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structured priors
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Abstract: A variational Bayesian (VB) learning algorithm for parameter estimation and model-
order selection in multivariate autoregressive (MAR) models is described. The use of structured
priors in which subsets of coefficients are grouped together and constrained to be of a similar
magnitude is explored. This allows MAR models to be more readily applied to high-dimensional
data and to data with greater temporal complexity. The VB model order selection criterion is
compared with the minimum description length approach. Results are presented on synthetic and

electroencephalogram data.

1 Introduction

The multivariate autoregressive (MAR) process is used to
mode] multiple time series data in such fields as geophysics
[1], economics [2] and biomedicine [3]. It can also be seen
as a parametric multivariate spectral estimation procedure
and will provide parsimonious estimation of coherences
and partial coherences [4, 5]. One factor preventing its
wider application, however, is the explosion in the size of
the model as the number of time-series increases; MAR
models for d time series have parameters of order d*.

We show how the variational Bayesian (VB) framework
can be applied to MAR models. By using ‘structured
priors’ in which subsets of coefficients are constrained to
be of a similar magnitude, the effective degrees of freedom
in the model can be constrained. This allows MAR models
to be more readily applied to high-dimensional data. Also,
VB provides a model order selection criterion which can be
used to select the appropriate number of time-lags.

While the Bayesian methodology has a long history the
use of VB is relatively new; the key idea of VB is to find an
approximation to the true posterior density which mini-
mises the Kullback—-Liebler (KL) divergence between these
two densities. Notable recent applications are to principal
component analysis [6] and independent component analy-
sis [7]. We have also recently applied VB to univariate
autoregressive (AR) models [8] and univariate non-
Gaussian AR models [9].

2 Multivariate autoregressive models

An MAR(p) model predicts the next value in a d-
dimensional time series (i.e. there are d time series), y,
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as a linear combination of the p previous vector values of
the time series

14
Yn = Zyn—iA(i)—l_en (1)
iz
where y, = [,(1), ¥.(2), ..., yu{d)] is the nth sample of a
d-dimensional time series, each A(i) is a d-by-d matrix of
coefficients and e, =[e,(1), €,(2),..., e.{d)] is Gaussian
noise having zero mean and precision (inverse covariance)
matrix A. We have assumed that the data mean has been
subtracted from the time series.
The model can be written in the standard form of a
multivariate linear regression model as follows:

Y=x,W +e, 2

where X, = [Vu_1, Yu—2, - - -, Yu—p] are the p previous multi-
variate time series samples and W is a (p x d)-by-d matrix
of MAR coefficients (weights). There are therefore a total
of k=p x d x d MAR coefficients.

If the nth rows of ¥, X and E are y,, x, and e,,
respectively, and there are n=1,..., N samples then we
can write

Y=XW+E 3)

where Y is an N-by-d matrix, X is an N-by-(p x d) matrix
and E is an N-by-d matrix. Writing the MAR model in this
form allows us to make contact with the large body of
statistical literature devoted to the multivariate linear
regression model, e.g. Box and Tiao ([10], p. 423). From
these sources we know that given a data set D = {X, ¥} the
likelihood of the data is given by

PDIW. A) = @y A exp| 3 THAE, W) | @)

where || denotes the determinant, 7¥() the trace and
Ep(W)=(Y —XW)T (¥ = XW) (5)

is the unnormalised error covariance matrix.
Before defining the priors in our Bayesian model we
introduce the vec notation

w = vec(W) (6)
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where vec(W) denotes the columns of W being stacked on
top of each other (for more on the vec notation, see [11]).
To recover the matrix W we simply ‘unstack’ the columns
from the vector w. The transformation of a matrix into a
vector in this way is a standard method for implicitly
defining a probability density over a matrix.

In our Bayesian model we assume that the weights are
drawn from a zero-mean Gaussian prior with an isotropic
covariance having precision o

o

poie) = () exp(—E(n) ™

where we define the ‘weight error’ as
1
E(w) = EwTw ®)

The weight precision is drawn from a Gamma prior
() = Ga(o; by, ¢) ®
The noise precision matrix is taken to have the prior
P(A) = |A]7@HD2 (10)

This density is an ‘improper distribution’ as it does not
integrate to unity. The prior is, however, only assumed to
have this form over a range in which the likelihood is
appreciably nonzero. Outside this range the prior tails off
to zero. This choice of prior is the ‘uninformative prior’ for
multivariate linear regression: see Chapter 1 and page 426
of Box and Tiao [10] for a full discussion. We concatenate
all the parameters of the model into the vector 8 ={[w, o,
A]. We also assume independence between the parameter
groups so that the overall prior is

p(0) = p(wlo)p()p(A) (1)

2.1 Maximum likelihood

The maximum likelihood (ML) solution [12] for the MAR
coefficients is

W =XX)'xTy (12)
The maximum likelihood noise covariance S, can be
estimated as
1
Sy = m(y — XW,) (Y — XW )

1
:N — kEI)(WML) (13)

where k=p xd x d. Again, we define wy; =vec(Wy).
The ML parameter covariance matrix for w,,; is given by

(I13], p. 321)
S =S ® XTX)™! (14)

where ® denotes the Kronecker product (see, e.g. p. 477 in
Box and Tiao [10]).

The problem with the ML approach, however, is model-
overfitting. This can be overcome, to an extent, by combin-
ing ML with a model-order selection criterion such as the
minimum description length (MDL). This is discussed in
Section 4. We propose an alternative solution based on the
variational Bayesian framework which we now describe.
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3 Variational Bayesian framework
The ‘evidence’ or ‘marginal likelihood’ p(D) of a prob-

abilistic model is the likelihood of the model after its
parameters have been integrated out. That is

p(D) = jpw, 0)d0 (1s)

The log of the evidence can be written as
log p(D) = log Jp(D, 0)do (16)

This equality is unchanged by multiplying top and bottom
by the same quantity, g(0|D) (which we shall soon see is
the approximate posterior)

p(D, 8)
q(0 | D)

log p(D) = log J q(6|D) de (17)

Using Jensen’s inequality (see, e.g. [6]) we have
logp(D) > F(p) (18)
where

pD, 0)
q(0|D)

Fp) = | a(010)105 0D a0 (19
The quantity F(p) is known (to physicists) as the negative
variational free energy. This provides a lower bound on the
log evidence, with equality if the approximating posterior
is equal to the true posterior, i.e. if ¢(6|D)=p(0|D). The
aim of VB learning or ‘ensemble’ learning is to maximise
this lower bound. Using p(D, 0) = p(D | 0)p(0) we can write

F(p) = Lo, — KL(q Il p (20)
where
L= Jq(o D) log p(D| 0)d6 @1
and
_ q(8|D)
Kiq.p) = [a0 D10 “T2d0 ()

The first term in F(p) is the average log-likelihood of the
data L,, where averaging takes place over the approximate
posterior density g(@|D). The second term is the KL-
divergence between the approximating posteriors and the
priors. This increases with an increasing number of model
parameters and so acts as a penalty term which penalises
more complex models.

Maximising the negative free energy for a MAR model
yields a posterior distribution which factorises as follows:

q9(81D) = q(w|D)q(| D)q(A | D) (23)

This essentially arises because the prior (11) is of the same
form. We can then maximise F with respect to each of
q(w| D), g(o| D) and g(A | D) separately. This is a general-
isation of the procedure described by Mackay [14] who
shows, in some detail, how g(w|D) and q(x|D) can be
computed for a univariate linear regression model.

This procedure gives rise to update formulas for the
weights, weight precision and noise precision matrix. .
These formulas, respectively, relate to parameters of the
normal, Gamma and Wishart distributions which, for
completeness, are defined in the Appendix.
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3.1 Updating the weights
If we let

1(w) = “q(AID)q(oc D) log[p(D | w, A)p(w| )}dad A
(24)

then by substituting (11) and (23) into (19) and dropping
those terms which are not a function of w, it is possible to
write

F(p) = ~KL(g(w|D), exp{I(w)) (25)
The negative free energy is therefore maximised when
q(w|D) = exp[I(w)] (26)

Substituting in the likelihood and priors gives
I(w)y=— Jq(A |D)YTrH(AEp(w))dA — jq(o{ | DYaE(w)do

- % THAE (w)) — 3E(w)
(27)

where & and A are the mean weight and noise precisions
from the approximating densities (see following two
Sections). The weight pogterior is therefore a normal
density g(w|D)=N(w; W, %) where

Ap=A®X'X)
S =(Ap + a0 (28)
W= iADwML

where I denotes the identity matrix and w,,; denotes (the
vec form of) the maximum likelihood MAR solution. Thus,
the posterior precision matrix %' takes the usual Bayesian
form of being the sum of the data precision Ap plus the
prior precision ¢I. With & =0, i.e. no prior on the weights,
we recover the maximum likelihood MAR solution. The
matrix W is formed by ‘unstacking’ the vector w to form a
(p x d)-by-d matrix.

3.2 Updating weight precisions
If we let

16) = [atwlD)oglp(elplaw  (29)
then by substituting (11) and (23) into (}9) and dropping

those terms which are not a function of «, it is possible to
write

F(p) = —KL(q(«| D), exp[I(2)]) (30)
The negative free energy is therefore maximised when
q(«| D) = explI()] (E2))

By substituting the weight and weight precision priors we
then see that the weight precision posterior is a Gamma
density g(o| D)= Ga(x; b}, c,) where
' PO S 1
1/b, = EW) + = TH2) + —
2 b,
(32)

C;=§+Ca

& = b,c,

These update equations are the same as for the univariate
AR case [8].
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3.3 Updating noise precision matrix
If we let

I(A) = J q(w|D)log[p(D|w, A)p(A)ldw  (33)

then by substituting (11) and (23) into (19) and dropping
those terms which are not a function of A, it is possible to
write

F(p) = —KL(g(A | D), exp[I(A)]) (34)
The negative free energy is therefore maximised when
q(A|D) = expl/(A)] (35)

By substituting the likelihood from (4) we get

18 = [ 001D 3 Tog A1 = THAES()]aw + oz ()

_ H%d—llog IA] — %Tr(A[ED( w)+Q)  (36)

where

Q=Y (U, ®x)2U®x) (37
The noise precision posterior is therefore a Wishart density
q(A)=Wi(A; a, B) where

B=E,W+Q a=N A=aB"' (38)

4 Model order selection

Because the negative free energy is an approximation to
the model evidence we can use it for model order selection.
If we write the KL-divergence between a generic approx-
imate posterior and prior as

KL,(x) = KL(q(x| D), p(x)) 39)
then the negative free energy can be computed from (19) as
F(p) =L,, — KL,(w) — KL (o) — KL,(A) (40)

The average log-likelihood is given by

Il

Lo jq(e D) log p(D16)d6

d,
= —TNloan—!-{VZ—Jq(AID)]og |A|dA

- 5 | aA D DAL A

dN N 1 -
- - log 2+ L(a, B) — 5 THA[Ep(H) + 2))
dN

N
= —710g2ne+5L(a,B) (41)

where L(a, B) is defined in (61). By substituting the
expression into (40) and noting that many terms cancel,
we get

F(p) =~ log |B| ~ KL,(08) ~ KL,(2) + og T, (/2)

(42)

where I'y is the generalised gamma function (see the
Section on the Wishart density in the Appendix). This
last term is constant for a given N and d and so plays no
part in model order selection.
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4.1 Comparison with MDL

The VB framework maximises the negative free energy
given in (20), where the first term is the average likelihood
of the data and the second term is the KL-divergence
between the approximating posteriors and the priors. This
second term acts as a penalty which penalises more
complex models.

As the number of samples increases the parameter
posterior becomes sharply peaked about the most probable
values (which are also the maximum likelihood values) .
It can then be shown that in the large sample limit
N — o0, F(p) becomes equivalent to the Bayesian informa-
tion criterion [15, 16]

BIC(p) = logp(D| ) — ’5‘ logN (43)

which is itself equal to the negative of the minimum

description length (MDL) i.e. BIC(p) = —MDL(p). These

popular model order selection criteria can therefore be seen
as a limiting case of the VB framework. For the MAR
model we have

N k
BIC(p) = — 5 log|Ep(Wyy)| — 5 logN  (44)

This is identical to the expression on p.12 of [1] referred to
as Schwarz’s Bayesian criterion (SBC) (after dividing by
—Nd/2 and dropping terms not dependent on model order).
By comparsion with (42) we see that the first term, the
‘accuracy’ term, is more or less the same as in VB; for BIC
we have the determinant of the error covariance matrix, and
for VB we have the determinant of the error covariance
matrix averaged over the posterior weight density. The
major difference is in the second term, which for VB is the
sum of the weight and weight precision KL-divergences.
If we assume a priori that different model orders are
equally likely (within some range) then a probability
distribution over model order can be obtained from [15]:

exp(F(p))
2.y exp(F(p)

This can also be applied to the BIC/MDL criterion.

q(p) = (45)

5 Structured priors

Instead of using the isotropic Gaussian prior of (7), where
every coefficient has the same prior variance, we can split
the coefficients into groups and allow different groups to
have different prior variances. This type of prior is known
in the neural network field as automatic relevance determi-
nation (ARD) [17], so-called because by inspecting the
inferred prior variances we can see which groups of
parameters are relevant to the problem at hand.

For MAR models, as we shall see, different coefficients
will lie naturally on different scales, and this property can
be captured with ‘structured priors’. For example, if the
parameters are split into groups according to which time
lag they are associated with (we call this the ‘lag prior’)
then parameters associated with different lags will be of a
different magnitude; generally, the magnitude will decrease
with the lag until, for irrelevant lags, the magnitude should
be zero. Structured priors are assumed to be of the form

G ) kj/2
ool =[[(52)  exp-xBmw)  46)
j=1
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where the weights have been split into j=1,..., G groups
with k; weights in the jth group and where

E(w) = %lejw (47

and I; is a matrix with ones along the diagonal that pick off
coefficients in the jth group, and zeros elsewhere. Use of
structured priors results in VB updates for the posterior
weight covariance and weight precision as follows:

-1
A G
3 = (AD +3 &j]]_)
j=1
A 1 - 1
/() = Ej0b) + 5 THIEL) + - (48)

o2k
coc(])—5+cat

5(j) = b (Ney ()

The other updates are exactly the same as for the global
prior. The only difference occurs when estimating F(p); we
replace KL (o) by Y ; KL,(a)).

For MAR models we envisage many types of prior other
than the lag prior described. This is because there are many
natural and physically meaningful ways of grouping the
MAR coefficients. For example, we could use an ‘inter-
action prior’ in which coefficients are split into two groups:
weights involved in within-series prediction, and weights
involved in between-series predictions, i.e. interactions.
Because we can estimate the evidence for each model
(i.e. a model using an interaction prior versus a model
using a global prior) the data can tell us which model is
more appropriate. This allows for statistical hypothesis
testing in the usual manner.

Refinement of the schemes allows us to test for many
different types of interactions. For example, we could have
separate groups for interaction and noninteraction at each
time lag; this gives rise to the ‘lag-interaction prior’.

Similarly, we could group interactions between subsets
of the time series together e.g. for EEG data we could split
the interactions into groups for within and between differ-
ent cortical areas.

6 Other issues

We use uninformative priors [18] by setting b=10> and
¢= 107> for the Gamma prior on & (see the Appendix for a
definition of the Gamma density). The parameters of the
VB posterior are initialised using the maximum likelihood
solution; w=w;,; and % =3,,;. The VB equations can
then be applied iteratively until a consistent solution is
reached. Convergence can be measured by evaluating the
negative free energy. We calculate F(p) at each iteration
and terminate optimisation if the proportional increase in
F(p) from one iteration to the next is less than 0.01%.

Evaluation of the KL divergence between the weight
posterior and prior requires computation of log | % | which
we implement using ZLI log 4; where /; are the eigen-
values of 3. This avoids the possibility of numerical
problems when the number of weights k is large. When &
is very large the computation becomes a bottleneck in the
VB algorithm. To overcome this we extract just the first
few ‘significant’ eigenvalues using, for example, the ‘snap-
shot” method [19].
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By analogy with the Bayesian evidence framework [8]
we define a quantity 7, known as the effective degrees of
freedom, as follows:

G .
y=k— 2 o Tr(;ZI;) (49)
j=t

The rationale behind this is that parameter groups with
posterior precision equal to their prior precision will have

o Tr(lEl) = k; (50)

That is, their values are not determined by the data.
Consequently y is the number of remaining data-
determined parameters.

When evaluating the model-order criterion for a number
of hypothesised model orders use could be made of the
‘downdating’ procedure described in [1] where the coeffi-
cients at order p — 1 are computed from those estimated at
model order p. This would save a good deal of computa-
tion, especially for large models.

If we were interested in making inferences about the
values of the MAR coefficients themselves, by noting that
the marginal distribution over the MAR coefficients is a
multivariate z-distribution ([10], p. 440) we can compute
confidence intervals in a manner similar to that described
in [1].

Finally, we note that the power spectral density matrix
can be computed from the MAR coefficients, as described
in ([4], p. 408). From this matrix one can compute the
power spectra, cross-spectra, coherences and partial coher-
ences.

7 Results

7.1 Model order selection

To illustrate the VB-MAR approach we apply it to the
MAR(2) process described by Neumaier and Schneider [1]

7
Yy = ;yn_;ﬂ(f) +e, Gh
where
0.40 0.30
A = (1.20 0.70) (52)
0.35 —0.40
AQ) = (—0.30 —0.50) (53)
and the noise precision matrix is
1.00 050\
A= (54)
0.50 1.50

We generated 50 data sets, each containing N =200 values.
Typically, five cycles of the VB update equations were
required to reach convergence. Fig. 1a shows a plot of the
VB model order criterion as applied to this data, showing a
clear peak at the correct model order p =2. Over the 50
data sets, the VB criterion chose the correct model order
100% of the time, as did the BIC criterion. We then
generated 50 data sets from MAR(3), MAR(4) and
MAR(5) models (coefficients not shown) each containing
200 data samples. Over the 50 data sets the VB criterion
chose the correct model order 96, 84 and 8% of the time,
with BIC getting it right 86, 76 and 2% of the time,
respectively. This shows that the VB criterion is superior
to BIC, a trend which has been demonstrated more exten-
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Fig. 1 Plot of negative free energy F(p) against model order p on data
generated from a MAR(p) model
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sively for univariate AR models [8]. Fig. 15 shows a plot of
the VB model-order criterion for the MAR(4) models,
showing a clear peak at the correct model order p=4.
The reason why it is harder to select the correct model
order as we increase p is that we have held the number of
data points constant; the ratio of data points to coefficients
has therefore reduced. This has the effect of making the
model order curves less peaky at higher p.

7.2 Structured priors

We generated 50 data points from the MAR(2) model
described and then applied a MAR(4) model, firstly
using a global prior and secondly using a lag prior. The
resulting coefficient estimates are shown in Fig. 2 in the
form of a ‘Hinton diagram’ [20]. Use of the lag-prior
reduces the magnitude of coefficients at lags 3 and 4 (the
true value of these coefficients is zero). This effect
becomes more dramatic as the number of time series d is
increased, because each weight group contains d® para-
meters.

In the second example, the model was applied to three
seconds worth of data from five sinusoidally varying time
series, each sampled at 128 Hz. The time series were
generated independently, thus there is no interaction in
the model so all the off-diagonal MAR coefficients should
be zero. Fig. 3 shows that use of the interaction prior
clearly reduces the magnitude of the spurious coefficients.
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. b
Fig. 2 Lag-prior example: estimation of MAR(4) model coefficients
applied to d =2 time series

White indicates positive, black negative, and area is proportional to magnitude.
At each time lag there is a d-by-d matrix of coefficients; we therefore have four
2-by-2 matrices with time-lag increasing from left to right. This model was
applied to data generated from MAR(2) process. True values of the eight
coefficients on the right of each Figure are zero. Use of the lag-prior reduces
the magnitude of these irrelevant coefficients

a Global prior
b Lag prior

The inferred standard deviation of weights in each group
~/1/a; was 0.27 for the within-series group and 0.03 for the
interaction group. Moreover, the model using the interac-
tion prior has higher evidence (as indicated by the negative
free energy): —1940 as opposed to —1949. The hypothesis
that the interaction weights are of a different magnitude
to the non-interaction weights is therefore accepted
with probability 0.9999 (p = exp(—1940)/[exp(—1940) +
exp(—1949)]; from (45)).

Inferences of this sort become harder to make when we
have fewer data points. For example, if we repeat the
procedure, but with two seconds of data and then only
one second of data the hypothesis is accepted with prob-
abilities of 0.95 and 0.89, respectively. Finally, for half a
second of data we have p=0.006 and the hypothesis is
rejected.

7.3 Cognitive-EEG data

We analysed six-channel EEG data recorded while a
subject performed different cognitive tasks. The data is
derived from a large database collected from four subjects
performing five different tasks (this data is available from
http://www.colostate.cs.edu/~anderson), although in this
paper we focus on just two of the tasks: (i) a baseline
task and (ii) a maths task (for which subjects were given
non-trivial multiplication problems such as 49 x 78). The
EEG records for a single task performance are shown in
Fig. 4. To ensure signal stationarity we analyse one-second
subsections of data. The following results were derived
from a single subject (subject 2) performing the two tasks,
unless otherwise stated.

Fig. 5 shows that for a global prior the optimal model
order averaged over one-second sections of data is two.
With the interaction prior, this optimum increases to four.
For the model with the global prior the effective degrees of
freedom (see (49)) was y =68 £ 1 for the p =2 model and
y=1254 1 for the p =4 model. For the model with the
interaction prior and p=4 we had y=56=+4. Thus by
using a structured prior we can constrain the effective
degrees of freedom in the model and so extract information
from longer time lags. These results were obtained by
averaging over ten one-second blocks of EEG data from
the baseline task.

We then looked at the evidence of models with a fixed
model order but using different priors. The results are
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b
Fig. 3 Interaction-prior example: estimation of matrix of MAR coeffi-
cients at lag 1, when model is applied to data consisting of five independent,
sinusoidally varying time series

White indicates positive, black negative, and area is proportional to magnitude.
Use of the interaction prior reduces the magnitude of the off-diagonal coeffi-
cients (which, ideally, should be zero)

a Global prior
b Interaction prior

given in Table 1. They show that the interaction prior is
most suitable for this data which implies that the coeffi-
cients naturally split into groups of two different magni-
tudes; one for the within-series coefficients and another for
the interactions. This result also held when we repeated the
analysis over the same subject performing all five different
cognitive tasks.

One reason for the success of this prior is its simplicity;
only two weight groups are hypothesised whereas the other
priors have more groups. This is important as the negative
free energy involves a penalty term which is the sum of the
KL-divergences of the precisions over all the groups (see
Section 5), which naturally becomes larger with more
groups. But to show that simplicity was not the sole
reason for the success of this prior we created a two-
group prior where weights were randomly assigned to each
group (see ‘Random’ in Table 1). This prior performed
considerably worse than all the rest, indicating the impor-
tance of the diagonal structure.
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Table 1: Evidence of MAR models with different priors:
cognitive data

Prior Evidence
Interaction 31=x2
Lag-interaction 26+2
Lag —6+4
Global —-23+3
Random -28+3

Evidence, as estimated by the negative free energy F is given
for (i) interaction-prior, which splits coefficients into two
groups; one for interactions and one for within-series terms,
(i) interaction prior at each time lag, (iii) lag-prior, (iv) global
prior and (v} ‘random’ prior where coefficients are randomly
split into two groups. These were all calculated for a time lag
of p=2 and were averaged over ten one-second sections of
data; for each section we subtracted the mean value of F so
that results from all sections could be meaningfully pooled

The success of the interaction prior, which typically
resulted in the within-series weights being 15 to 20 times
bigger than the between-series weights (e.g. Fig. 6), means
that there is greater temporal information within each
channel than between channels. This results in small
values for the partial coherences between channels, a
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Fig. 4 Six-channel EEG data

Channels are recorded from one electrode on the right and one on the left of
central (C), parietal (P) and occipital (O) cortex in the following order (from
bottom to top in each part of the Figure): C-left, C-right, P-left, P-right, O-left
and O-right. x-axis shows elapsed seconds

a Baseline task
b Maths task
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Fig. 5 EEG model-order selection: plot of P(p), probability of model
order p

Probabilities calculated from (45) and averaged over ten one-second sections of
data. By disregarding spurious spatial interactions the MAR model using the
interaction prior is able to extract more temporal information

a Global prior
b Interaction prior

finding which is confirmed by results in [5]. This is not
to be confused with the purely spatial interaction between
channels, however, as indicated by the high degree of
(instantaneous) correlation between the time series (Fig.
4). This is picked up in the MAR models by the inference
of highly non-diagonal noise covariance matrices. Finally,
although the spatiotemporal interactions are small, they are
not insignificant. To emphasise this we present results on
using MAR models to discriminate between the EEG
recorded during the baseline and the maths tasks for
three of the subjects. These results were computed using
linear discriminant analysis applied to subsets of coeffi-
cients which were identified using a stepwise forwards
selection procedure [21]. Error rates were computed using
a five-fold cross-validation process. The results are shown
in Table 2. They show that the off-diagonal coefficients are
discriminative in themselves and that when combined with
the diagonal terms we can get an overall improvement in
discrimination accuracy.

7.4 Sleep-EEG data

We analysed data from a sleep-EEG database where the
EEG was recorded from six-channels over left and right
central, parietal and occipital cortex. We focused on ten
one-second sections of data recorded while the subject was
awake or in sleep-stage 4.
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Fig. 6 Hinton diagram of MAR(3) model fitted to EEG data recorded
during maths task

At each of three time lags (left to right) we have a 6 x 6 coefficient matrix. The
interaction prior reduces the magnitude of the off-diagonal terms

a Global prior
b Interaction prior

Table 2: Classification of EEG records using MAR
features

Error rates, %

Data Diagonal Off-diagonal All

Subject 1 79+5.3 3.6+25 43+3.0
Subject 2 2.1+31 0.7+£1.6 0.0+0.0
Subject 3 9.3+3.2 25.0+6.7 8.6+5.4

Error rates (%) for using MAR features to discriminate between
EEG data recorded during the baseline task against maths task,
for using just the diagonal, off-diagonal or all of MAR
coefficients

For the awake data we fitted MAR(4) models with
different priors. The evidence of the resulting models is
given in Table 3 which shows that the lag and the interac-
tion priors are best supported (the difference between them
is not significant). For the global prior, the optimal model
order was four, whereas use of the interaction prior
. increased this to seven. The effective degrees of freedom
for the global prior models was y=117+ 5 for p =4 and

Table 3: Evidence of MAR models with different priors:
sleep data

Prior Evidence
Interaction 8.0+5.0
Lag 6.2+4.0
Lag-interaction —-1.6+3.4
Global ~12.8+5.0

Evidence, as estimated by negative free energy F is given for
(i} interaction-prior, which splits coefficients into two groups:
one for interactions and one for within-series terms, (ii}
interaction prior at each time lag, (iii) lag-prior and (iv) global
prior. These were all calculated for a time lag of p=4 and
were averaged over ten one-second sections of data; for each
section we subtracted the mean value of F so that results from
all sections could be meaningfully pooled
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=181+ 12 for p=7. For the interaction prior we had
y=145+ 8 for p=7. Thus by reducing the effective
degrees of freedom using a structured prior we can extract
more temporal information.

For the sleep-stage 4 data the optimal model orders
decreased to three for the global prior and to six for the
interaction prior. This illustrates a known trend for sleep
EEG data: that optimal model order decreases with increas-
ing sleep stage [23].

8 Discussion

We have shown how to apply the variational Bayesian
framework to MAR models. By using ‘structured priors’
in which subsets of coefficients are constrained to be of a
similar magnitude, the effective number of degrees of free-
dom in the model can be constrained. This allows MAR
models to be more readily applied to high-dimensional data,
or to data with greater temporal complexity.

Also, VB provides a model-order selection criterion
which can be used to select the appropriate number of
time lags. Our experiments have shown this to be superior
to the MDL criterion. In earlier work [8] we have also
shown this to be the case for univariate AR models.

We have also shown that the negative variational free
energy (which approximates the model evidence) can be
used to choose an appropriate prior. While choosing your
prior after seeing the data may at first seem nonsensical, in
fact, this is not the case. The range of priors available, in
effect, enriches the MAR model class, and the choice of
appropriate prior reduces to a model selection problem; not
of model order as is usually the case but of model structure.
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10 Densities and divergences

10.1 Normal density
The multivariate normal density is given by

NQ #, ) = 2n) 22712
x exp(—%(x S m) (55)

The KL divergence for normal densities g(x)=N(x; #,,
X,) and p(x) =N(x; ,, %) is

3
KL(g,p) = 0.5log 2] + 0.5Tr(2;12q)

1%,
Tt d
+0.50t, — 1) 2 (1, =) =5 (56)
where |%,| denotes the determinant of the matrix 3,,.
710.2 Gamma density
The Gamma density is given by
1 x>t - [—x
Ga(x, b, C) = —@Fexp (7) (57)
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For Gamma densities ¢(x)=Ga(x; b,, c,) and p(x)=
Ga(x; b, c,) the KL-divergence is

KL(g,p) = (¢, — D¥(c,) ~ log b, — ¢, — log I'(c,)
+1log'(c,) +c, logb, — (c, — 1)(¥(c,) +logd,)
b
+ 4% (58)

b,

where W( ) is the digamma function [25].

10.3 Wishart density

The Wishart distribution is given by [11, p. 85]
1

Z(a, B)

Wi(A; a,B) = | A @412 exp [— % Tr(BA)]

(59)
where
Z(a, B) = 2°/*|B|™“/’T y(a/2) (60)

and I'/{ ) is the generalised gamma function defined in

([11], p. 62).
The entropy and KL-divergence of a Wishart can be
defined in terms of the integral

L(a,B) = JWi(A; a, B)log|A|dA 61
The entropy of g(A) =Wi(A; g, Q) is then given by

H = - (15—

The KL divergence between densities g(A) = Wi(A; ¢, @)
and p(A) = Wi(A; p, P) is given by

—d— —d—1
k1.0 = (=5 0.0 - (=5 ). P)

Z(p, P)
Z(g, Q)

Jua0+% +1oezi0.0) (@

- % +%Tr(PQ‘1) + log

(63)
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