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Mixtures of General Linear Models for Functional
Neuroimaging
Will Penny, Karl Friston

Abstract—We set out a new general framework for making
inferences from neuroimaging data, which includes a stan-
dard approach to neuroimaging analysis, Statistical Para-
metric Mapping (SPM), as a special case. The model offers
numerous conceptual and statistical advantages that derive
from analysing data at the ‘cluster-level’ rather than the
‘voxel-level’ and from explicit modelling of the shape and po-
sition of clusters of activation. This provides a natural and
principled way to pool data from nearby voxels for parame-
ter and variance-component estimation. The model can also
be viewed as performing a spatio-temporal cluster analysis.
The parameters of the model are estimated using an Expec-
tation Maximisation (EM) algorithm.

I. Introduction

We propose a new approach to the analysis of functional
neuroimaging data [8]. The approach is based on a fam-
ily of models called Mixtures of General Linear Models
(MGLMs) which include a standard approach to neurimag-
ing analysis, Statistical Parametric Mapping (SPM) [10], as
a special case. The central tenet of these models is that the
fundamental quantities of interest to the neuroimager are
the location, shape and temporal signature of clusters of
voxels showing task-related activity. In these models data
are analysed at the ‘cluster-level’. This is to be contrasted
with established methodologies in which data are analysed
at the ‘voxel-level’.

Our work is inspired by the notion of ‘borrowing
strength’, described by Genovese as follows [11]. The shape
and magnitude of the hemodynamic response and the im-
pact of physiological variations tend to be consistent across
localised groups of voxels. These localised groups repre-
sent regions with common physiological and/or functional
properties. These consistencies induce dependencies among
the model parameters associated with different voxels. By
identifying these ‘dependence neighbourhoods’ we can bor-
row strength in estimating the model parameters. That is,
we use data from multiple voxels to estimate common pa-
rameters. Genovese suggests that these neighbourhoods
are best identified using an adaptive partitioning of the
data based on the temporal signal at each voxel. Whilst
the way forward has been mapped out [11], no such algo-
rithm has yet been proposed. In this paper we provide just
such an algorithm: the MGLM model.

The MGLM approach may also be viewed as a spatio-
temporal clustering algorithm and as such generalises ex-
isting cluster-based methods for analysing functional data
(see eg. [4]).
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In section 2.A we describe Statistical Parametric Map-
ping, a dominant paradigm for analysing functional imag-
ing data. In section 2.B we describe the generative process
underlying MGLM and use it to generate ‘fMRI-like’ time
series. In section 2.C, we show how the parameters of an
MGLM can be estimated from real fMRI time series and
how inferences about clusters of activation are made. We
then describe how the models are initialised and, in section
3, apply the models to two fMRI data sets, a block-design
paradigm and an event-related paradigm [16]. The results
are compared with those from SPM.

II. Materials and Methods

A. Statistical Parametric Mapping

Statistical Parametric Mapping (SPM) [10] has been
adopted by a large contingent of the neuroimaging com-
munity and in this sense may be viewed as a standard
approach to neuroimaging analysis. SPM is based on a
General Linear Model (GLM) operating at each voxel in
a functional image. This is termed a ‘mass-univariate’
approach. This model consists of a design matrix, com-
mon to all voxels, and a set of parameter estimates that
are voxel-specific. The design matrix contains information
about the activation paradigm and possible confounding
variables and the parameter estimates indicate the strength
of the activations and confounds at each voxel. After basic
pre-processing data are spatially smoothed and GLMs are
fitted to each voxel. To detect voxels which are significantly
active, a t-statistic is then computed for each voxel. How-
ever, because there are so many voxels it is likely that some
will appear active by chance. To account for this a correc-
tion for multiple comparisons, based on Gaussian Random
Field (GRF) theory, is then made. The product of this
analysis is a map of a t-statistic showing which voxels are
significantly active. Two such maps are shown in Figures 4
and 8. Notice that although the analysis has proceeded at
the voxel-level, the end result is a map containing a small
number of blobs which constitute clusters of voxels showing
task-related activity. It is this structure that is exploited
in the MGLM model.

B. Generative Model

A key feature of MGLMs is that they are based on a ‘gen-
erative model’. The model consists of active components
and null components. Active components define spatially-
localised clusters of activity that are temporally correlated
with the activation paradigm and null components define
spatially distributed background activity which is tempo-
rally uncorrelated with the paradigm. Active components
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are characterised spatially by a Gaussian with a mean
defining the centre of the cluster and a covariance defin-
ing its shape and width. Examples of active components
are given in Figures 5,6 and 9. They are temporally char-
acterised by a GLM, defining the activation and possible
confounds. Time series defined by GLMs are shown as the
solid lines in Figures 7 and 10. In this paper we have a
single null component, although generally this need not be
the case. It is spatially defined by a uniform distribution
and temporally by a Gaussian process, with mean and vari-
ance that do not vary over time. The model for how the

Fig. 1. The generative model underlying MGLM. Voxel i is cho-
sen deterministically. For time point t we choose component k with
probability p(k|vi). A data point is then selected with probability
p(yt

i |k). This is then repeated for all voxels and all time points.

The probabilistic dependence means that we can write p(yt
i , k|vi) =

p(yt
i |k)p(k|vi). Summing over k gives equation 1.

time series are generated is as follows (see Figure 1). At
each voxel, at each time point a probabilistic decision is
made as to which component to draw a sample from. This
decision is based on a spatial prior - components nearer to
that voxel are more likely to be chosen. A sample is then
drawn from the GLM corresponding to the chosen compo-
nent. In this way, voxel time series consist of a mixture of
samples from different GLMs at different time points. This
mixing process couples the spatial and temporal domains
- voxels at the very edge of a ‘signal’ [active] component
nearly always draw ‘noise’ [null] samples, but occasionally
draw signal samples. More signal samples are drawn as we
get closer to the local activation centre. In this way, the
overall correlation of voxels with the activation paradigm
can vary smoothly over the image - as observed empirically.
A sample of images from such a generative model is shown
in Figures 2 and 3. The spatio-temporal model underlying
this process is separable in the sense that the spatial prior
is the same at all time points.

Mathematically, the fundamental assumption of our
model is that the likelihood of an observation at the ith
voxel and the tth time point, yt

i , is given by the mixture
model

p(yt
i |vi, θ) =

K∑
k=1

p(yt
i |k, θ)p(k|vi, θ) (1)

where the spatial location of the ith voxel is vi = [xi, yi, zi]
and the parameters of the model (introduced below) are
collectively written as θ. Note that this is a conditional
probability, with the fundamental dependence being on
spatial location. The first factor on the right of equation 1
is the probabilistic prediction from the kth component and
the second factor is the prior probability. The generative
model is shown graphically in Figure 1.

In what follows the notation Nd(µ, Σ) denotes a d-variate
Gaussian distribution with mean µ and covariance Σ.

The spatial prior is specified by the likelihood ratio

p(k|vi, θ) =
p(vi|k)∑
k′ p(vi|k′)

(2)

where
p(vi|k) = N3(mk,Σk) (3)

and mk = [xk, yk, zk] is the spatial location of the cluster
and Σk is its spatial covariance. This says that the proba-
bility that voxel vi belongs to cluster k falls as a Gaussian
function of distance from the cluster’s centre. The ensu-
ing probability of sampling from k given voxel vi is this
renormalised ‘belonging’ probability.

In the experiments in this paper we have a single null
component with a uniform spatial prior p(vi|k) = 1/V
where V is the number of voxels in the image. Impor-
tantly, this means that voxels are by default assigned to
the non-activating class. That is, if p(vi|k) falls below 1/V
for all of the active components then the voxel is a priori
assigned to the null component.

For an active component we have

p(yt
i |k, θ) = N1(ŷt

k, σ2
k) (4)

where ŷt
k is the prediction from the kth GLM at time t.

If we let Ŷk = [ŷ1
k, ŷ2

k, ..., ŷN
k ]T where N is the number of

time-points then
Ŷk = Xkwk (5)

where Xk is the ‘design matrix’ and wk are the regression
coefficients. This is the same as the usual GLM model used
in SPM. The design matrix contains, for example, details
of when the various experimental stimuli were given and
information about possible confounds (see eg. [8] for more
details). For a null component we have

p(yt|k, θ) = N1(µk, σ2
k) (6)

where µk is the average activity and σ2
k is the temporal

variance. This can be viewed as a GLM with a single col-
umn of 1’s in the design matrix and wk = µk.

The parameters of the overall MGLM model are θ =
{Xk, wk, σ2

k,mk,Σk}. We again stress that we are not
analysing the data at the voxel level. That is, we do not
have a separate GLM model for each voxel - we have a sin-
gle GLM model for all voxels in cluster k, and information
from all of these voxels is used to estimate the parameters
wk, σ2

k, mk and Σk (ie. we are borrowing strength).
In this paper we consider the design matrix Xk to be

known and to be the same for all k (except for the null
component). In the limit that each voxel comprises a clus-
ter K → V , we then recover the voxel-wise GLM approach
that underlies SPM. SPM is, in this sense, a limiting case
of the MGLM model.

Figures 2 and 3 show data generated from an MGLM
model with a null component (k = 1) and two active com-
ponents (k = 2, 3). The active components are Gaussian in
shape (see Fig 2) and have a temporal activation given by
the regressor at the top of Fig 3. This consists of a boxcar
which has been passed through a ‘canonical Hemodynamic
Response Function’ (HRF) comprising two overlaid gamma
functions [10]. This captures the temporal aspects of the
HRF. In [19], it is surmised that the variability of the mag-
nitude of the HRF from voxel to voxel arises because of
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differences in the diameter of the local vasculature or the
proximity of the voxel to neurally active tissue. This latter
component is captured by the Gaussian nature of our spa-
tial prior. The overall MGLM model is therefore capable
of capturing both the temporal and spatial aspects of the
HRF.

An important feature of MGLM models is that they have
far fewer parameters than mass-univariate models. Given p
columns in each design matrix and 3-dimensional imaging
data we require p + 10 parameters per active component
(three for mk, six for Σk, p for wk and 1 for σ2

k). For, say,
p = 10 and K − 1 = 20 active components we have a total
of 400 model parameters. Mass-univariate models, how-
ever, require p + 1 parameters per voxel. Typical sized 3D
fMRI images (of dimension 48 by 64 by 64) contain roughly
200,000 voxels giving approximately 2,000,000 parameters.
The difference is stark; the MGLM model provides a much
more parsimonious representation of the data.

C. Parameter Estimation

The generative model underlying MGLM assumes that
the observation noise is independent over voxels and time
points. The likelihood of the data under the model is there-
fore

P (D|θ) =
∏
i,t

p(yt
i |vi, θ) (7)

where D = {yt
i}. Note that although the observation noise

shows this independence, the deterministic component of
the observations, the signal, will show strong regularities
both over time, due to the temporal regularity of ŷt

k, and
over space, due to the spatial smoothness of the prior prob-
abilities.

An important feature of fMRI time series, however, is
that the observation noise is temporally autocorrelated. In
the MGLM model, we believe there is no need to take this
into account (see discussion).

If we imagine that a given data set has been generated
by an MGLM model, then at each voxel and at each time
point it will have been decided which component was used
to produce that sample. Let us denote this by st

i. For ex-
ample, st

i = 3 for all t for voxel i at the top of Figure 3
(ie. all samples were generated from the active component
k = 3). If we were given the variable st

i along with each
data set then parameter estimation would be easy (the kth
GLM, for example, would be inferred by simply fitting it to
all data points for which st

i = k). But of course this variable
is not generally available and we must regard it as a hid-
den variable. Fortunately, we can use a general procedure
for parameter estimation in models with hidden variables.
This is the Expectation-Maximisation (EM) algorithm [6].
In the E-step we compute the probability distribution over
hidden variables and in the M-step we maximise the joint
log-likelihood of the data and hidden variables under that
distribution. EM is a proven method for finding the pa-
rameters, θ, which maximise the model likelihood.

An EM algorithm for the MGLM model is derived in the
appendix and results in the following update rules. The E-
step simply consists of computing the posterior probability

of voxel i at time t having been sampled from component
k, that is p(k|yt

i , vi) which we also write as γt
i (k). This is

given by Bayes rule as

γt
i (k) =

p(yt
i |k)p(k|vi)∑

k′ p(yt
i |k′)p(k′|vi)

(8)

For brevity we have dropped the dependence on the model
parameters θ given in equations 2 and 4. We then also
compute γi(k) =

∑N
t=1 γt

i (k)/N and γk =
∑V

i γi(k)/V .
In the M-step of the EM algorithm the parameters of the
spatial and temporal models are updated.

The parameters of the temporal model are estimated as
follows. If we let Γi(k) = diag[γ1

i (k), γ2
i (k), ..., γN

i (k)] be
a diagonal matrix with entries being the temporal weights
for that voxel and Yi = [y1

i , y2
i , ..., yN

i ]T be the time series
for voxel i then, for cluster k, we can define

Yk =
∑

i

Γi(k)Yi (9)

If we also let Γ(k) =
∑

i Γi(k) then the regression coeffi-
cients are estimated as

wk = (XT
k Γ(k)Xk)−1XT

k Yk (10)

This is equivalent to Iteratively Re-weighted Least Squares
(IRLS) [18] but with the addition that the voxel time-series
receive different weightings at different locations and at dif-
ferent time points. This arises because the mixing process
operates at each voxel and at each time point. The obser-
vation noise can then be re-estimated using

σ2
k =

V N

γk

∑
t

∑
i

γt
i (k)(yt

i − ŷt
k)2 (11)

The means and covariances of the spatial parameters are
updated using gradient ascent. To ensure that the covari-
ances remain positive definite we use the decomposition
(see eg. [24])

Σk = rkrT
k + λkI (12)

with the constraint that λk > 0. This effectively renders
the spatial density of active component k an ellipsoid with
major and minor axes pointing along the columns of rk.
The parameters are then updated using

mk = mk + α1
dQs

dmk
(13)

rk = rk + α2
dQs

drk

λk = λk + α2
dQs

dλk

where Qs is the ‘EM auxiliary function’ for the spatial pa-
rameters. The function Qs and the gradients are given
in the appendix. Each gradient ascent step is implemented
with Brent’s line search algorithm (see p. 402 in [20]) which
implicitly finds the optimal step size αi. A small, positive
minimal value for λk is naturally enforced in the initial
bracketing used in Brent’s algorithm.
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To summarise, the EM algorithm operates as follows.
In the E-step the posterior probabilities are updated using
Equation 8. In the M-step wk, σ2

k, mk and Σk are updated
using Equations 10, 11, 12 and 13. The E and M steps
are iterated until the proportionate increase in model log-
likelihood from one step to the next is less than 1e−6, an
arbitrary convergence criterion.

The main computational overheads of the EM algorithm
are in the gradient ascent steps of Equation 13. Within
these updates, the main bottleneck is in the evaluations
of Qs in the line search algorithm. This can be speeded
up by noting that the Gaussians have only local support;
changing mk and Σk will only make a difference to Qs in
a small region. Therefore, by restricting the domain in
which Qs is computed we can greatly reduce the amount
of computation required.

The algorithm we have described is, strictly speaking, a
Generalised EM algorithm since each M-step does not max-
imise the auxiliary function but merely increases it (see, for
example, [13]). We have also considered the use of a Con-
ditional EM algorithm as described in [15], but found no
computational advantage.

D. Inference

The probability that a voxel belongs to an active cluster
is given by

γa
i =

∑
k′

γi(k′) (14)

where k′ are the active components. An image of γa
i con-

stitutes a ‘Posterior Probability Map (PPM)’. Three such
maps are shown in Figures 5,6 and 9 which superimpose
PPMs, thresholded at h = 0.95, on structural MRI images.
Voxels can be declared active by comparing γa

i to some
threshold h.

We can also define a likelihood ratio, lai , as the ratio of
the likelihood of the data under the active models to the
likelihood of the data under the null model. The posterior
probabilities and likelihood ratios are related as follows

lai =
γa

i

1− γa
i

(15)

γa
i =

lai
1 + lai

Now, if we know the prior probability of observing an active
voxel, pa, then the optimum threshold for the likelihood
ratio is (1−pa)/pa [5]. This then implicitly defines the op-
timum value for h. For example, in a sensory study we may
a priori expect 5% of voxels to activate. This corresponds
to h = 0.95.

A second quantity of interest is the number of active
components. This can in principle be found using Bayesian
model order selection methods (see for example [21]) but
this is beyond the scope of the present paper. Instead we
use the following heuristic. We fit a family of MGLM mod-
els with increasing K and for each k = 2..K compute a
value tk which is the t-statistic corresponding the inferred
values for wk and σ2

k. If p(t > tk) < 0.001 then we declare

that at least K − 1 components are active (k = 1 is the
null component), and proceed to fit an MGLM model with
K active components. Otherwise the model order selection
process stops.

By noting that the mean activity of voxels in cluster k
is given by

Ȳk =
Yk

Γ(k)
(16)

we can extract an ‘unsupervised’ or a ‘semi-supervised’ es-
timate of the temporal activity underlying each cluster. By
this we mean that inference could also proceed on the ba-
sis of Ȳk rather than on the basis of parameters from the
GLM. This would be in the spirit of cluster-based analyses
of fMRI (see eg. [4]).

E. Initialisation

One potential problem with the MGLM model is the
possibility that there may be many local maxima in the
likelihood landscape. This is a feature common to all mix-
ture models and means that the models can be particularly
sensitive to initialisation. To overcome this sensitivity it is
possible employ split and merge criteria [25] and so obtain
a global maximum solution. This is an approach that we
intend to investigate in future work. The approach taken
in this paper is to set up the spatial priors so that the
active components are initially centred on voxels strongly
correlated with the activation paradigm.

To this end, we find the voxel positions of the K largest
maxima in the correlation or t-statistic image which are
at least 15mm apart. These are used as K ‘seed points’.
We then fit GLMs to the data at these voxels and so infer
wk and σ2

k. The mean mk is set to the seed position and
the diagonal terms in the covariance, Σk, are set so as to
correspond to a Full Width at Half Maximum (FWHM)
of 6mm. The initial solutions thus correspond to strong,
focal activations. By optimising wk, mk and Σk we can find
weaker or stronger, more or less diffuse activations. The
extent to which the MGLM homes in on each is decided by
the model likelihood and the EM optimisation process.

F. Data Sets

We use two fMRI data sets 1. Both were acquired on a 2T
VISION system (Siemens, Erlangen, Germany) which pro-
duces T2*-weighted transverse Echo-Planar Images (EPIs)
with Blood Oxygen Level Dependent (BOLD) contrast.
The first was recorded during an auditory stimulation task.
This consisted of bi-syllabic words (eg. ‘motor’, ‘robust’)
being presented at a rate of 60 per minute. The data set
is made up of six blocks of auditory stimulation alternated
with 6 blocks of rest, each block lasting 30 seconds (this
block structure is reflected in the time series in Figure 7).
Whole-brain fMRI images were acquired every seven sec-
onds using 30 transverse slices.

The second data set was recorded during an experiment
concerned with the processing of images of faces [14]. This

1These data sets and a full description of the ex-
periments and data pre-processing are available from
http://www.fil.ion.ucl.ac.uk/spm/data
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was an event-related study in which greyscale images of
faces were presented for 500ms, replacing a baseline of an
oval chequerboard which was present throughout the inter-
stimulus interval (ISI). The ISI followed a stochastic dis-
tribution with a minimal interval of 4.5s. In this paper we
focus on only a subset of this data concerned with the dif-
ferential activation of voxels subsequent to the presentation
of face trials versus baseline trials. Differentially activated
areas will be involved in face processing rather than the
processing of images per se. Whole brain EPIs consist-
ing of 24 transverse slices were acquired with an effective
repetition time of two seconds.

All functional images were realigned to the first func-
tional image using a six-parameter rigid-body transforma-
tion [9]. Functional images were then spatially normalised
to a standard Echo-Planar Image (EPI) template using a
nonlinear warping method [1]. The images were then scaled
to remove global effects using proportional scaling.

We then created two different sets of images. For anal-
ysis using SPM, the images were spatially smoothed using
a Gaussian with FWHM=6mm (this is necessary to en-
sure that Gaussian Random Field Theory is not too con-
servative [8]). Importantly, however, images to be analysed
using the MGLM model were not spatially smoothed. In-
stead, they were processsed so that each voxel had zero
mean and unit variance. This is necessary as the signal
components will only be driven to areas containing signals
if the residual error in the signal areas is less than the error
in the noise areas, otherwise the overall model would not
have a higher likelihood.

For both data sets we focus on single slices. For the
auditory data we chose a transverse slice at z = 10mm and
for the face data a transverse slice at z = −24mm (these
positions are given in Talairach co-ordinates [23]).

For the auditory data, the design matrices, for both SPM
and MGLM, contained a column of 1’s and a variable indi-
cating the experimental condition. This variable consisted
of a boxcar, with 1’s indicating the presence of an auditory
stimulus and 0’s indicating its absence, convolved with a
hemodynamic response function [10], a standard way of
modelling the hemodynamic response. For the face data,
the design matrices contained a column of 1’s and 4 other
columns indicating when the face images were presented.
There were 4 such columns rather than one as there were
two types of image, famous and non-famous, and each face
was presented twice. Modelling the response in this way,
rather than with a single variable, results in a more ac-
curate model fit. It also allows for the investigation of
repetition effects [14], although this is not explored in the
current paper.

III. Results

The results of a standard SPM analysis are given in Fig-
ure 4. The results are displayed in the form of a t-statistic
image overlaid on a structural fMRI scan from that sub-
ject. The plot shows diffuse bilateral activation of primary
auditory cortex. We then applied a series of MGLM models
to the data with increasing K. Our model order selection

heuristic (see the section on inference) stopped at a model
with 3 active components; two covering the left activation
and one covering the right. The corresponding Posterior
Probability Map (PPM) is shown in Figure 6. We also
show the MGLM model with two active components in
Figure 5. The PPMs have been thresholded at h = 0.95.

The PPMs and SPMs are in general agreement, with the
PPMs being somewhat more conservative. This is, how-
ever, an artifact due to the choice of thresholds for which
the images are plotted ie. SPMs corrected at p < 0.01
rather than p < 0.05 show a similarly conservative pattern.

Figure 7 shows the corresponding time course of activa-
tions for the right active component, the block structure re-
flecting the block-like nature of the stimulus and the peaks
and troughs reflecting the hemodynamic over- and under-
shoot. The consistent excessive undershoot in later blocks
shows that the fit of the GLM could be improved by adding
regressors to the design matrix (eg. a time effect). We have
not done this, however, as the temporal behaviour is not
the focus of this paper.

As mentioned earlier, the MGLM model is a much more
economic model of functional activation than is the mass-
univariate approach underlying SPM. For this data set, the
3-component MGLM model has 24 parameters whereas the
SPM model has 15,010 parameters. If one were interested
in finding efficient codes for storing the data then MGLM
would offer a considerable advantage. We note that if this
were truly the case, then a finessed characterisation of the
null component would be appropriate (see discussion).

The result of a standard SPM analysis of the event-
related study is given in Figure 8. This shows bilateral
activation of fusiform cortex and earlier visual areas. We
then applied a series of MGLM models to the data with
increasing K. Our model order selection heuristic stopped
at a model with 2 active components, one covering the left
activation and one covering the right. The Posterior Prob-
ability Map (PPM), thresholded at h = .95, is shown in
Figure 9. Again, the PPM and SPM are in general agree-
ment, with the more conservative nature of the PPM being
attributable to differences in thresholding.

Figure 10 shows the corresponding time course of acti-
vations for the active component in the right hemisphere.
The solid line shows the estimated response from the GLM,
Ŷk, and the dotted line shows the unsupervised estimate
of temporal activity Ȳk. This is the quantity of interest
in cluster-based analysis [4]. By comparing Ȳk’s from dif-
ferent clusters, inferences can be made, albeit informally,
about differential delays in hemodynamic response. We
note, however, that this can also be achieved by including
the temporal derivates of the canonical HRF in the design
matrix and making formal inferences about the correspond-
ing regression coefficient.

For this data set, the MGLM model has 45 parameters
whereas the SPM model has 20,034. Again, a great saving.

IV. Discussion

We have proposed a new approach to the analysis of
functional neuroimaging data. The central tenet of these
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models is that the fundamental quantities of interest to
the neuroimager are the location, shape and temporal sig-
nature of clusters of voxels showing task-related activity.
SPM is a special case of our model, recovered when the
number of clusters equals the number of voxels and all ac-
tive clusters have the same design matrix.

For each cluster of activation we have a single represen-
tative time series. This means that the MGLM model may
be particularly helpful in the analysis of effective connectiv-
ity [3] that examines the interactions among different brain
regions. Previously, the requisite time series have been de-
rived by defining a region of interest using, for example,
a sphere of arbitrary size and then finding the principal
eigen-time-series [3]. MGLM offers a much more precise
and principled approach.

The model we have proposed is similar in spirit to the
Stochastic Geometry Model (SGM) of Hartvig [12]. This
models the activations as a sum of Gaussians of unknown
location and scale whose parameters are estimated us-
ing Bayesian methods. The generative models underyling
MGLM and SGM are, however, very different. The most
fundamental difference is that the SGM Gaussians reflect
the magnitude of activations whereas the MGLM Gaus-
sians reflect the likelihood that a voxel belongs to a cluster.

We also note similarities with the Nonlinear Spatio-
Temporal (NST) model proposed by Solo et al [22]. A
common feature is that information is pooled across voxels
using an adaptive spatial kernel. Again, the MGLM and
NST generative models are very different. For example, in
NST pooling is used to estimate noise parameters rather
than signal parameters.

The notion of using the spatial interaction at the level of
parameter estimation rather than inference is also embod-
ied in the Spatio-Temporal Markov Random Field (MRF)
model of Descombes et al. [7]. Essentially, the spatial (and
temporal) smoothness of the HRF are explictly modelled,
albeit in a computationally demanding framework owing
to the use of MRFs.

An important feature of fMRI time series is that the ob-
servation noise is temporally autocorrelated. In the mass-
univariate approach it is necessary to take this correlation
into account as, to neglect it, would severely bias the sub-
sequent inferences. Essentially, instead of the degrees of
freedom being equal to the length of each time series it
is much less. For MGLM models, however, the degrees of
freedom in each temporal model is equal to the length of
the time series times the number of voxels belonging to
that cluster (because we have borrowed strength). As this
is so large, any reduction due to temporal autocorrelation
is likely to make little difference to the subsequent infer-
ences. Those not persuaded by this argument could alter
the generative model underlying MGLM so that the mixing
process takes place at each voxel, rather than at each voxel
and at each time point. Standard time series models which
allow for temporal autocorrelation such as GLMs with au-
toregressive error terms could then be implemented.

On a more critical note, the amount of computation re-
quired to estimate the parameters in a MGLM model is

an order of magnitude greater than that for the mass-
univariate approach, taking several minutes per slice in-
stead of several seconds. This is, however, an attribute
shared by other spatio-temporal models [7], [22], [12], and
appears to be the price we pay for more parsimonious yet
informed characterisations of fMRI data.

We also note that the MGLM model is closely related to
cluster-analysis methods. An important difference between
the PPMs from the MGLM model and the maps of spatial
activation produced by cluster analysis, however, is that
the PPMs have blobs whereas the cluster maps have speck-
les (see eg. [4]). This is because, for a voxel to belong to
a cluster in the MGLM model it must have an appropriate
time series and be in the appropriate position. In essence,
MGLM performs a semi-supervised spatio-temporal cluster
analysis.

The model we have proposed could be usefully enhanced
by greater use of prior information. For example, instead
of having a single prior for the null class, being a uniform
density over the whole brain, we envisage the use of tissue-
specific priors describing the spatial distribution of white
matter and cerebro-spinal fluid would make a useful contri-
bution. This would increase the probability of functional
activations being identified in gray matter. This is in the
spirit of previous work in the area by Kiebel and Friston
[17].
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Appendix

I. EM Algorithm

The log-likelihood of the data is given by

L =
∑

i

∑
t

log p(yt
i |vi) (17)

The likelihood can be maximised by maximising an EM
auxiliary function, Q. Maximising Q provably maximises
the model likelihood, as shown in [6]. For models with
hidden variables this Q function has a standard form; it
is the log of the joint probability of observed and hidden
variables averaged over the posterior distribution of hidden
variables. For the MGLM model we have

Q =

〈∑
k

∑
i

∑
t

log p(yt
i , k|vi)

〉
(18)

where the angled brackets denote expectation over the
distribution p(k|yt

i , vi). For brevity we write γt
i (k) =

p(k|yt
i , vi) which can be expressed as

γt
i (k) =

p(yt
i , k|vi)

p(yt
i |vi)

(19)

and re-written in terms of the temporal and spatial proba-
bilities (see Figure 1 and equation 1)

γt
i (k) =

p(yt
i |k)p(k|vi)∑

k′ p(yt
i |k′)p(k′|vi)

(20)

The E-step of the EM algorithm simply consists of com-
puting this distribution. We also compute γi(k) =∑N

t=1 γt
i (k)/N and γk =

∑V
i γi(k)/V .

The joint distribution in equation 18 is given by

p(yt
i , k|vi) = p(yt

i |k)p(k|vi) (21)

Hence its expectation over γt
i (k) is

Q =
∑

k

∑
i

∑
t

γt
i (k) log p(yt

i |k) (22)

+
∑

k

∑
i

∑
t

γt
i (k) log p(k|vi)

which can be written in terms of a temporal term (first)
and a spatial term (second)

Q = Qt + NQs (23)

The update rules are derived by finding the turning points
of the above function.

A. Spatial model

The likelihood is given by

p(vi|k) =
1

(2π)d/2|Σk|1/2
exp

(
−1

2
(vi −mk)T Σ−1

k (vi −mk)
)

(24)
and

p(k|vi) =
p(vi|k)∑
k′ p(vi|k′)

(25)

We can re-write the above equation in terms of the softmax
function

gi(k) =
exp[ai(k)]∑
k′ exp[ai(k′)]

(26)

where

ai(k) =
−d

2
log(2π)− 1

2
log |Σk|−

1
2
(vi−mk)T Σ−1

k (vi−mk)

(27)
We have

Qs =
∑

k

∑
i

γi(k) log gi(k) (28)

We can then use the standard result (see eg. p.237-240 in
[2])

dQs

dai(k)
= γi(k)− gi(k) (29)

and combine it with

dai(k)
dmk

= Σ−1
k (vi −mk) (30)

and
dai(k)
dΣ−1

k

= −1
2
(vi −mk)(vi −mk)T − 1

2
Σk (31)
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to get dQs

dmk
and dQs

dΣk
. These gradients can then be used in

a line search to find updates for mk and Σk. Whilst this
is straightforward for the mean it does not ensure positive
definiteness for Σk. We therefore decompose the spatial
covariance using Σk = rkrT

k + λkI and use gradient-based
line searches to optimise rk and λk. The required gradi-
ents can be derived using the chain rule or estimated using
central differences (see eg. p. 146 in [2]).

B. Temporal model

We let Γi(k) = diag[γ1
i (k), γ2

i (k), ..., γN
i (k)] be a diagonal

matrix with entries being the temporal weights for that
voxel and Y (i) = [y1

i , y2
i , ..., yN

i ]T be the time series for
voxel i. For the kth component we have

Qt(k) =
∑

i

Y T (i)Γi(k)Y (i) (32)

− 2
∑

i

wT
k XT

k Γi(k)Y (i) +
∑

i

wT
k XT

k Γi(k)Xkwk

For the regression coefficients we have

dQt(k)
dwk

= −2
∑

v

XT
k Γk(i)Y (i) + 2XT

k

∑
i

Γi(k)Xkwk

(33)
Letting

Yk =
∑

i

Γi(k)Y (i) (34)

Γk =
∑

i

Γi(k)

we have

dQt(k)
dwk

= −2XT
k Yk + 2XT

k ΓkXkwk (35)

which has a turning point at

wk = (XT
k ΓkXk)−1XT

k Yk (36)

(a) (b)

Fig. 2. Images from generative model at times (a) t = 8 and (b)
t = 9. This model comprises a null component (k = 1) and two
active components (top left, k = 2; bottom right, k = 3). Note that
the shape of the active regions is consistent between scans, but it is
not identical. This is due to the mixing process operating at each
time point. The arrow in figure (b) indicates the voxels whose time
series are plotted in Figure 3.

Fig. 3. Time series from generative model. Going down the page,
we see time series from voxels at positions indicated by the arrow
in Figure 2, that is, leaving the centre of the bottom right cluster at
v = [40, 40] and going down to v = [40, 50]. Time series are plotted
every two voxels. As we leave the cluster the time series gradually
become more noisy.

Fig. 4. Auditory Data Statistical Parametric Map (SPM) show-
ing active voxels (p ≤ 0.05, corrected for multiple comparisons). The
bright pixels correspond to the SPM t-values and are scaled so that
t=5.23 (this corresponds to p = 0.05, corrected) is gray and the max-
imum t-value is white.

Fig. 5. Auditory Data Posterior Probability Map (PPM) from an
MGLM model with two active components. The bright pixels corre-
spond to voxels for which γa

i > 0.95.

Fig. 6. Auditory Data Posterior Probability Map (PPM) from an
MGLM model with three active components.

Fig. 7. Auditory Data Time series for the right-hemisphere com-
ponent of the MGLM model. The solid lines show the responses
estimated under the General Linear Model, Ŷk, and the dotted lines
show the mean voxel actvity, Ȳk. The boxcar at the bottom is high
when the auditory stimulus was present (this demarcates a 30-second
period).
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Fig. 8. Face Data Statistical Parametric Map (SPM) showing ac-
tive voxels (p ≤ 0.05, corrected for multiple comparisons).

Fig. 9. Face Data Posterior Probability Maps (PPM) from MGLM
model with two active components. The single active component
model consisted of just the left-hemisphere activation.

Fig. 10. Face Data Time series for the right-hemisphere component
of the MGLM model. A two-hundred second period is shown. The
solid lines show the estimated responses, Ŷk, and the dotted lines
show the mean voxel activity, Ȳk. The spikes at the bottom indicate
when the face images were presented.


