing matrix was set

randomly according to a Gaussian distribution and the observation noise

sequence was generated afresh each time.

The ICADEC-L criterion was applied to only 10 data sets of each

type, and at a single noise level (1/β = 0.1), due to the excessive

amount of computation required; the PCA methods perform a single

eigen-decomposition of the 20-dimensional space, whereas for ICADEC-

L we have to perform 20 separate optimisations.

For the 3-source EEG data set, PCA-L and PCA-MDL achieved 100%

correct model order selection at all noise levels (1/β = 0.1, 0.3, 0.5, 1.0).

PCA-EV completely failed at all but the first noise level; as more noise

was added it estimated the optimal model order (averaged over the 50

data sets) as 3, 6, 9 and 13 respectively. It therefore mistakenly inter-

prets the extra observation noise as extra sources. ICADEC-L also failed

completely on the (limited) data it was applied to, again overestimating

the model order. It chose M̂ = 4 for 9/10 of the data sets and 5 on the

remaining one.

The results for the 10-source EEG data set are shown in Table 1.3.

Again, PCA-L shows the best performance, closely followed by PCA-

MDL. PCA-EV again fails at high noise levels, interpreting the extra

noise as extra sources. ICADEC-L performed reasonably well on the

limited data it was tried on, getting 70% correct at the first noise level

(though the PCA methods get 100% correct).

1.5.2 Comparing source models

Our second set of results compares the different source models; Inverse-

Cosh (IC), Generalised Exponential (GE) and Generalised Autoregres-
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Fig. 1.1. Music sources used in model order selection experiments. The left
two are samples of Beethoven and the right two are samples of Bessie Smith.

Table 1.2. Model order selection with 4 music sources of unit variance.

The numbers indicate the percentage of times the correct model order

was selected.

1/β PCA-L PCA-MDL PCA-EV ICADEC-L

0.01 100 96 56 100
0.1 94 94 58 88
0.3 86 82 82 76
0.5 72 70 96 66

sive (GAR). For the GAR model, application of the MDL criterion to

the music sources suggested using a model order of 10. Figures 1.3 and

1.4 show the correlations between true and estimated music sources for

the IC model and for the GAR model. This was for a data set con-

taining six observations mixed up from two music sources, as described

earlier. The variance of the observation noise was 1/β = 0.01. The

corresponding Normalised Mean Squared Errors (NMSE, the squared
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Fig. 1.2. Three EEG sources.

Table 1.3. Model order selection with 10 EEG sources of unit variance.

The numbers indicate the percentage of times the correct model order

was selected.

1/β PCA-L PCA-MDL PCA-EV

0.1 100 100 100
0.3 80 72 50
0.5 58 36 8
1.0 12 4 0

source estimation error normalised by the variance of the true sources)

were 0.0272 for IC, 0.1946 for GE and only 0.0014 for GAR. Table 1.4

shows how unmixing accuracy is dependent on the level of observation

noise (we omit the results for the GE model as it is not a good source
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Table 1.4. Normalised Mean Squared Error of unmixing using

Inverse-Cosh (IC) and Generalised Autoregressive (GAR) source

models, for various levels of added observation noise, 1/β. The final

column shows the relative error. At low noise levels (top-half of table)

there is an order of magnitude benefit in using a GAR model, whereas

at high noise levels the benefit is modest.

1/β IC GAR IC/GAR

0.001 0.0309 0.0013 24
0.005 0.0315 0.0027 12
0.01 0.0328 0.0045 7.3
0.05 0.0412 0.0195 2.1

0.1 0.0577 0.0360 1.6
0.3 0.1111 0.0902 1.2
0.5 0.1587 0.1200 1.3
1.0 0.1807 0.1640 1.1

model for this data set). At low noise levels there is an order of mag-

nitude benefit in using a GAR model, whereas at high noise levels the

benefit is modest.

1.6 Discussion

Of the model order criteria investigated the method of choice is PCA-L,

a Bayesian PCA criterion derived by (6). Not only is it accurate, it

is also fast. This is important as ICA is increasingly being applied to

data sets of a higher dimensionality where, for example in EEG or fMRI

analysis, we have tens or hundreds of observations.

The relatively poorer performance of the ICADEC-L criterion is not

really surprising as it is, in fact, a maximum likelihood criterion; in its

derivation we have not integrated out the mixing matrix or the obser-

vation noise. In future, we intend to do this by extending the use of

the conjugate priors used in PCA-L to the ICADEC situation; this is

a natural extension as, in ICADEC, the mixing matrix component Q is

also parameterised using Cayley coordinates.

The use of dynamic source models can, at low noise levels, improve

source estimation accuracy by an order of magnitude. In the future,

we envisage applying the GAR model order criterion at the same time
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as mixing matrix estimation. This could be used to allow the overall

algorithm to extract only those sources with a high temporal information

content. The reduction in the number of sources produced may help to

speed-up interpretation of the various ICA components.

Fig. 1.3. Source estimation using an Inverse-Cosh source model; plots of true
versus estimated sources.
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